<
From version < 43.26 >
edited by Xiaoling
on 2023/05/16 14:31
To version < 26.1 >
edited by Saxer Lin
on 2023/05/12 18:18
>
Change comment: Uploaded new attachment "image-20230512181814-9.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,15 +16,18 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -137,7 +137,6 @@
137 137  
138 138  == Hole Option ==
139 139  
140 -
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -291,22 +291,10 @@
291 291  
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 -
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
300 -Temperature(DS18B20)(PC13)
301 -)))|(% style="width:78px" %)(((
302 -ADC(PA4)
303 -)))|(% style="width:216px" %)(((
304 -Digital in(PB15)&Digital Interrupt(PA8)
305 -)))|(% style="width:308px" %)(((
306 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
307 -)))|(% style="width:154px" %)(((
308 -Humidity(SHT20 or SHT31)
309 -)))
295 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
296 +|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20)
310 310  
311 311  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312 312  
... ... @@ -315,146 +315,126 @@
315 315  
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 -|**Value**|BAT|(% style="width:196px" %)(((
321 -Temperature(DS18B20)(PC13)
322 -)))|(% style="width:87px" %)(((
323 -ADC(PA4)
324 -)))|(% style="width:189px" %)(((
325 -Digital in(PB15) & Digital Interrupt(PA8)
326 -)))|(% style="width:208px" %)(((
327 -Distance measure by:1) LIDAR-Lite V3HP
328 -Or 2) Ultrasonic Sensor
329 -)))|(% style="width:117px" %)Reserved
305 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
306 +|**Value**|BAT|(((
307 +Temperature(DS18B20)
308 +)))|ADC|Digital in & Digital Interrupt|(((
309 +Distance measure by:
310 +1) LIDAR-Lite V3HP
311 +Or
312 +2) Ultrasonic Sensor
313 +)))|Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
333 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
317 +**Connection of LIDAR-Lite V3HP:**
334 334  
335 -[[image:image-20230512173758-5.png||height="563" width="712"]]
319 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]]
336 336  
337 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
321 +**Connection to Ultrasonic Sensor:**
338 338  
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
323 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]]
340 340  
341 -[[image:image-20230512173903-6.png||height="596" width="715"]]
342 -
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 -|**Value**|BAT|(% style="width:183px" %)(((
348 -Temperature(DS18B20)(PC13)
349 -)))|(% style="width:173px" %)(((
350 -Digital in(PB15) & Digital Interrupt(PA8)
351 -)))|(% style="width:84px" %)(((
352 -ADC(PA4)
353 -)))|(% style="width:323px" %)(((
327 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
328 +|**Value**|BAT|(((
329 +Temperature(DS18B20)
330 +)))|Digital in & Digital Interrupt|ADC|(((
354 354  Distance measure by:1)TF-Mini plus LiDAR
355 355  Or 
356 356  2) TF-Luna LiDAR
357 -)))|(% style="width:188px" %)Distance signal  strength
334 +)))|Distance signal  strength
358 358  
359 359  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360 360  
361 361  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362 362  
363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
340 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
364 364  
365 -[[image:image-20230512180609-7.png||height="555" width="802"]]
342 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]]
366 366  
367 367  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368 368  
369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
346 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
370 370  
371 -[[image:image-20230513105207-4.png||height="469" width="802"]]
348 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
372 372  
350 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
373 373  
352 +
374 374  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375 375  
376 376  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377 377  
378 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 -|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
357 +|=(((
380 380  **Size(bytes)**
381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 -|**Value**|(% style="width:68px" %)(((
383 -ADC1(PA4)
384 -)))|(% style="width:75px" %)(((
385 -ADC2(PA5)
386 -)))|(((
387 -ADC3(PA8)
388 -)))|(((
389 -Digital Interrupt(PB15)
390 -)))|(% style="width:304px" %)(((
391 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
392 -)))|(% style="width:163px" %)(((
393 -Humidity(SHT20 or SHT31)
394 -)))|(% style="width:53px" %)Bat
359 +)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1
360 +|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|(((
361 +Digital in(PA12)&Digital Interrupt1(PB14)
362 +)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat
395 395  
396 -[[image:image-20230513110214-6.png]]
364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
397 397  
398 398  
399 399  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
400 400  
369 +This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4
401 401  
371 +Hardware connection is as below,
372 +
373 +**( Note:**
374 +
375 +* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes.
