Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 16 added, 0 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.ting - Content
-
... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,9 +27,9 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 32 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 513102034-2.png]]125 +[[image:image-20230610163213-1.png||height="404" width="699"]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,7 +135,7 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 138 +== 1.9 Hole Option == 139 139 140 140 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.161 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 210 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -215,44 +215,44 @@ 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT218 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 - *0x01: EU868229 +0x01: EU868 230 230 231 - *0x02: US915231 +0x02: US915 232 232 233 - *0x03: IN865233 +0x03: IN865 234 234 235 - *0x04: AU915235 +0x04: AU915 236 236 237 - *0x05: KZ865237 +0x05: KZ865 238 238 239 - *0x06: RU864239 +0x06: RU864 240 240 241 - *0x07: AS923241 +0x07: AS923 242 242 243 - *0x08: AS923-1243 +0x08: AS923-1 244 244 245 - *0x09: AS923-2245 +0x09: AS923-2 246 246 247 - *0x0a: AS923-3247 +0x0a: AS923-3 248 248 249 - *0x0b: CN470249 +0x0b: CN470 250 250 251 - *0x0c: EU433251 +0x0c: EU433 252 252 253 - *0x0d: KR920253 +0x0d: KR920 254 254 255 - *0x0e: MA869255 +0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 279 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 283 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 288 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 291 291 290 +2. All modes share the same Payload Explanation from HERE. 291 + 292 +3. By default, the device will send an uplink message every 20 minutes. 293 + 294 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,8 +295,8 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**299 -| **Value**|Bat|(% style="width:191px" %)(((301 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 302 +|Value|Bat|(% style="width:191px" %)((( 300 300 Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( 302 302 ADC(PA4) ... ... @@ -313,11 +313,12 @@ 313 313 314 314 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 315 315 319 + 316 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 317 317 318 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 319 -|(% style=" width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**320 -| **Value**|BAT|(% style="width:196px" %)(((323 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 324 +|Value|BAT|(% style="width:196px" %)((( 321 321 Temperature(DS18B20)(PC13) 322 322 )))|(% style="width:87px" %)((( 323 323 ADC(PA4) ... ... @@ -324,27 +324,30 @@ 324 324 )))|(% style="width:189px" %)((( 325 325 Digital in(PB15) & Digital Interrupt(PA8) 326 326 )))|(% style="width:208px" %)((( 327 -Distance measure by:1) LIDAR-Lite V3HP 331 +Distance measure by: 1) LIDAR-Lite V3HP 328 328 Or 2) Ultrasonic Sensor 329 329 )))|(% style="width:117px" %)Reserved 330 330 331 331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 332 332 337 + 333 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 334 334 335 335 [[image:image-20230512173758-5.png||height="563" width="712"]] 336 336 342 + 337 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 338 338 339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 345 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 340 340 341 341 [[image:image-20230512173903-6.png||height="596" width="715"]] 342 342 349 + 343 343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 344 344 345 345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 346 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**347 -| **Value**|BAT|(% style="width:183px" %)(((353 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 354 +|Value|BAT|(% style="width:183px" %)((( 348 348 Temperature(DS18B20)(PC13) 349 349 )))|(% style="width:173px" %)((( 350 350 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -352,34 +352,36 @@ 352 352 ADC(PA4) 353 353 )))|(% style="width:323px" %)((( 354 354 Distance measure by:1)TF-Mini plus LiDAR 355 -Or 356 -2) TF-Luna LiDAR 362 +Or 2) TF-Luna LiDAR 357 357 )))|(% style="width:188px" %)Distance signal strength 358 358 359 359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 360 360 367 + 361 361 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 362 362 363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 370 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 364 364 365 365 [[image:image-20230512180609-7.png||height="555" width="802"]] 366 366 374 + 367 367 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 368 368 369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 370 370 371 -[[image:image-20230 513105207-4.png||height="469" width="802"]]379 +[[image:image-20230610170047-1.png||height="452" width="799"]] 372 372 373 373 374 374 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 375 375 384 + 376 376 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 377 377 378 378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 379 -|=((( 380 - (% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 1 40px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1382 -| **Value**|(% style="width:68px" %)(((388 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 389 +**Size(bytes)** 390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 391 +|Value|(% style="width:68px" %)((( 383 383 ADC1(PA4) 384 384 )))|(% style="width:75px" %)((( 385 385 ADC2(PA5) ... ... @@ -401,59 +401,57 @@ 401 401 402 402 This mode has total 11 bytes. As shown below: 