<
From version < 43.23 >
edited by Xiaoling
on 2023/05/16 14:26
To version < 79.2 >
edited by Xiaoling
on 2023/12/14 08:41
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -19,7 +19,7 @@
19 19  
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
... ... @@ -27,9 +27,9 @@
27 27  
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
32 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -135,7 +135,7 @@
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== Hole Option ==
138 +== 1.9 Hole Option ==
139 139  
140 140  
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
161 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
210 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,44 +215,44 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
218 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -*0x01: EU868
229 +0x01: EU868
230 230  
231 -*0x02: US915
231 +0x02: US915
232 232  
233 -*0x03: IN865
233 +0x03: IN865
234 234  
235 -*0x04: AU915
235 +0x04: AU915
236 236  
237 -*0x05: KZ865
237 +0x05: KZ865
238 238  
239 -*0x06: RU864
239 +0x06: RU864
240 240  
241 -*0x07: AS923
241 +0x07: AS923
242 242  
243 -*0x08: AS923-1
243 +0x08: AS923-1
244 244  
245 -*0x09: AS923-2
245 +0x09: AS923-2
246 246  
247 -*0x0a: AS923-3
247 +0x0a: AS923-3
248 248  
249 -*0x0b: CN470
249 +0x0b: CN470
250 250  
251 -*0x0c: EU433
251 +0x0c: EU433
252 252  
253 -*0x0d: KR920
253 +0x0d: KR920
254 254  
255 -*0x0e: MA869
255 +0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -276,19 +276,22 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
279 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
288 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
291 291  
290 +2. All modes share the same Payload Explanation from HERE.
291 +
292 +3. By default, the device will send an uplink message every 20 minutes.
293 +
294 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -295,8 +295,8 @@
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
301 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
302 +|Value|Bat|(% style="width:191px" %)(((
300 300  Temperature(DS18B20)(PC13)
301 301  )))|(% style="width:78px" %)(((
302 302  ADC(PA4)
... ... @@ -313,11 +313,12 @@
313 313  
314 314  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 315  
319 +
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 318  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 -|**Value**|BAT|(% style="width:196px" %)(((
323 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
324 +|Value|BAT|(% style="width:196px" %)(((
321 321  Temperature(DS18B20)(PC13)
322 322  )))|(% style="width:87px" %)(((
323 323  ADC(PA4)
... ... @@ -324,27 +324,30 @@
324 324  )))|(% style="width:189px" %)(((
325 325  Digital in(PB15) & Digital Interrupt(PA8)
326 326  )))|(% style="width:208px" %)(((
327 -Distance measure by:1) LIDAR-Lite V3HP
331 +Distance measure by: 1) LIDAR-Lite V3HP
328 328  Or 2) Ultrasonic Sensor
329 329  )))|(% style="width:117px" %)Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
337 +
333 333  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334 334  
335 335  [[image:image-20230512173758-5.png||height="563" width="712"]]
336 336  
342 +
337 337  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338 338  
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
345 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
340 340  
341 341  [[image:image-20230512173903-6.png||height="596" width="715"]]
342 342  
349 +
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 345  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 -|**Value**|BAT|(% style="width:183px" %)(((
353 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
354 +|Value|BAT|(% style="width:183px" %)(((
348 348  Temperature(DS18B20)(PC13)
349 349  )))|(% style="width:173px" %)(((
350 350  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -352,34 +352,36 @@
352 352  ADC(PA4)
353 353  )))|(% style="width:323px" %)(((
354 354  Distance measure by:1)TF-Mini plus LiDAR
355 -Or 
356 -2) TF-Luna LiDAR
362 +Or 2) TF-Luna LiDAR
357 357  )))|(% style="width:188px" %)Distance signal  strength
358 358  
359 359  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360 360  
367 +
361 361  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362 362  
363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
370 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
364 364  
365 365  [[image:image-20230512180609-7.png||height="555" width="802"]]
366 366  
374 +
367 367  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368 368  
369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
370 370  
371 -[[image:image-20230513105207-4.png||height="469" width="802"]]
379 +[[image:image-20230610170047-1.png||height="452" width="799"]]
372 372  
373 373  
374 374  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375 375  
