<
From version < 43.22 >
edited by Xiaoling
on 2023/05/16 14:23
To version < 45.4 >
edited by Xiaoling
on 2023/05/27 11:50
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -30,6 +30,7 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -40,6 +40,8 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
44 +
45 +
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,6 +77,8 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
83 +
84 +
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 82  
... ... @@ -135,7 +135,7 @@
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== Hole Option ==
143 +== 1.9 Hole Option ==
139 139  
140 140  
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
215 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,12 +215,12 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
228 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
... ... @@ -276,19 +276,22 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
284 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
293 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
291 291  
295 +2. All modes share the same Payload Explanation from HERE.
296 +
297 +3. By default, the device will send an uplink message every 20 minutes.
298 +
299 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -295,8 +295,8 @@
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
306 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
307 +|Value|Bat|(% style="width:191px" %)(((
300 300  Temperature(DS18B20)(PC13)
301 301  )))|(% style="width:78px" %)(((
302 302  ADC(PA4)
... ... @@ -313,11 +313,12 @@
313 313  
314 314  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 315  
324 +
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 318  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 -|**Value**|BAT|(% style="width:196px" %)(((
328 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
329 +|Value|BAT|(% style="width:196px" %)(((
321 321  Temperature(DS18B20)(PC13)
322 322  )))|(% style="width:87px" %)(((
323 323  ADC(PA4)
... ... @@ -325,25 +325,29 @@
325 325  Digital in(PB15) & Digital Interrupt(PA8)
326 326  )))|(% style="width:208px" %)(((
327 327  Distance measure by:1) LIDAR-Lite V3HP
328 -Or 2) Ultrasonic Sensor
337 +Or
338 +2) Ultrasonic Sensor
329 329  )))|(% style="width:117px" %)Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
343 +
333 333  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334 334  
335 335  [[image:image-20230512173758-5.png||height="563" width="712"]]
336 336  
348 +
337 337  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338 338  
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
351 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
340 340  
341 341  [[image:image-20230512173903-6.png||height="596" width="715"]]
342 342  
355 +
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 345  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
359 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
347 347  |**Value**|BAT|(% style="width:183px" %)(((
348 348  Temperature(DS18B20)(PC13)
349 349  )))|(% style="width:173px" %)(((
... ... @@ -358,15 +358,17 @@
358 358  
359 359  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
360 360  
374 +
361 361  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
362 362  
363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
364 364  
365 365  [[image:image-20230512180609-7.png||height="555" width="802"]]
366 366  
381 +
367 367  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
368 368  
369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
384 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
370 370  
371 371  [[image:image-20230513105207-4.png||height="469" width="802"]]
372 372  
... ... @@ -373,29 +373,25 @@
373 373  
374 374  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
375 375  
391 +
376 376  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
377 377  
378 378  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
379 -|=(((
380 -(% style="width: 50px;" %)**Size(bytes)**
381 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
382 -|**Value**|(% style="width:68px" %)(((
383 -ADC1
384 -(PA4)
395 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
396 +**Size(bytes)**
397 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
398 +|Value|(% style="width:68px" %)(((
399 +ADC1(PA4)
385 385  )))|(% style="width:75px" %)(((
386 -ADC2
387 -(PA5)
401 +ADC2(PA5)
388 388  )))|(((
389 -ADC3
390 -(PA8)
403 +ADC3(PA8)
391 391  )))|(((
392 392  Digital Interrupt(PB15)
393 393  )))|(% style="width:304px" %)(((
394 -Temperature
395 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
407 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
396 396  )))|(% style="width:163px" %)(((
397 -Humidity
398 -(SHT20 or SHT31)
409 +Humidity(SHT20 or SHT31)
399 399  )))|(% style="width:53px" %)Bat
400 400  
401 401  [[image:image-20230513110214-6.png]]
... ... @@ -406,66 +406,66 @@
406 406  
407 407  This mode has total 11 bytes. As shown below:
408 408  
409 -(% style="width:1017px" %)
410 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
411 -|**Value**|BAT|(% style="width:186px" %)(((
412 -Temperature1(DS18B20)
413 -(PC13)
420 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
421 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
422 +|Value|BAT|(% style="width:186px" %)(((
423 +Temperature1(DS18B20)(PC13)
414 414  )))|(% style="width:82px" %)(((
415 -ADC
416 -(PA4)
425 +ADC(PA4)
417 417  )))|(% style="width:210px" %)(((
418 -Digital in(PB15) &
419 -Digital Interrupt(PA8) 
427 +Digital in(PB15) & Digital Interrupt(PA8) 
420 420  )))|(% style="width:191px" %)Temperature2(DS18B20)
421 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
422 -(PB8)
429 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
423 423  
424 424  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
425 425  
433 +
426 426  [[image:image-20230513134006-1.png||height="559" width="736"]]
427 427  
428 428  
429 429  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
430 430  
439 +
431 431  [[image:image-20230512164658-2.png||height="532" width="729"]]
432 432  
433 433  Each HX711 need to be calibrated before used. User need to do below two steps:
434 434  
435 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
436 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
444 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
437 437  1. (((
438 438  Weight has 4 bytes, the unit is g.