403 403 404 -(% style="width:1017px" %) 405 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 406 -|**Value**|BAT|(% style="width:186px" %)((( 407 -Temperature1(DS18B20) 408 -(PC13) 413 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 415 +|Value|BAT|(% style="width:186px" %)((( 416 +Temperature1(DS18B20)(PC13) 409 409 )))|(% style="width:82px" %)((( 410 -ADC 411 -(PA4) 418 +ADC(PA4) 412 412 )))|(% style="width:210px" %)((( 413 -Digital in(PB15) & 414 -Digital Interrupt(PA8) 420 +Digital in(PB15) & Digital Interrupt(PA8) 415 415 )))|(% style="width:191px" %)Temperature2(DS18B20) 416 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 417 -(PB8) 422 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 418 418 419 419 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 420 420 426 + 421 421 [[image:image-20230513134006-1.png||height="559" width="736"]] 422 422 423 423 424 424 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 425 425 432 + 426 426 [[image:image-20230512164658-2.png||height="532" width="729"]] 427 427 428 428 Each HX711 need to be calibrated before used. User need to do below two steps: 429 429 430 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 431 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 437 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 438 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 432 432 1. ((( 433 433 Weight has 4 bytes, the unit is g. 441 + 442 + 443 + 434 434 ))) 435 435 436 436 For example: 437 437 438 -**AT+GETSENSORVALUE =0** 448 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 439 439 440 440 Response: Weight is 401 g 441 441 442 442 Check the response of this command and adjust the value to match the real value for thing. 443 443 444 -(% style="width: 767px" %)445 -|=((( 454 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 455 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 446 446 **Size(bytes)** 447 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4** 448 -|**Value**|BAT|(% style="width:193px" %)((( 449 -Temperature(DS18B20) 450 -(PC13) 457 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 458 +|Value|BAT|(% style="width:193px" %)((( 459 +Temperature(DS18B20)(PC13) 451 451 )))|(% style="width:85px" %)((( 452 -ADC 453 -(PA4) 461 +ADC(PA4) 454 454 )))|(% style="width:186px" %)((( 455 -Digital in(PB15) & 456 -Digital Interrupt(PA8) 463 +Digital in(PB15) & Digital Interrupt(PA8) 457 457 )))|(% style="width:100px" %)Weight 458 458 459 459 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -461,6 +461,7 @@ 461 461 462 462 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 463 463 471 + 464 464 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 465 465 466 466 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -467,23 +467,19 @@ 467 467 468 468 [[image:image-20230512181814-9.png||height="543" width="697"]] 469 469 470 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 471 471 472 -(% style="width:961px" %) 473 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 474 -|**Value**|BAT|(% style="width:256px" %)((( 475 -Temperature(DS18B20) 479 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 476 476 477 -(PC13) 481 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 482 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 483 +|Value|BAT|(% style="width:256px" %)((( 484 +Temperature(DS18B20)(PC13) 478 478 )))|(% style="width:108px" %)((( 479 -ADC 480 -(PA4) 486 +ADC(PA4) 481 481 )))|(% style="width:126px" %)((( 482 -Digital in 483 -(PB15) 488 +Digital in(PB15) 484 484 )))|(% style="width:145px" %)((( 485 -Count 486 -(PA8) 490 +Count(PA8) 487 487 ))) 488 488 489 489 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] ... ... @@ -491,16 +491,16 @@ 491 491 492 492 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 493 493 494 -(% style="width:1108px" %) 495 -|=((( 498 + 499 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 500 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 496 496 **Size(bytes)** 497 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2498 -| **Value**|BAT|(% style="width:188px" %)(((502 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 503 +|Value|BAT|(% style="width:188px" %)((( 499 499 Temperature(DS18B20) 500 500 (PC13) 501 501 )))|(% style="width:83px" %)((( 502 -ADC 503 -(PA5) 507 +ADC(PA5) 504 504 )))|(% style="width:184px" %)((( 505 505 Digital Interrupt1(PA8) 506 506 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -507,26 +507,25 @@ 507 507 508 508 [[image:image-20230513111203-7.png||height="324" width="975"]] 509 509 514 + 510 510 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 511 511 512 -(% style="width:922px" %) 513 -|=((( 517 + 518 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 519 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 514 514 **Size(bytes)** 515 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2516 -| **Value**|BAT|(% style="width:207px" %)(((521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 522 +|Value|BAT|(% style="width:207px" %)((( 517 517 Temperature(DS18B20) 518 518 (PC13) 519 519 )))|(% style="width:94px" %)((( 520 -ADC1 521 -(PA4) 526 +ADC1(PA4) 522 522 )))|(% style="width:198px" %)((( 523 523 Digital Interrupt(PB15) 524 524 )))|(% style="width:84px" %)((( 525 -ADC2 526 -(PA5) 530 +ADC2(PA5) 527 527 )))|(% style="width:82px" %)((( 528 -ADC3 529 -(PA8) 532 +ADC3(PA8) 530 530 ))) 531 531 532 532 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -534,50 +534,150 @@ 534 534 535 535 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 536 536 537 -(% style="width:1010px" %) 538 -|=((( 540 + 541 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 542 