384 +
376 376  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377 377  
378 378  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 -|=(((
380 -(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**
381 -)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
382 -|**Value**|(% style="width:68px" %)(((
388 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
389 +**Size(bytes)**
390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
391 +|Value|(% style="width:68px" %)(((
383 383  ADC1(PA4)
384 384  )))|(% style="width:75px" %)(((
385 385  ADC2(PA5)
... ... @@ -401,59 +401,57 @@
401 401  
402 402  This mode has total 11 bytes. As shown below:
403 403  
404 -(% style="width:1017px" %)
405 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
406 -|**Value**|BAT|(% style="width:186px" %)(((
407 -Temperature1(DS18B20)
408 -(PC13)
413 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
414 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
415 +|Value|BAT|(% style="width:186px" %)(((
416 +Temperature1(DS18B20)(PC13)
409 409  )))|(% style="width:82px" %)(((
410 -ADC
411 -(PA4)
418 +ADC(PA4)
412 412  )))|(% style="width:210px" %)(((
413 -Digital in(PB15) &
414 -Digital Interrupt(PA8) 
420 +Digital in(PB15) & Digital Interrupt(PA8) 
415 415  )))|(% style="width:191px" %)Temperature2(DS18B20)
416 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
417 -(PB8)
422 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
418 418  
419 419  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
420 420  
426 +
421 421  [[image:image-20230513134006-1.png||height="559" width="736"]]
422 422  
423 423  
424 424  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
425 425  
432 +
426 426  [[image:image-20230512164658-2.png||height="532" width="729"]]
427 427  
428 428  Each HX711 need to be calibrated before used. User need to do below two steps:
429 429  
430 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
431 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
437 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
438 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
432 432  1. (((
433 433  Weight has 4 bytes, the unit is g.
441 +
442 +
443 +
434 434  )))
435 435  
436 436  For example:
437 437  
438 -**AT+GETSENSORVALUE =0**
448 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
439 439  
440 440  Response:  Weight is 401 g
441 441  
442 442  Check the response of this command and adjust the value to match the real value for thing.
443 443  
444 -(% style="width:767px" %)
445 -|=(((
454 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
455 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
446 446  **Size(bytes)**
447 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
448 -|**Value**|BAT|(% style="width:193px" %)(((
449 -Temperature(DS18B20)
450 -(PC13)
457 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
458 +|Value|BAT|(% style="width:193px" %)(((
459 +Temperature(DS18B20)(PC13)
451 451  )))|(% style="width:85px" %)(((
452 -ADC
453 -(PA4)
461 +ADC(PA4)
454 454  )))|(% style="width:186px" %)(((
455 -Digital in(PB15) &
456 -Digital Interrupt(PA8)
463 +Digital in(PB15) & Digital Interrupt(PA8)
457 457  )))|(% style="width:100px" %)Weight
458 458  
459 459  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -461,6 +461,7 @@
461 461  
462 462  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
463 463  
471 +
464 464  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
465 465  
466 466  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -467,23 +467,19 @@
467 467  
468 468  [[image:image-20230512181814-9.png||height="543" width="697"]]
469 469  
470 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
471 471  
472 -(% style="width:961px" %)
473 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
474 -|**Value**|BAT|(% style="width:256px" %)(((
475 -Temperature(DS18B20)
479 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
476 476  
477 -(PC13)
481 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
482 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
483 +|Value|BAT|(% style="width:256px" %)(((
484 +Temperature(DS18B20)(PC13)
478 478  )))|(% style="width:108px" %)(((
479 -ADC
480 -(PA4)
486 +ADC(PA4)
481 481  )))|(% style="width:126px" %)(((
482 -Digital in
483 -(PB15)
488 +Digital in(PB15)
484 484  )))|(% style="width:145px" %)(((
485 -Count
486 -(PA8)
490 +Count(PA8)
487 487  )))
488 488  
489 489  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -491,16 +491,16 @@
491 491  
492 492  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
493 493  
494 -(% style="width:1108px" %)
495 -|=(((
498 +
499 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
500 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
496 496  **Size(bytes)**
497 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