376 +* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already.
377 +
378 +See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) **
379 +
380 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]]
381 +
402 402  This mode has total 11 bytes. As shown below:
403 403  
404 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
405 -|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**
406 -|**Value**|BAT|(% style="width:186px" %)(((
407 -Temperature1(DS18B20)
408 -(PC13)
409 -)))|(% style="width:82px" %)(((
410 -ADC
411 -(PA4)
412 -)))|(% style="width:210px" %)(((
413 -Digital in(PB15) &
414 -Digital Interrupt(PA8) 
415 -)))|(% style="width:191px" %)Temperature2(DS18B20)
416 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
417 -(PB8)
384 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
385 +|**Value**|BAT|(((
386 +Temperature1
387 +(DS18B20)
388 +(PB3)
389 +)))|ADC|Digital in & Digital Interrupt|Temperature2
390 +(DS18B20)
391 +(PA9)|Temperature3
392 +(DS18B20)
393 +(PA10)
418 418  
419 419  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
420 420  
421 -[[image:image-20230513134006-1.png||height="559" width="736"]]
422 422  
423 -
424 424  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
425 425  
426 -[[image:image-20230512164658-2.png||height="532" width="729"]]
400 +This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection.
427 427  
402 +
403 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]]
404 +
428 428  Each HX711 need to be calibrated before used. User need to do below two steps:
429 429  
430 430  1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
431 431  1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
432 432  1. (((
433 -Weight has 4 bytes, the unit is g.
410 +Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0)
434 434  )))
435 435  
436 436  For example:
437 437  
438 -**AT+GETSENSORVALUE =0**
415 +**AT+WEIGAP =403.0**
439 439  
440 440  Response:  Weight is 401 g
441 441  
442 442  Check the response of this command and adjust the value to match the real value for thing.
443 443  
444 -(% style="width:767px" %)
445 445  |=(((
446 446  **Size(bytes)**
447 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
448 -|**Value**|BAT|(% style="width:193px" %)(((
449 -Temperature(DS18B20)
450 -(PC13)
451 -)))|(% style="width:85px" %)(((
452 -ADC
453 -(PA4)
454 -)))|(% style="width:186px" %)(((
455 -Digital in(PB15) &
456 -Digital Interrupt(PA8)
457 -)))|(% style="width:100px" %)Weight
423 +)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2
424 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved
458 458  
459 459  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
460 460  
... ... @@ -465,114 +465,83 @@
465 465  
466 466  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
467 467  
468 -[[image:image-20230512181814-9.png||height="543" width="697"]]
435 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]]
469 469  
470 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
437 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
471 471  
472 -(% style="width:961px" %)
473 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
474 -|**Value**|BAT|(% style="width:256px" %)(((
475 -Temperature(DS18B20)
439 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
440 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
441 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
442 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
476 476  
477 -(PC13)
478 -)))|(% style="width:108px" %)(((
479 -ADC
480 -(PA4)
481 -)))|(% style="width:126px" %)(((
482 -Digital in
483 -(PB15)
484 -)))|(% style="width:145px" %)(((
485 -Count
486 -(PA8)
487 -)))
488 -
489 489  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
490 490  
491 491  
492 492  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
493 493  
494 -(% style="width:1108px" %)
449 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
450 +
495 495  |=(((
496 496  **Size(bytes)**
497 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
498 -|**Value**|BAT|(% style="width:188px" %)(((
499 -Temperature(DS18B20)
500 -(PC13)