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 539 539 **Size(bytes)** 540 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4541 -| **Value**|BAT|(((542 -Temperature 1(DS18B20)543 -(PC13) 544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 545 +|Value|BAT|((( 546 +Temperature 547 +(DS18B20)(PC13) 544 544 )))|((( 545 -Temperature2 (DS18B20)546 -(PB9) 549 +Temperature2 550 +(DS18B20)(PB9) 547 547 )))|((( 548 548 Digital Interrupt 549 549 (PB15) 550 550 )))|(% style="width:193px" %)((( 551 -Temperature3 (DS18B20)552 -(PB8) 555 +Temperature3 556 +(DS18B20)(PB8) 553 553 )))|(% style="width:78px" %)((( 554 -Count1 555 -(PA8) 558 +Count1(PA8) 556 556 )))|(% style="width:78px" %)((( 557 -Count2 558 -(PA4) 560 +Count2(PA4) 559 559 ))) 560 560 561 561 [[image:image-20230513111255-9.png||height="341" width="899"]] 562 562 563 -**The newly added AT command is issued correspondingly:** 565 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 564 564 565 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**567 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 566 566 567 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**569 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 568 568 569 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**571 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 570 570 571 -**AT+SETCNT=aa,bb** 572 572 574 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 575 + 573 573 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 574 574 575 575 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 576 576 577 577 581 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 578 578 583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 + 585 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 + 587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 + 589 + 590 +===== 2.3.2.10.a Uplink, PWM input capture ===== 591 + 592 + 593 +[[image:image-20230817172209-2.png||height="439" width="683"]] 594 + 595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 +|Value|Bat|(% style="width:191px" %)((( 598 +Temperature(DS18B20)(PC13) 599 +)))|(% style="width:78px" %)((( 600 +ADC(PA4) 601 +)))|(% style="width:135px" %)((( 602 +PWM_Setting 603 + 604 +&Digital Interrupt(PA8) 605 +)))|(% style="width:70px" %)((( 606 +Pulse period 607 +)))|(% style="width:89px" %)((( 608 +Duration of high level 609 +))) 610 + 611 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 612 + 613 + 614 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 615 + 616 +**Frequency:** 617 + 618 +(% class="MsoNormal" %) 619 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 620 + 621 +(% class="MsoNormal" %) 622 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 623 + 624 + 625 +(% class="MsoNormal" %) 626 +**Duty cycle:** 627 + 628 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 629 + 630 +[[image:image-20230818092200-1.png||height="344" width="627"]] 631 + 632 +===== 2.3.2.10.b Uplink, PWM output ===== 633 + 634 +[[image:image-20230817172209-2.png||height="439" width="683"]] 635 + 636 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 637 + 638 +a is the time delay of the output, the unit is ms. 639 + 640 +b is the output frequency, the unit is HZ. 641 + 642 +c is the duty cycle of the output, the unit is %. 643 + 644 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 645 + 646 +aa is the time delay of the output, the unit is ms. 647 + 648 +bb is the output frequency, the unit is HZ. 649 + 650 +cc is the duty cycle of the output, the unit is %. 651 + 652 + 653 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 654 + 655 +The oscilloscope displays as follows: 656 + 657 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 658 + 659 + 660 +===== 2.3.2.10.c Downlink, PWM output ===== 661 + 662 + 663 +[[image:image-20230817173800-3.png||height="412" width="685"]] 664 + 665 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 666 + 667 + xx xx xx is the output frequency, the unit is HZ. 668 + 669 + yy is the duty cycle of the output, the unit is %. 670 + 671 + zz zz is the time delay of the output, the unit is ms. 672 + 673 + 674 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 675 + 676 +The oscilloscope displays as follows: 677 + 678 +[[image:image-20230817173858-5.png||height="694" width="921"]] 679 + 680 + 579 579 === 2.3.3 Decode payload === 580 580 683 + 581 581 While using TTN V3 network, you can add the payload format to decode the payload. 582 582 583 583 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -584,13 +584,14 @@ 584 584 585 585 The payload decoder function for TTN V3 are here: 586 586 587 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 690 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 588 588 589 589 590 590 ==== 2.3.3.1 Battery Info ==== 591 591 592 -Check the battery voltage for SN50v3. 