498 -|**Value**|BAT|(% style="width:188px" %)(((
502 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
503 +|Value|BAT|(% style="width:188px" %)(((
499 499  Temperature(DS18B20)
500 500  (PC13)
501 501  )))|(% style="width:83px" %)(((
502 -ADC
503 -(PA5)
507 +ADC(PA5)
504 504  )))|(% style="width:184px" %)(((
505 505  Digital Interrupt1(PA8)
506 506  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -507,26 +507,25 @@
507 507  
508 508  [[image:image-20230513111203-7.png||height="324" width="975"]]
509 509  
514 +
510 510  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
511 511  
512 -(% style="width:922px" %)
513 -|=(((
517 +
518 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
519 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
514 514  **Size(bytes)**
515 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
516 -|**Value**|BAT|(% style="width:207px" %)(((
521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
522 +|Value|BAT|(% style="width:207px" %)(((
517 517  Temperature(DS18B20)
518 518  (PC13)
519 519  )))|(% style="width:94px" %)(((
520 -ADC1
521 -(PA4)
526 +ADC1(PA4)
522 522  )))|(% style="width:198px" %)(((
523 523  Digital Interrupt(PB15)
524 524  )))|(% style="width:84px" %)(((
525 -ADC2
526 -(PA5)
530 +ADC2(PA5)
527 527  )))|(% style="width:82px" %)(((
528 -ADC3
529 -(PA8)
532 +ADC3(PA8)
530 530  )))
531 531  
532 532  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -534,50 +534,149 @@
534 534  
535 535  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
536 536  
537 -(% style="width:1010px" %)
538 -|=(((
540 +
541 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
542 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
539 539  **Size(bytes)**
540 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
541 -|**Value**|BAT|(((
542 -Temperature1(DS18B20)
543 -(PC13)
544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
545 +|Value|BAT|(((
546 +Temperature
547 +(DS18B20)(PC13)
544 544  )))|(((
545 -Temperature2(DS18B20)
546 -(PB9)
549 +Temperature2
550 +(DS18B20)(PB9)
547 547  )))|(((
548 548  Digital Interrupt
549 549  (PB15)
550 550  )))|(% style="width:193px" %)(((
551 -Temperature3(DS18B20)
552 -(PB8)
555 +Temperature3
556 +(DS18B20)(PB8)
553 553  )))|(% style="width:78px" %)(((
554 -Count1
555 -(PA8)
558 +Count1(PA8)
556 556  )))|(% style="width:78px" %)(((
557 -Count2
558 -(PA4)
560 +Count2(PA4)
559 559  )))
560 560  
561 561  [[image:image-20230513111255-9.png||height="341" width="899"]]
562 562  
563 -**The newly added AT command is issued correspondingly:**
565 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
564 564  
565 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
567 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
566 566  
567 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
569 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
568 568  
569 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
571 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
570 570  
571 -**AT+SETCNT=aa,bb** 
572 572  
574 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
575 +
573 573  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
574 574  
575 575  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
576 576  
577 577  
581 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
578 578  
583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
584 +
585 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
586 +
587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
588 +
589 +
590 +===== 2.3.2.10.a  Uplink, PWM input capture =====
591 +
592 +
593 +[[image:image-20230817172209-2.png||height="439" width="683"]]
594 +
595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
597 +|Value|Bat|(% style="width:191px" %)(((
598 +Temperature(DS18B20)(PC13)
599 +)))|(% style="width:78px" %)(((
600 +ADC(PA4)
601 +)))|(% style="width:135px" %)(((
602 +PWM_Setting
603 +&Digital Interrupt(PA8)
604 +)))|(% style="width:70px" %)(((
605 +Pulse period
606 +)))|(% style="width:89px" %)(((
607 +Duration of high level
608 +)))
609 +
610 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
611 +
612 +
613 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
614 +
615 +**Frequency:**
616 +
617 +(% class="MsoNormal" %)
618 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
619 +
620 +(% class="MsoNormal" %)
621 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
622 +
623 +
624 +(% class="MsoNormal" %)
625 +**Duty cycle:**
626 +
627 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
628 +
629 +[[image:image-20230818092200-1.png||height="344" width="627"]]
630 +
631 +===== 2.3.2.10.b  Uplink, PWM output =====
632 +
633 +[[image:image-20230817172209-2.png||height="439" width="683"]]
634 +
635 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
636 +
637 +a is the time delay of the output, the unit is ms.