501 -)))|(% style="width:83px" %)(((
502 -ADC
503 -(PA5)
504 -)))|(% style="width:184px" %)(((
505 -Digital Interrupt1(PA8)
506 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
453 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
454 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
455 +Digital in(PA12)&Digital Interrupt1(PB14)
456 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
507 507  
508 -[[image:image-20230513111203-7.png||height="324" width="975"]]
509 -
510 510  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
511 511  
512 -(% style="width:922px" %)
513 513  |=(((
514 514  **Size(bytes)**
515 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
516 -|**Value**|BAT|(% style="width:207px" %)(((
517 -Temperature(DS18B20)
518 -(PC13)
519 -)))|(% style="width:94px" %)(((
520 -ADC1
521 -(PA4)
522 -)))|(% style="width:198px" %)(((
523 -Digital Interrupt(PB15)
524 -)))|(% style="width:84px" %)(((
525 -ADC2
526 -(PA5)
527 -)))|(% style="width:82px" %)(((
528 -ADC3
529 -(PA8)
462 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
463 +|**Value**|BAT|Temperature(DS18B20)|(((
464 +ADC1(PA0)
465 +)))|(((
466 +Digital in
467 +& Digital Interrupt(PB14)
468 +)))|(((
469 +ADC2(PA1)
470 +)))|(((
471 +ADC3(PA4)
530 530  )))
531 531  
532 -[[image:image-20230513111231-8.png||height="335" width="900"]]
474 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
533 533  
534 534  
535 535  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
536 536  
537 -(% style="width:1010px" %)
538 538  |=(((
539 539  **Size(bytes)**
540 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
481 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
541 541  |**Value**|BAT|(((
542 -Temperature1(DS18B20)
543 -(PC13)
483 +Temperature1(PB3)
544 544  )))|(((
545 -Temperature2(DS18B20)
546 -(PB9)
485 +Temperature2(PA9)
547 547  )))|(((
548 -Digital Interrupt
549 -(PB15)
550 -)))|(% style="width:193px" %)(((
551 -Temperature3(DS18B20)
552 -(PB8)
553 -)))|(% style="width:78px" %)(((
554 -Count1
555 -(PA8)
556 -)))|(% style="width:78px" %)(((
557 -Count2
558 -(PA4)
487 +Digital in
488 +& Digital Interrupt(PA4)
489 +)))|(((
490 +Temperature3(PA10)
491 +)))|(((
492 +Count1(PB14)
493 +)))|(((
494 +Count2(PB15)
559 559  )))
560 560  
561 -[[image:image-20230513111255-9.png||height="341" width="899"]]
497 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
562 562  
563 563  **The newly added AT command is issued correspondingly:**
564 564  
565 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
501 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
566 566  
567 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
503 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
568 568  
569 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
505 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
570 570  
571 571  **AT+SETCNT=aa,bb** 
572 572  
573 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
509 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
574 574  
575 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
511 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
576 576  
577 577  
578 578  
... ... @@ -598,13 +598,13 @@
598 598  
599 599  ==== 2.3.3.2  Temperature (DS18B20) ====
600 600  
601 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
537 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
602 602  
603 603  More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
604 604  
605 605  **Connection:**
606 606  
607 -[[image:image-20230512180718-8.png||height="538" width="647"]]
543 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378573379-646.png?rev=1.1||alt="1656378573379-646.png"]]
608 608  
609 609  **Example**:
610 610  
... ... @@ -617,61 +617,87 @@
617 617  
618 618  ==== 2.3.3.3 Digital Input ====
619 619  
620 -The digital input for pin PB15,
556 +The digital input for pin PA12,
621 621  
622 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
623 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
558 +* When PA12 is high, the bit 1 of payload byte 6 is 1.
559 +* When PA12 is low, the bit 1 of payload byte 6 is 0.