593 593 696 +Check the battery voltage for SN50v3-LB. 697 + 594 594 Ex1: 0x0B45 = 2885mV 595 595 596 596 Ex2: 0x0B49 = 2889mV ... ... @@ -598,16 +598,18 @@ 598 598 599 599 ==== 2.3.3.2 Temperature (DS18B20) ==== 600 600 705 + 601 601 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 602 602 603 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]708 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 604 604 605 -**Connection:** 710 +(% style="color:blue" %)**Connection:** 606 606 607 607 [[image:image-20230512180718-8.png||height="538" width="647"]] 608 608 609 -**Example**: 610 610 715 +(% style="color:blue" %)**Example**: 716 + 611 611 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 612 612 613 613 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -617,6 +617,7 @@ 617 617 618 618 ==== 2.3.3.3 Digital Input ==== 619 619 726 + 620 620 The digital input for pin PB15, 621 621 622 622 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -626,28 +626,38 @@ 626 626 ((( 627 627 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 628 628 629 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 736 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 737 + 738 + 630 630 ))) 631 631 632 632 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 633 633 634 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 635 635 636 - Whenthemeasuredoutput voltage of thesensorisnot withinthe rangeof0Vand1.1V,theoutputvoltageterminal of theensor shall be divided The example in the following figure istoreduce the output voltage of the sensorby three timesIf it is necessary toreduce moretimes,calculate according to the formula in the figure and connect the corresponding resistance in series.744 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 637 637 746 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 747 + 638 638 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 639 639 640 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 641 641 751 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 642 642 753 + 754 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 755 + 756 +[[image:image-20230811113449-1.png||height="370" width="608"]] 757 + 643 643 ==== 2.3.3.5 Digital Interrupt ==== 644 644 645 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 646 646 647 - (% style="color:blue"%)**~Interruptconnection method:**761 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 648 648 763 +(% style="color:blue" %)** Interrupt connection method:** 764 + 649 649 [[image:image-20230513105351-5.png||height="147" width="485"]] 650 650 767 + 651 651 (% style="color:blue" %)**Example to use with door sensor :** 652 652 653 653 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -654,22 +654,23 @@ 654 654 655 655 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 656 656 657 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.774 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 658 658 659 -(% style="color:blue" %)**~ Below is the installation example:** 660 660 661 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:777 +(% style="color:blue" %)**Below is the installation example:** 662 662 779 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 780 + 663 663 * ((( 664 -One pin to SN50 _v3's PA8 pin782 +One pin to SN50v3-LB's PA8 pin 665 665 ))) 666 666 * ((( 667 -The other pin to SN50 _v3's VDD pin785 +The other pin to SN50v3-LB's VDD pin 668 668 ))) 669 669 670 670 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 671 671 672 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 790 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 673 673 674 674 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 675 675 ... ... @@ -681,29 +681,32 @@ 681 681 682 682 The command is: 683 683 684 -(% style="color:blue" %)**AT+INTMOD1=1 802 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 685 685 686 686 Below shows some screen captures in TTN V3: 687 687 688 688 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 689 689 690 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 691 691 809 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 810 + 692 692 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 693 693 694 694 695 695 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 696 696 816 + 697 697 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 698 698 699 699 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 700 700 701 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.821 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 702 702 823 + 703 703 Below is the connection to SHT20/ SHT31. The connection is as below: 704 704 826 +[[image:image-20230610170152-2.png||height="501" width="846"]] 705 705 706 -[[image:image-20230513103633-3.png||height="448" width="716"]] 707 707 708 708 The device will be able to get the I2C sensor data now and upload to IoT Server. 709 709 ... ... @@ -722,23 +722,26 @@ 722 722 723 723 ==== 2.3.3.7 Distance Reading ==== 724 724 725 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 726 726 847 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 727 727 849 + 728 728 ==== 2.3.3.8 Ultrasonic Sensor ==== 729 729 852 + 730 730 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 731 731 732 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.855 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 733 733 734 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 857 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 735 735 736 736 The picture below shows the connection: 737 737 738 738 [[image:image-20230512173903-6.png||height="596" width="715"]] 739 739 740 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 741 741 864 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 865 + 742 742 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 743 743 744 744 **Example:** ... ... @@ -746,16 +746,17 @@ 746 746 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 747 747 748 748 749 - 750 750 ==== 2.3.3.9 Battery Output - BAT pin ==== 751 751 752 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 753 753 876 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 754 754 878 + 755 755 ==== 2.3.3.10 +5V Output ==== 756 756 757 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 758 758 882 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 883 + 759 759 The 5V output time can be controlled by AT Command. 