638 +
639 +b is the output frequency, the unit is HZ.
640 +
641 +c is the duty cycle of the output, the unit is %.
642 +
643 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
644 +
645 +aa is the time delay of the output, the unit is ms.
646 +
647 +bb is the output frequency, the unit is HZ.
648 +
649 +cc is the duty cycle of the output, the unit is %.
650 +
651 +
652 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
653 +
654 +The oscilloscope displays as follows:
655 +
656 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
657 +
658 +
659 +===== 2.3.2.10.c  Downlink, PWM output =====
660 +
661 +
662 +[[image:image-20230817173800-3.png||height="412" width="685"]]
663 +
664 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
665 +
666 + xx xx xx is the output frequency, the unit is HZ.
667 +
668 + yy is the duty cycle of the output, the unit is %.
669 +
670 + zz zz is the time delay of the output, the unit is ms.
671 +
672 +
673 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
674 +
675 +The oscilloscope displays as follows:
676 +
677 +[[image:image-20230817173858-5.png||height="694" width="921"]]
678 +
679 +
579 579  === 2.3.3  ​Decode payload ===
580 580  
682 +
581 581  While using TTN V3 network, you can add the payload format to decode the payload.
582 582  
583 583  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -584,13 +584,14 @@
584 584  
585 585  The payload decoder function for TTN V3 are here:
586 586  
587 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
689 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
588 588  
589 589  
590 590  ==== 2.3.3.1 Battery Info ====
591 591  
592 -Check the battery voltage for SN50v3.
593 593  
695 +Check the battery voltage for SN50v3-LB.
696 +
594 594  Ex1: 0x0B45 = 2885mV
595 595  
596 596  Ex2: 0x0B49 = 2889mV
... ... @@ -598,16 +598,18 @@
598 598  
599 599  ==== 2.3.3.2  Temperature (DS18B20) ====
600 600  
704 +
601 601  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
602 602  
603 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
707 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
604 604  
605 -**Connection:**
709 +(% style="color:blue" %)**Connection:**
606 606  
607 607  [[image:image-20230512180718-8.png||height="538" width="647"]]
608 608  
609 -**Example**:
610 610  
714 +(% style="color:blue" %)**Example**:
715 +
611 611  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
612 612  
613 613  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -617,6 +617,7 @@
617 617  
618 618  ==== 2.3.3.3 Digital Input ====
619 619  
725 +
620 620  The digital input for pin PB15,
621 621  
622 622  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -626,28 +626,38 @@
626 626  (((
627 627  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
628 628  
629 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
735 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
736 +
737 +
630 630  )))
631 631  
632 632  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
633 633  
634 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
635 635  
636 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
743 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
637 637  
745 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
746 +
638 638  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
639 639  
640 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
641 641  
750 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
642 642  
752 +
753 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
754 +
755 +[[image:image-20230811113449-1.png||height="370" width="608"]]
756 +
643 643  ==== 2.3.3.5 Digital Interrupt ====
644 644  
645 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
646 646  
647 -(% style="color:blue" %)**~ Interrupt connection method:**
760 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
648 648  
762 +(% style="color:blue" %)** Interrupt connection method:**
763 +
649 649  [[image:image-20230513105351-5.png||height="147" width="485"]]
650 650  
766 +
651 651  (% style="color:blue" %)**Example to use with door sensor :**
652 652  
653 653  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -654,22 +654,23 @@
654 654  
655 655  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
656 656  
657 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
773 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
658 658  
659 -(% style="color:blue" %)**~ Below is the installation example:**
660 660  
661 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
776 +(% style="color:blue" %)**Below is the installation example:**
662 662  
778 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
779 +