624 624  
625 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
626 -(((
627 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
561 +==== 2.3.3.4  Analogue Digital Converter (ADC) ====
628 628  
629 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
630 -)))
563 +The ADC pins in LSN50 can measure range from 0~~Vbat, it use reference voltage from . If user need to measure a voltage > VBat, please use resistors to divide this voltage to lower than VBat, otherwise, it may destroy the ADC pin.
631 631  
632 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
565 +Note: minimum VBat is 2.5v, when batrrey lower than this value. Device won't be able to send LoRa Uplink.
633 633  
634 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
567 +The ADC monitors the voltage on the PA0 line, in mV.
635 635  
636 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
569 +Ex: 0x021F = 543mv,
637 637  
638 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
571 +**~ Example1:**  Reading an Oil Sensor (Read a resistance value):
639 639  
640 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
641 641  
574 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172409-28.png?rev=1.1||alt="image-20220627172409-28.png"]]
642 642  
576 +In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor.
577 +
578 +
579 +**Steps:**
580 +
581 +1. Solder a 10K resistor between PA0 and VCC.
582 +1. Screw oil sensor's two pins to PA0 and PB4.
583 +
584 +The equipment circuit is as below:
585 +
586 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172500-29.png?rev=1.1||alt="image-20220627172500-29.png"]]
587 +
588 +According to above diagram:
589 +
590 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091043-4.png?rev=1.1||alt="image-20220628091043-4.png"]]
591 +
592 +So
593 +
594 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091344-6.png?rev=1.1||alt="image-20220628091344-6.png"]]
595 +
596 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091621-8.png?rev=1.1||alt="image-20220628091621-8.png"]] is the reading of ADC. So if ADC=0x05DC=0.9 v and VCC (BAT) is 2.9v
597 +
598 +The [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091702-9.png?rev=1.1||alt="image-20220628091702-9.png"]] 4.5K ohm
599 +
600 +Since the Bouy is linear resistance from 10 ~~ 70cm.
601 +
602 +The position of Bouy is [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091824-10.png?rev=1.1||alt="image-20220628091824-10.png"]] , from the bottom of Bouy.
603 +
604 +
643 643  ==== 2.3.3.5 Digital Interrupt ====
644 644  
645 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
607 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
646 646  
647 -(% style="color:blue" %)**~ Interrupt connection method:**
609 +**~ Interrupt connection method:**
648 648  
649 -[[image:image-20230513105351-5.png||height="147" width="485"]]
611 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
650 650  
651 -(% style="color:blue" %)**Example to use with door sensor :**
613 +**Example to use with door sensor :**
652 652  
653 653  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
654 654  
655 655  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
656 656  
657 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
619 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
658 658  
659 -(% style="color:blue" %)**~ Below is the installation example:**
621 +**~ Below is the installation example:**
660 660  
661 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
623 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
662 662  
663 663  * (((
664 -One pin to SN50_v3's PA8 pin
626 +One pin to LSN50's PB14 pin
665 665  )))
666 666  * (((
667 -The other pin to SN50_v3's VDD pin
629 +The other pin to LSN50's VCC pin
668 668  )))
669 669  
670 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
632 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
671 671  
672 672  Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
673 673  
674 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
636 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
675 675  
676 676  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
677 677  
... ... @@ -681,7 +681,7 @@
681 681  
682 682  The command is:
683 683  
684 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
646 +**AT+INTMOD=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
685 685  
686 686  Below shows some screen captures in TTN V3:
687 687  
... ... @@ -691,20 +691,25 @@
691 691  
692 692  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
693 693  
656 +**Notice for hardware version LSN50 v1 < v1.3** (produced before 2018-Nov).
694 694  
695 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
658 +In this hardware version, there is no R14 resistance solder. When use the latest firmware, it should set AT+INTMOD=0 to close the interrupt. If user need to use Interrupt in this hardware version, user need to solder R14 with 10M resistor and C1 (0.1uF) on board.