760 760 761 761 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -762,21 +762,54 @@ 762 762 763 763 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 764 764 765 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 890 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 766 766 767 767 768 - 769 769 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 770 770 895 + 771 771 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 772 772 773 773 [[image:image-20230512172447-4.png||height="416" width="712"]] 774 774 900 + 775 775 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 776 776 777 777 778 -==== 2.3.3.12 W orkingMOD ====904 +==== 2.3.3.12 PWM MOD ==== 779 779 906 + 907 +* ((( 908 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 909 +))) 910 +* ((( 911 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 912 +))) 913 + 914 + [[image:image-20230817183249-3.png||height="320" width="417"]] 915 + 916 +* ((( 917 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 918 +))) 919 +* ((( 920 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 921 +))) 922 +* ((( 923 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 924 + 925 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 926 + 927 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 928 + 929 +b) If the output duration is more than 30 seconds, better to use external power source. 930 + 931 + 932 + 933 +))) 934 + 935 +==== 2.3.3.13 Working MOD ==== 936 + 937 + 780 780 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 781 781 782 782 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -792,9 +792,8 @@ 792 792 * 6: MOD7 793 793 * 7: MOD8 794 794 * 8: MOD9 953 +* 9: MOD10 795 795 796 - 797 - 798 798 == 2.4 Payload Decoder file == 799 799 800 800 ... ... @@ -805,7 +805,6 @@ 805 805 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 806 806 807 807 808 - 809 809 == 2.5 Frequency Plans == 810 810 811 811 ... ... @@ -841,17 +841,18 @@ 841 841 == 3.3 Commands special design for SN50v3-LB == 842 842 843 843 844 -These commands only valid for S3 1x-LB, as below:1000 +These commands only valid for SN50v3-LB, as below: 845 845 846 846 847 847 === 3.3.1 Set Transmit Interval Time === 848 848 1005 + 849 849 Feature: Change LoRaWAN End Node Transmit Interval. 850 850 851 851 (% style="color:blue" %)**AT Command: AT+TDC** 852 852 853 853 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 854 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 1011 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 855 855 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 856 856 30000 857 857 OK ... ... @@ -871,25 +871,25 @@ 871 871 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 872 872 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 873 873 874 - 875 - 876 876 === 3.3.2 Get Device Status === 877 877 1033 + 878 878 Send a LoRaWAN downlink to ask the device to send its status. 879 879 880 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 011036 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 881 881 882 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 1038 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 883 883 884 884 885 885 === 3.3.3 Set Interrupt Mode === 886 886 1043 + 887 887 Feature, Set Interrupt mode for GPIO_EXIT. 888 888 889 889 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 890 890 891 891 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 892 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1049 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 893 893 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 894 894 0 895 895 OK ... ... @@ -904,7 +904,6 @@ 904 904 )))|(% style="width:157px" %)OK 905 905 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 906 906 Set Transmit Interval 907 - 908 908 trigger by rising edge. 909 909 )))|(% style="width:157px" %)OK 910 910 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -920,10 +920,9 @@ 920 920 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 921 921 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 922 922 923 - 924 - 925 925 === 3.3.4 Set Power Output Duration === 926 926 1081 + 927 927 Control the output duration 5V . Before each sampling, device will 928 928 929 929 ~1. first enable the power output to external sensor, ... ... @@ -935,7 +935,7 @@ 935 935 (% style="color:blue" %)**AT Command: AT+5VT** 936 936 937 937 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 938 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1093 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 939 939 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 940 940 500(default) 941 941 OK ... ... @@ -953,16 +953,15 @@ 953 953 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 954 954 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 955 955 956 - 957 - 958 958 === 3.3.5 Set Weighing parameters === 959 959 1113 + 960 960 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 961 961 962 962 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 963 963 964 964 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 965 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1119 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 966 966 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 967 967 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 968 968 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -979,10 +979,9 @@ 979 979 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 980 980 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 981 981 982 - 983 - 984 984 === 3.3.6 Set Digital pulse count value === 985 985 1138 + 986 986 Feature: Set the pulse count value. 