448 +
449 +
450 +
439 439  )))
440 440  
441 441  For example:
442 442  
443 -**AT+GETSENSORVALUE =0**
455 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
444 444  
445 445  Response:  Weight is 401 g
446 446  
447 447  Check the response of this command and adjust the value to match the real value for thing.
448 448  
449 -(% style="width:767px" %)
450 -|=(((
461 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
462 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
451 451  **Size(bytes)**
452 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
453 -|**Value**|BAT|(% style="width:193px" %)(((
454 -Temperature(DS18B20)
455 -(PC13)
464 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
465 +|Value|BAT|(% style="width:193px" %)(((
466 +Temperature(DS18B20)(PC13)
456 456  )))|(% style="width:85px" %)(((
457 -ADC
458 -(PA4)
468 +ADC(PA4)
459 459  )))|(% style="width:186px" %)(((
460 -Digital in(PB15) &
461 -Digital Interrupt(PA8)
470 +Digital in(PB15) & Digital Interrupt(PA8)
462 462  )))|(% style="width:100px" %)Weight
463 463  
464 464  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
465 465  
466 466  
476 +
467 467  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
468 468  
479 +
469 469  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
470 470  
471 471  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -472,23 +472,19 @@
472 472  
473 473  [[image:image-20230512181814-9.png||height="543" width="697"]]
474 474  
475 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
476 476  
477 -(% style="width:961px" %)
478 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
479 -|**Value**|BAT|(% style="width:256px" %)(((
480 -Temperature(DS18B20)
487 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
481 481  
482 -(PC13)
489 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
490 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
491 +|Value|BAT|(% style="width:256px" %)(((
492 +Temperature(DS18B20)(PC13)
483 483  )))|(% style="width:108px" %)(((
484 -ADC
485 -(PA4)
494 +ADC(PA4)
486 486  )))|(% style="width:126px" %)(((
487 -Digital in
488 -(PB15)
496 +Digital in(PB15)
489 489  )))|(% style="width:145px" %)(((
490 -Count
491 -(PA8)
498 +Count(PA8)
492 492  )))
493 493  
494 494  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -496,16 +496,16 @@
496 496  
497 497  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
498 498  
499 -(% style="width:1108px" %)
500 -|=(((
506 +
507 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
508 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
501 501  **Size(bytes)**
502 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
503 -|**Value**|BAT|(% style="width:188px" %)(((
510 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
511 +|Value|BAT|(% style="width:188px" %)(((
504 504  Temperature(DS18B20)
505 505  (PC13)
506 506  )))|(% style="width:83px" %)(((
507 -ADC
508 -(PA5)
515 +ADC(PA5)
509 509  )))|(% style="width:184px" %)(((
510 510  Digital Interrupt1(PA8)
511 511  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -512,26 +512,25 @@
512 512  
513 513  [[image:image-20230513111203-7.png||height="324" width="975"]]
514 514  
522 +
515 515  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
516 516  
517 -(% style="width:922px" %)
518 -|=(((
525 +
526 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
527 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
519 519  **Size(bytes)**
520 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
521 -|**Value**|BAT|(% style="width:207px" %)(((
529 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
530 +|Value|BAT|(% style="width:207px" %)(((
522 522  Temperature(DS18B20)
523 523  (PC13)
524 524  )))|(% style="width:94px" %)(((
525 -ADC1
526 -(PA4)
534 +ADC1(PA4)
527 527  )))|(% style="width:198px" %)(((
528 528  Digital Interrupt(PB15)
529 529  )))|(% style="width:84px" %)(((
530 -ADC2
531 -(PA5)
538 +ADC2(PA5)
532 532  )))|(% style="width:82px" %)(((
533 -ADC3
534 -(PA8)
540 +ADC3(PA8)
535 535  )))
536 536  
537 537  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -539,50 +539,50 @@
539 539  
540 540  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
541 541  
542 -(% style="width:1010px" %)
543 -|=(((
548 +
549 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
550 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
544 544  **Size(bytes)**
545 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
546 -|**Value**|BAT|(((
547 -Temperature1(DS18B20)
548 -(PC13)
552 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
553 +|Value|BAT|(((
554 +Temperature
555 +(DS18B20)(PC13)
549 549  )))|(((
550 -Temperature2(DS18B20)
551 -(PB9)