696 696  
697 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
660 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379563303-771.png?rev=1.1||alt="1656379563303-771.png"]]
698 698  
699 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
700 700  
701 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
663 +==== 2.3.3.6 I2C Interface (SHT20) ====
702 702  
703 -Below is the connection to SHT20/ SHT31. The connection is as below:
665 +The PB6(SDA) and PB7(SCK) are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
704 704  
667 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with **AT+MOD=1 (default value).**
705 705  
706 -[[image:image-20230513103633-3.png||height="448" width="716"]]
669 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in LSN50 will be a good reference.
707 707  
671 +Below is the connection to SHT20/ SHT31. The connection is as below:
672 +
673 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
674 +
708 708  The device will be able to get the I2C sensor data now and upload to IoT Server.
709 709  
710 710  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -727,17 +727,15 @@
727 727  
728 728  ==== 2.3.3.8 Ultrasonic Sensor ====
729 729  
730 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
697 +The LSN50 v1.5 firmware supports ultrasonic sensor (with AT+MOD=2) such as SEN0208 from DF-Robot. This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
731 731  
732 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
699 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
733 733  
734 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
735 -
736 736  The picture below shows the connection:
737 737  
738 -[[image:image-20230512173903-6.png||height="596" width="715"]]
703 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656380061365-178.png?rev=1.1||alt="1656380061365-178.png"]]
739 739  
740 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
705 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
741 741  
742 742  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
743 743  
... ... @@ -745,8 +745,20 @@
745 745  
746 746  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
747 747  
713 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
748 748  
715 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
749 749  
717 +You can see the serial output in ULT mode as below:
718 +
719 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
720 +
721 +**In TTN V3 server:**
722 +
723 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
724 +
725 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
726 +
750 750  ==== 2.3.3.9  Battery Output - BAT pin ====
751 751  
752 752  The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
... ... @@ -758,7 +758,7 @@
758 758  
759 759  The 5V output time can be controlled by AT Command.
760 760  
761 -(% style="color:blue" %)**AT+5VT=1000**
738 +**AT+5VT=1000**
762 762  
763 763  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
764 764  
... ... @@ -770,9 +770,9 @@
770 770  
771 771  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
772 772  
773 -[[image:image-20230512172447-4.png||height="416" width="712"]]
750 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-11.jpeg?rev=1.1||alt="image-20220628110012-11.jpeg"]]
774 774  
775 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
752 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
776 776  
777 777  
778 778  ==== 2.3.3.12  Working MOD ====
... ... @@ -789,12 +789,7 @@
789 789  * 3: MOD4
790 790  * 4: MOD5
791 791  * 5: MOD6
792 -* 6: MOD7
793 -* 7: MOD8
794 -* 8: MOD9
795 795  
796 -
797 -
798 798  == 2.4 Payload Decoder file ==
799 799  
800 800  
... ... @@ -802,7 +802,7 @@
802 802  
803 803  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
804 804  
805 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
777 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
806 806  
807 807  
808 808  
... ... @@ -846,6 +846,7 @@
846 846  
847 847  === 3.3.1 Set Transmit Interval Time ===
848 848  
821 +
849 849  Feature: Change LoRaWAN End Node Transmit Interval.
850 850  
851 851  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -871,11 +871,9 @@
871 871  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
872 872  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
873 873  
874 -
875 -
876 876  === 3.3.2 Get Device Status ===
877 877  
878 -Send a LoRaWAN downlink to ask the device to send its status.
849 +Send a LoRaWAN downlink to ask device send Alarm settings.
879 879  
880 880  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
881 881  
... ... @@ -882,20 +882,21 @@
882 882  Sensor will upload Device Status via FPORT=5. See payload section for detail.
883 883  
884 884  
885 -=== 3.3.3 Set Interrupt Mode ===
856 +=== 3.3.7 Set Interrupt Mode ===
886 886  
858 +
887 887  Feature, Set Interrupt mode for GPIO_EXIT.