987 987 988 988 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -990,7 +990,7 @@ 990 990 (% style="color:blue" %)**AT Command: AT+SETCNT** 991 991 992 992 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 993 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1146 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 994 994 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 995 995 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 996 996 ... ... @@ -1003,16 +1003,15 @@ 1003 1003 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1004 1004 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1005 1005 1006 - 1007 - 1008 1008 === 3.3.7 Set Workmode === 1009 1009 1161 + 1010 1010 Feature: Switch working mode. 1011 1011 1012 1012 (% style="color:blue" %)**AT Command: AT+MOD** 1013 1013 1014 1014 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1015 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1167 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1016 1016 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1017 1017 OK 1018 1018 ))) ... ... @@ -1028,11 +1028,104 @@ 1028 1028 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1029 1029 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1030 1030 1183 +(% id="H3.3.8PWMsetting" %) 1184 +=== 3.3.8 PWM setting === 1031 1031 1032 1032 1033 -= 4. Battery&PowerConsumption=1187 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1034 1034 1189 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1035 1035 1191 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1192 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1193 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1194 +0(default) 1195 + 1196 +OK 1197 +))) 1198 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1199 +OK 1200 + 1201 +))) 1202 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1203 + 1204 +(% style="color:blue" %)**Downlink Command: 0x0C** 1205 + 1206 +Format: Command Code (0x0C) followed by 1 bytes. 1207 + 1208 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1209 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1210 + 1211 + 1212 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1213 + 1214 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1215 + 1216 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1217 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1218 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1219 +0,0,0(default) 1220 + 1221 +OK 1222 +))) 1223 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1224 +OK 1225 + 1226 +))) 1227 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1228 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1229 + 1230 + 1231 +)))|(% style="width:137px" %)((( 1232 +OK 1233 +))) 1234 + 1235 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1236 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1237 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1238 +AT+PWMOUT=a,b,c 1239 + 1240 + 1241 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1242 +Set PWM output time, output frequency and output duty cycle. 1243 + 1244 +((( 1245 + 1246 +))) 1247 + 1248 +((( 1249 + 1250 +))) 1251 +)))|(% style="width:242px" %)((( 1252 +a: Output time (unit: seconds) 1253 + 1254 +The value ranges from 0 to 65535. 1255 + 1256 +When a=65535, PWM will always output. 1257 +))) 1258 +|(% style="width:242px" %)((( 1259 +b: Output frequency (unit: HZ) 1260 +))) 1261 +|(% style="width:242px" %)((( 1262 +c: Output duty cycle (unit: %) 1263 + 1264 +The value ranges from 0 to 100. 1265 +))) 1266 + 1267 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1268 + 1269 +Format: Command Code (0x0B01) followed by 6 bytes. 1270 + 1271 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1272 + 1273 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1274 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1275 + 1276 + 1277 + 1278 += 4. Battery & Power Cons = 1279 + 1280 + 1036 1036 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1037 1037 1038 1038 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1042,27 +1042,43 @@ 1042 1042 1043 1043 1044 1044 (% class="wikigeneratedid" %) 1045 -User can change firmware SN50v3-LB to: 1290 +**User can change firmware SN50v3-LB to:** 1046 1046 1047 1047 * Change Frequency band/ region. 1048 1048 * Update with new features. 1049 1049 * Fix bugs. 1050 1050 1051 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1296 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1052 1052 1298 +**Methods to Update Firmware:** 1053 1053 1054 -Methods to Update Firmware: 1300 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1301 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1055 1055 1056 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1057 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1058 - 1059 1059 = 6. FAQ = 1060 1060 1061 1061 == 6.1 Where can i find source code of SN50v3-LB? == 1062 1062 1307 + 1063 1063 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1064 1064 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1065 1065 1311 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1312 + 1313 + 1314 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1315 + 1316 + 1317 +== 6.3 How to put several sensors to a SN50v3-LB? == 1318 + 1319 + 1320 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1321 + 1322 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1323 + 1324 +[[image:image-20230810121434-1.png||height="242" width="656"]] 1325 + 1326 + 1066 1066 = 7. Order Info = 1067 1067 1068 1068 ... ... @@ -1088,6 +1088,7 @@ 1088 1088 1089 1089 = 8. Packing Info = 1090 1090 1352 + 1091 1091 (% style="color:#037691" %)**Package Includes**: 1092 1092 1093 1093 * SN50v3-LB LoRaWAN Generic Node
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content