557 +Temperature2
558 +(DS18B20)(PB9)
552 552  )))|(((
553 553  Digital Interrupt
554 554  (PB15)
555 555  )))|(% style="width:193px" %)(((
556 -Temperature3(DS18B20)
557 -(PB8)
563 +Temperature3
564 +(DS18B20)(PB8)
558 558  )))|(% style="width:78px" %)(((
559 -Count1
560 -(PA8)
566 +Count1(PA8)
561 561  )))|(% style="width:78px" %)(((
562 -Count2
563 -(PA4)
568 +Count2(PA4)
564 564  )))
565 565  
566 566  [[image:image-20230513111255-9.png||height="341" width="899"]]
567 567  
568 -**The newly added AT command is issued correspondingly:**
573 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
569 569  
570 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
575 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
571 571  
572 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
577 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
573 573  
574 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
579 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
575 575  
576 -**AT+SETCNT=aa,bb** 
577 577  
582 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
583 +
578 578  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
579 579  
580 580  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
581 581  
582 582  
583 -
584 584  === 2.3.3  ​Decode payload ===
585 585  
591 +
586 586  While using TTN V3 network, you can add the payload format to decode the payload.
587 587  
588 588  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -589,13 +589,14 @@
589 589  
590 590  The payload decoder function for TTN V3 are here:
591 591  
592 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
598 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
593 593  
594 594  
595 595  ==== 2.3.3.1 Battery Info ====
596 596  
597 -Check the battery voltage for SN50v3.
598 598  
604 +Check the battery voltage for SN50v3-LB.
605 +
599 599  Ex1: 0x0B45 = 2885mV
600 600  
601 601  Ex2: 0x0B49 = 2889mV
... ... @@ -603,16 +603,18 @@
603 603  
604 604  ==== 2.3.3.2  Temperature (DS18B20) ====
605 605  
613 +
606 606  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
607 607  
608 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
616 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
609 609  
610 -**Connection:**
618 +(% style="color:blue" %)**Connection:**
611 611  
612 612  [[image:image-20230512180718-8.png||height="538" width="647"]]
613 613  
614 -**Example**:
615 615  
623 +(% style="color:blue" %)**Example**:
624 +
616 616  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
617 617  
618 618  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -622,6 +622,7 @@
622 622  
623 623  ==== 2.3.3.3 Digital Input ====
624 624  
634 +
625 625  The digital input for pin PB15,
626 626  
627 627  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -631,11 +631,14 @@
631 631  (((
632 632  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
633 633  
634 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
644 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
645 +
646 +
635 635  )))
636 636  
637 637  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
638 638  
651 +
639 639  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
640 640  
641 641  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -642,17 +642,20 @@
642 642  
643 643  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
644 644  
645 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
646 646  
659 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
647 647  
661 +
648 648  ==== 2.3.3.5 Digital Interrupt ====
649 649  
650 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
651 651  
652 -(% style="color:blue" %)**~ Interrupt connection method:**
665 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
653 653  
667 +(% style="color:blue" %)** Interrupt connection method:**
668 +
654 654  [[image:image-20230513105351-5.png||height="147" width="485"]]
655 655  
671 +
656 656  (% style="color:blue" %)**Example to use with door sensor :**
657 657  
658 658  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -659,22 +659,23 @@
659 659  
660 660  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
661 661  
662 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
678 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
663 663  
664 -(% style="color:blue" %)**~ Below is the installation example:**
665 665  
666 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
681 +(% style="color:blue" %)**Below is the installation example:**
667 667  
683 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
684 +
668 668  * (((
669 -One pin to SN50_v3's PA8 pin
686 +One pin to SN50v3-LB's PA8 pin
670 670  )))