663 663  * (((
664 -One pin to SN50_v3's PA8 pin
781 +One pin to SN50v3-LB's PA8 pin
665 665  )))
666 666  * (((
667 -The other pin to SN50_v3's VDD pin
784 +The other pin to SN50v3-LB's VDD pin
668 668  )))
669 669  
670 670  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
671 671  
672 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
789 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
673 673  
674 674  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
675 675  
... ... @@ -681,29 +681,32 @@
681 681  
682 682  The command is:
683 683  
684 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
801 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
685 685  
686 686  Below shows some screen captures in TTN V3:
687 687  
688 688  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
689 689  
690 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
691 691  
808 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
809 +
692 692  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
693 693  
694 694  
695 695  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
696 696  
815 +
697 697  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
698 698  
699 699  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
700 700  
701 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
820 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
702 702  
822 +
703 703  Below is the connection to SHT20/ SHT31. The connection is as below:
704 704  
825 +[[image:image-20230610170152-2.png||height="501" width="846"]]
705 705  
706 -[[image:image-20230513103633-3.png||height="448" width="716"]]
707 707  
708 708  The device will be able to get the I2C sensor data now and upload to IoT Server.
709 709  
... ... @@ -722,23 +722,26 @@
722 722  
723 723  ==== 2.3.3.7  ​Distance Reading ====
724 724  
725 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
726 726  
846 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
727 727  
848 +
728 728  ==== 2.3.3.8 Ultrasonic Sensor ====
729 729  
851 +
730 730  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
731 731  
732 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
854 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
733 733  
734 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
856 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
735 735  
736 736  The picture below shows the connection:
737 737  
738 738  [[image:image-20230512173903-6.png||height="596" width="715"]]
739 739  
740 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
741 741  
863 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
864 +
742 742  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
743 743  
744 744  **Example:**
... ... @@ -746,16 +746,17 @@
746 746  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
747 747  
748 748  
749 -
750 750  ==== 2.3.3.9  Battery Output - BAT pin ====
751 751  
752 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
753 753  
875 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
754 754  
877 +
755 755  ==== 2.3.3.10  +5V Output ====
756 756  
757 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
758 758  
881 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
882 +
759 759  The 5V output time can be controlled by AT Command.
760 760  
761 761  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -762,21 +762,54 @@
762 762  
763 763  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
764 764  
765 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
889 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
766 766  
767 767  
768 -
769 769  ==== 2.3.3.11  BH1750 Illumination Sensor ====
770 770  
894 +
771 771  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
772 772  
773 773  [[image:image-20230512172447-4.png||height="416" width="712"]]
774 774  
899 +
775 775  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
776 776  
777 777  
778 -==== 2.3.3.12  Working MOD ====
903 +==== 2.3.3.12  PWM MOD ====
779 779  
905 +
906 +* (((
907 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
908 +)))
909 +* (((
910 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
911 +)))
912 +
913 + [[image:image-20230817183249-3.png||height="320" width="417"]]
914 +
915 +* (((
916 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
917 +)))
918 +* (((
919 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
920 +)))
921 +* (((
922 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
923 +
924 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
925 +
926 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
927 +
928 +b) If the output duration is more than 30 seconds, better to use external power source. 