888 888  
889 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
861 +(% style="color:blue" %)**AT Command: AT+INTMOD**
890 890  
891 891  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
892 892  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
893 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
865 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
894 894  0
895 895  OK
896 896  the mode is 0 =Disable Interrupt
897 897  )))
898 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
870 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
899 899  Set Transmit Interval
900 900  0. (Disable Interrupt),
901 901  ~1. (Trigger by rising and falling edge)
... ... @@ -902,13 +902,7 @@
902 902  2. (Trigger by falling edge)
903 903  3. (Trigger by rising edge)
904 904  )))|(% style="width:157px" %)OK
905 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
906 -Set Transmit Interval
907 907  
908 -trigger by rising edge.
909 -)))|(% style="width:157px" %)OK
910 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
911 -
912 912  (% style="color:blue" %)**Downlink Command: 0x06**
913 913  
914 914  Format: Command Code (0x06) followed by 3 bytes.
... ... @@ -915,121 +915,9 @@
915 915  
916 916  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
917 917  
918 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
919 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
920 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
921 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
884 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
885 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
922 922  
923 -
924 -
925 -=== 3.3.4 Set Power Output Duration ===
926 -
927 -Control the output duration 5V . Before each sampling, device will
928 -
929 -~1. first enable the power output to external sensor,
930 -
931 -2. keep it on as per duration, read sensor value and construct uplink payload
932 -
933 -3. final, close the power output.
934 -
935 -(% style="color:blue" %)**AT Command: AT+5VT**
936 -
937 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
938 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
939 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
940 -500(default)
941 -OK
942 -)))
943 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
944 -Close after a delay of 1000 milliseconds.
945 -)))|(% style="width:157px" %)OK
946 -
947 -(% style="color:blue" %)**Downlink Command: 0x07**
948 -
949 -Format: Command Code (0x07) followed by 2 bytes.
950 -
951 -The first and second bytes are the time to turn on.
952 -
953 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
954 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
955 -
956 -
957 -
958 -=== 3.3.5 Set Weighing parameters ===
959 -
960 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
961 -
962 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
963 -
964 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
965 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
966 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
967 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
968 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
969 -
970 -(% style="color:blue" %)**Downlink Command: 0x08**
971 -
972 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
973 -
974 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
975 -
976 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
977 -
978 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
979 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
980 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
981 -
982 -
983 -
984 -=== 3.3.6 Set Digital pulse count value ===
985 -
986 -Feature: Set the pulse count value.
987 -
988 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
989 -
990 -(% style="color:blue" %)**AT Command: AT+SETCNT**
991 -
992 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
993 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
994 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
995 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
996 -
997 -(% style="color:blue" %)**Downlink Command: 0x09**
998 -
999 -Format: Command Code (0x09) followed by 5 bytes.
1000 -
1001 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1002 -
1003 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1004 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1005 -
1006 -
1007 -
1008 -=== 3.3.7 Set Workmode ===
1009 -
1010 -Feature: Switch working mode.
1011 -
1012 -(% style="color:blue" %)**AT Command: AT+MOD**
1013 -
1014 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1015 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1016 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1017 -OK
1018 -)))
1019 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1020 -OK
1021 -Attention:Take effect after ATZ
1022 -)))
1023 -
1024 -(% style="color:blue" %)**Downlink Command: 0x0A**
1025 -
1026 -Format: Command Code (0x0A) followed by 1 bytes.
1027 -
1028 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1029 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1030 -
1031 -
1032 -
1033 1033  = 4. Battery & Power Consumption =
1034 1034  
1035 1035  
... ... @@ -1063,6 +1063,8 @@
1063 1063  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1064 1064  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1065 1065  
920 +
921 +
1066 1066  = 7. Order Info =
1067 1067  
1068 1068  
... ... @@ -1103,5 +1103,4 @@
1103 1103  
1104 1104  
1105 1105  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1106 -
1107 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
962 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0