671 671  * (((
672 -The other pin to SN50_v3's VDD pin
689 +The other pin to SN50v3-LB's VDD pin
673 673  )))
674 674  
675 675  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
676 676  
677 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
694 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
678 678  
679 679  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
680 680  
... ... @@ -686,30 +686,33 @@
686 686  
687 687  The command is:
688 688  
689 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
706 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
690 690  
691 691  Below shows some screen captures in TTN V3:
692 692  
693 693  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
694 694  
695 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
696 696  
713 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
714 +
697 697  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
698 698  
699 699  
700 700  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
701 701  
720 +
702 702  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
703 703  
704 704  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
705 705  
706 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
725 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
707 707  
727 +
708 708  Below is the connection to SHT20/ SHT31. The connection is as below:
709 709  
710 -
711 711  [[image:image-20230513103633-3.png||height="448" width="716"]]
712 712  
732 +
713 713  The device will be able to get the I2C sensor data now and upload to IoT Server.
714 714  
715 715  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -727,23 +727,26 @@
727 727  
728 728  ==== 2.3.3.7  ​Distance Reading ====
729 729  
730 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
731 731  
751 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
732 732  
753 +
733 733  ==== 2.3.3.8 Ultrasonic Sensor ====
734 734  
756 +
735 735  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
736 736  
737 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
759 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
738 738  
739 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
761 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
740 740  
741 741  The picture below shows the connection:
742 742  
743 743  [[image:image-20230512173903-6.png||height="596" width="715"]]
744 744  
745 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
746 746  
768 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
769 +
747 747  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
748 748  
749 749  **Example:**
... ... @@ -751,16 +751,17 @@
751 751  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
752 752  
753 753  
754 -
755 755  ==== 2.3.3.9  Battery Output - BAT pin ====
756 756  
757 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
758 758  
780 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
759 759  
782 +
760 760  ==== 2.3.3.10  +5V Output ====
761 761  
762 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
763 763  
786 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
787 +
764 764  The 5V output time can be controlled by AT Command.
765 765  
766 766  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -767,21 +767,23 @@
767 767  
768 768  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
769 769  
770 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
794 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
771 771  
772 772  
773 -
774 774  ==== 2.3.3.11  BH1750 Illumination Sensor ====
775 775  
799 +
776 776  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
777 777  
778 778  [[image:image-20230512172447-4.png||height="416" width="712"]]
779 779  
804 +
780 780  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
781 781  
782 782  
783 783  ==== 2.3.3.12  Working MOD ====
784 784  
810 +
785 785  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
786 786  
787 787  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -798,8 +798,6 @@
798 798  * 7: MOD8
799 799  * 8: MOD9
800 800  
801 -
802 -
803 803  == 2.4 Payload Decoder file ==
804 804  
805 805  
... ... @@ -810,7 +810,6 @@
810 810  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
811 811  
812 812  
813 -
814 814  == 2.5 Frequency Plans ==
815 815  
816 816  
... ... @@ -846,11 +846,12 @@
846 846  == 3.3 Commands special design for SN50v3-LB ==
847 847  
848 848  
849 -These commands only valid for S31x-LB, as below:
872 +These commands only valid for SN50v3-LB, as below:
850 850  
851 851  
852 852  === 3.3.1 Set Transmit Interval Time ===
853 853  
877 +
854 854  Feature: Change LoRaWAN End Node Transmit Interval.