929 +
930 +
931 +
932 +)))
933 +
934 +==== 2.3.3.13  Working MOD ====
935 +
936 +
780 780  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
781 781  
782 782  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -792,9 +792,8 @@
792 792  * 6: MOD7
793 793  * 7: MOD8
794 794  * 8: MOD9
952 +* 9: MOD10
795 795  
796 -
797 -
798 798  == 2.4 Payload Decoder file ==
799 799  
800 800  
... ... @@ -805,7 +805,6 @@
805 805  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
806 806  
807 807  
808 -
809 809  == 2.5 Frequency Plans ==
810 810  
811 811  
... ... @@ -841,17 +841,18 @@
841 841  == 3.3 Commands special design for SN50v3-LB ==
842 842  
843 843  
844 -These commands only valid for S31x-LB, as below:
999 +These commands only valid for SN50v3-LB, as below:
845 845  
846 846  
847 847  === 3.3.1 Set Transmit Interval Time ===
848 848  
1004 +
849 849  Feature: Change LoRaWAN End Node Transmit Interval.
850 850  
851 851  (% style="color:blue" %)**AT Command: AT+TDC**
852 852  
853 853  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
854 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1010 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
855 855  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
856 856  30000
857 857  OK
... ... @@ -871,25 +871,25 @@
871 871  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
872 872  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
873 873  
874 -
875 -
876 876  === 3.3.2 Get Device Status ===
877 877  
1032 +
878 878  Send a LoRaWAN downlink to ask the device to send its status.
879 879  
880 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1035 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
881 881  
882 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
1037 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
883 883  
884 884  
885 885  === 3.3.3 Set Interrupt Mode ===
886 886  
1042 +
887 887  Feature, Set Interrupt mode for GPIO_EXIT.
888 888  
889 889  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
890 890  
891 891  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
892 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1048 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
893 893  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
894 894  0
895 895  OK
... ... @@ -904,7 +904,6 @@
904 904  )))|(% style="width:157px" %)OK
905 905  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
906 906  Set Transmit Interval
907 -
908 908  trigger by rising edge.
909 909  )))|(% style="width:157px" %)OK
910 910  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -920,10 +920,9 @@
920 920  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
921 921  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
922 922  
923 -
924 -
925 925  === 3.3.4 Set Power Output Duration ===
926 926  
1080 +
927 927  Control the output duration 5V . Before each sampling, device will
928 928  
929 929  ~1. first enable the power output to external sensor,
... ... @@ -935,7 +935,7 @@
935 935  (% style="color:blue" %)**AT Command: AT+5VT**
936 936  
937 937  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
938 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1092 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
939 939  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
940 940  500(default)
941 941  OK
... ... @@ -953,16 +953,15 @@
953 953  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
954 954  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
955 955  
956 -
957 -
958 958  === 3.3.5 Set Weighing parameters ===
959 959  
1112 +
960 960  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
961 961  
962 962  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
963 963  
964 964  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
965 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1118 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
966 966  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
967 967  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
968 968  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -979,10 +979,9 @@
979 979  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
980 980  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
981 981  
982 -
983 -
984 984  === 3.3.6 Set Digital pulse count value ===
985 985  
1137 +
986 986  Feature: Set the pulse count value.
987 987  
988 988  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -990,7 +990,7 @@
990 990  (% style="color:blue" %)**AT Command: AT+SETCNT**
991 991  
992 992  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
993 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1145 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
994 994  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
995 995  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
996 996  
... ... @@ -1003,16 +1003,15 @@
1003 1003  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1004 1004  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1005 1005  
1006 -
1007 -
1008 1008  === 3.3.7 Set Workmode ===
1009 1009  
1160 +
1010 1010  Feature: Switch working mode.