855 855  
856 856  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -876,25 +876,25 @@
876 876  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
877 877  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
878 878  
879 -
880 -
881 881  === 3.3.2 Get Device Status ===
882 882  
905 +
883 883  Send a LoRaWAN downlink to ask the device to send its status.
884 884  
885 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
908 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
886 886  
887 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
910 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
888 888  
889 889  
890 890  === 3.3.3 Set Interrupt Mode ===
891 891  
915 +
892 892  Feature, Set Interrupt mode for GPIO_EXIT.
893 893  
894 894  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
895 895  
896 896  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
897 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
921 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
898 898  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
899 899  0
900 900  OK
... ... @@ -909,7 +909,6 @@
909 909  )))|(% style="width:157px" %)OK
910 910  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
911 911  Set Transmit Interval
912 -
913 913  trigger by rising edge.
914 914  )))|(% style="width:157px" %)OK
915 915  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -925,10 +925,9 @@
925 925  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
926 926  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
927 927  
928 -
929 -
930 930  === 3.3.4 Set Power Output Duration ===
931 931  
953 +
932 932  Control the output duration 5V . Before each sampling, device will
933 933  
934 934  ~1. first enable the power output to external sensor,
... ... @@ -940,7 +940,7 @@
940 940  (% style="color:blue" %)**AT Command: AT+5VT**
941 941  
942 942  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
943 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
965 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
944 944  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
945 945  500(default)
946 946  OK
... ... @@ -958,16 +958,15 @@
958 958  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
959 959  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
960 960  
961 -
962 -
963 963  === 3.3.5 Set Weighing parameters ===
964 964  
985 +
965 965  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
966 966  
967 967  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
968 968  
969 969  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
970 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
991 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
971 971  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
972 972  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
973 973  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -984,10 +984,9 @@
984 984  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
985 985  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
986 986  
987 -
988 -
989 989  === 3.3.6 Set Digital pulse count value ===
990 990  
1010 +
991 991  Feature: Set the pulse count value.
992 992  
993 993  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -995,7 +995,7 @@
995 995  (% style="color:blue" %)**AT Command: AT+SETCNT**
996 996  
997 997  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
998 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1018 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
999 999  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1000 1000  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1001 1001  
... ... @@ -1008,16 +1008,15 @@
1008 1008  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1009 1009  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1010 1010  
1011 -
1012 -
1013 1013  === 3.3.7 Set Workmode ===
1014 1014  
1033 +
1015 1015  Feature: Switch working mode.
1016 1016  
1017 1017  (% style="color:blue" %)**AT Command: AT+MOD**
1018 1018  
1019 1019  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1020 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1039 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1021 1021  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1022 1022  OK
1023 1023  )))
... ... @@ -1033,8 +1033,6 @@
1033 1033  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1034 1034  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1035 1035  
1036 -
1037 -
1038 1038  = 4. Battery & Power Consumption =
1039 1039  
1040 1040  
... ... @@ -1047,17 +1047,16 @@
1047 1047  
1048 1048  
1049 1049  (% class="wikigeneratedid" %)
1050 -User can change firmware SN50v3-LB to:
1067 +**User can change firmware SN50v3-LB to:**
1051 1051  
1052 1052  * Change Frequency band/ region.
1053 1053  * Update with new features.
1054 1054  * Fix bugs.
1055 1055  
1056 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1073 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1057 1057  
1075 +**Methods to Update Firmware:**
1058 1058  
1059 -Methods to Update Firmware:
1060 -
1061 1061  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1062 1062  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1063 1063  
... ... @@ -1065,6 +1065,7 @@
1065 1065  
1066 1066  == 6.1 Where can i find source code of SN50v3-LB? ==
1067 1067  
1084 +
1068 1068  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1069 1069  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1070 1070  
... ... @@ -1093,6 +1093,7 @@
1093 1093  
1094 1094  = 8. ​Packing Info =
1095 1095  
1113 +
1096 1096  (% style="color:#037691" %)**Package Includes**:
1097 1097  
1098 1098  * SN50v3-LB LoRaWAN Generic Node
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0