1011 1011  
1012 1012  (% style="color:blue" %)**AT Command: AT+MOD**
1013 1013  
1014 1014  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1015 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1166 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1016 1016  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1017 1017  OK
1018 1018  )))
... ... @@ -1028,11 +1028,102 @@
1028 1028  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1029 1029  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1030 1030  
1182 +(% id="H3.3.8PWMsetting" %)
1183 +=== 3.3.8 PWM setting ===
1031 1031  
1032 1032  
1033 -= 4. Battery & Power Consumption =
1186 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1034 1034  
1188 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1035 1035  
1190 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1191 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1192 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1193 +0(default)
1194 +
1195 +OK
1196 +)))
1197 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1198 +OK
1199 +
1200 +)))
1201 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1202 +
1203 +(% style="color:blue" %)**Downlink Command: 0x0C**
1204 +
1205 +Format: Command Code (0x0C) followed by 1 bytes.
1206 +
1207 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1208 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1209 +
1210 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1211 +
1212 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1213 +
1214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1215 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1216 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1217 +0,0,0(default)
1218 +
1219 +OK
1220 +)))
1221 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1222 +OK
1223 +
1224 +)))
1225 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1226 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1227 +
1228 +
1229 +)))|(% style="width:137px" %)(((
1230 +OK
1231 +)))
1232 +
1233 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1234 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1235 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1236 +AT+PWMOUT=a,b,c
1237 +
1238 +
1239 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1240 +Set PWM output time, output frequency and output duty cycle.
1241 +
1242 +(((
1243 +
1244 +)))
1245 +
1246 +(((
1247 +
1248 +)))
1249 +)))|(% style="width:242px" %)(((
1250 +a: Output time (unit: seconds)
1251 +
1252 +The value ranges from 0 to 65535.
1253 +
1254 +When a=65535, PWM will always output.
1255 +)))
1256 +|(% style="width:242px" %)(((
1257 +b: Output frequency (unit: HZ)
1258 +)))
1259 +|(% style="width:242px" %)(((
1260 +c: Output duty cycle (unit: %)
1261 +
1262 +The value ranges from 0 to 100.
1263 +)))
1264 +
1265 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1266 +
1267 +Format: Command Code (0x0B01) followed by 6 bytes.
1268 +
1269 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1270 +
1271 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1272 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1273 +
1274 +
1275 += 4. Battery & Power Cons =
1276 +
1277 +
1036 1036  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1037 1037  
1038 1038  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1042,27 +1042,43 @@
1042 1042  
1043 1043  
1044 1044  (% class="wikigeneratedid" %)
1045 -User can change firmware SN50v3-LB to:
1287 +**User can change firmware SN50v3-LB to:**
1046 1046  
1047 1047  * Change Frequency band/ region.
1048 1048  * Update with new features.
1049 1049  * Fix bugs.
1050 1050  
1051 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1293 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1052 1052  
1295 +**Methods to Update Firmware:**
1053 1053  
1054 -Methods to Update Firmware:
1297 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1298 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1055 1055  
1056 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1057 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1058 -
1059 1059  = 6. FAQ =
1060 1060  
1061 1061  == 6.1 Where can i find source code of SN50v3-LB? ==
1062 1062  
1304 +
1063 1063  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1064 1064  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1065 1065  
1308 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1309 +
1310 +
1311 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1312 +
1313 +
1314 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1315 +
1316 +
1317 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1318 +
1319 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1320 +
1321 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1322 +
1323 +
1066 1066  = 7. Order Info =
1067 1067  
1068 1068  
... ... @@ -1088,6 +1088,7 @@
1088 1088  
1089 1089  = 8. ​Packing Info =
1090 1090  
1349 +
1091 1091  (% style="color:#037691" %)**Package Includes**:
1092 1092  
1093 1093  * SN50v3-LB LoRaWAN Generic Node
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0