Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -30,6 +30,7 @@ 30 30 31 31 == 1.2 Features == 32 32 33 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -135,7 +135,7 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 139 +== 1.9 Hole Option == 139 139 140 140 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.162 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 211 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -220,7 +220,7 @@ 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 291 291 291 +2. All modes share the same Payload Explanation from HERE. 292 + 293 +3. By default, the device will send an uplink message every 20 minutes. 294 + 295 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,7 +295,7 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 299 299 |**Value**|Bat|(% style="width:191px" %)((( 300 300 Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( ... ... @@ -313,10 +313,11 @@ 313 313 314 314 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 315 315 320 + 316 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 317 317 318 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 319 -|(% style=" width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**324 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 320 320 |**Value**|BAT|(% style="width:196px" %)((( 321 321 Temperature(DS18B20)(PC13) 322 322 )))|(% style="width:87px" %)((( ... ... @@ -325,25 +325,29 @@ 325 325 Digital in(PB15) & Digital Interrupt(PA8) 326 326 )))|(% style="width:208px" %)((( 327 327 Distance measure by:1) LIDAR-Lite V3HP 328 -Or 2) Ultrasonic Sensor 333 +Or 334 +2) Ultrasonic Sensor 329 329 )))|(% style="width:117px" %)Reserved 330 330 331 331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 332 332 339 + 333 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 334 334 335 335 [[image:image-20230512173758-5.png||height="563" width="712"]] 336 336 344 + 337 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 338 338 339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 347 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 340 340 341 341 [[image:image-20230512173903-6.png||height="596" width="715"]] 342 342 351 + 343 343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 344 344 345 345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 346 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**355 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 347 347 |**Value**|BAT|(% style="width:183px" %)((( 348 348 Temperature(DS18B20)(PC13) 349 349 )))|(% style="width:173px" %)((( ... ... @@ -358,15 +358,17 @@ 358 358 359 359 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 360 360 370 + 361 361 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 362 362 363 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 373 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 364 364 365 365 [[image:image-20230512180609-7.png||height="555" width="802"]] 366 366 377 + 367 367 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 368 368 369 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 380 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 370 370 371 371 [[image:image-20230513105207-4.png||height="469" width="802"]] 372 372 ... ... @@ -373,29 +373,25 @@ 373 373 374 374 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 375 375 387 + 376 376 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 377 377 378 378 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 379 -|=((( 380 - (% style="width: 50px;" %)**Size(bytes)**381 -)))|=(% style="width: 68px;" %)**2**|=(% style="width:75px;" %)**2**|=**2**|=**1**|=(% style="width:304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width:53px;" %)1391 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 392 +**Size(bytes)** 393 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 382 382 |**Value**|(% style="width:68px" %)((( 383 -ADC1 384 -(PA4) 395 +ADC1(PA4) 385 385 )))|(% style="width:75px" %)((( 386 -ADC2 387 -(PA5) 397 +ADC2(PA5) 388 388 )))|((( 389 -ADC3 390 -(PA8) 399 +ADC3(PA8) 391 391 )))|((( 392 392 Digital Interrupt(PB15) 393 393 )))|(% style="width:304px" %)((( 394 -Temperature 395 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 403 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 396 396 )))|(% style="width:163px" %)((( 397 -Humidity 398 -(SHT20 or SHT31) 405 +Humidity(SHT20 or SHT31) 399 399 )))|(% style="width:53px" %)Bat 400 400 401 401 [[image:image-20230513110214-6.png]] ... ... @@ -406,66 +406,66 @@ 406 406 407 407 This mode has total 11 bytes. As shown below: 408 408 409 -(% style="width: 1017px" %)410 -|**Size(bytes)**|**2**|(% style="width:1 86px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**416 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 417 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 411 411 |**Value**|BAT|(% style="width:186px" %)((( 412 -Temperature1(DS18B20) 413 -(PC13) 419 +Temperature1(DS18B20)(PC13) 414 414 )))|(% style="width:82px" %)((( 415 -ADC 416 -(PA4) 421 +ADC(PA4) 417 417 )))|(% style="width:210px" %)((( 418 -Digital in(PB15) & 419 -Digital Interrupt(PA8) 423 +Digital in(PB15) & Digital Interrupt(PA8) 420 420 )))|(% style="width:191px" %)Temperature2(DS18B20) 421 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 422 -(PB8) 425 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 423 423 424 424 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 425 425 429 + 426 426 [[image:image-20230513134006-1.png||height="559" width="736"]] 427 427 428 428 429 429 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 430 430 435 + 431 431 [[image:image-20230512164658-2.png||height="532" width="729"]] 432 432 433 433 Each HX711 need to be calibrated before used. User need to do below two steps: 434 434 435 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 436 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 440 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 441 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 437 437 1. ((( 438 438 Weight has 4 bytes, the unit is g. 444 + 445 + 446 + 439 439 ))) 440 440 441 441 For example: 442 442 443 -**AT+GETSENSORVALUE =0** 451 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 444 444 445 445 Response: Weight is 401 g 446 446 447 447 Check the response of this command and adjust the value to match the real value for thing. 448 448 449 -(% style="width: 767px" %)450 -|=((( 457 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 458 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 451 451 **Size(bytes)** 452 -)))|=**2**|=(% style="width: 1 93px;" %)**2**|=(% style="width:85px;" %)**2**|=(% style="width:186px;" %)**1**|=(% style="width:100px;" %)**4**460 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 453 453 |**Value**|BAT|(% style="width:193px" %)((( 454 -Temperature(DS18B20) 455 -(PC13) 462 +Temperature(DS18B20)(PC13) 456 456 )))|(% style="width:85px" %)((( 457 -ADC 458 -(PA4) 464 +ADC(PA4) 459 459 )))|(% style="width:186px" %)((( 460 -Digital in(PB15) & 461 -Digital Interrupt(PA8) 466 +Digital in(PB15) & Digital Interrupt(PA8) 462 462 )))|(% style="width:100px" %)Weight 463 463 464 464 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 465 465 466 466 472 + 467 467 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 468 468 475 + 469 469 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 470 470 471 471 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -472,23 +472,19 @@ 472 472 473 473 [[image:image-20230512181814-9.png||height="543" width="697"]] 474 474 475 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 476 476 477 -(% style="width:961px" %) 478 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 479 -|**Value**|BAT|(% style="width:256px" %)((( 480 -Temperature(DS18B20) 483 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 481 481 482 -(PC13) 485 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 486 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 487 +|**Value**|BAT|(% style="width:256px" %)((( 488 +Temperature(DS18B20)(PC13) 483 483 )))|(% style="width:108px" %)((( 484 -ADC 485 -(PA4) 490 +ADC(PA4) 486 486 )))|(% style="width:126px" %)((( 487 -Digital in 488 -(PB15) 492 +Digital in(PB15) 489 489 )))|(% style="width:145px" %)((( 490 -Count 491 -(PA8) 494 +Count(PA8) 492 492 ))) 493 493 494 494 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] ... ... @@ -496,16 +496,16 @@ 496 496 497 497 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 498 498 499 -(% style="width:1108px" %) 500 -|=((( 502 + 503 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 504 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 501 501 **Size(bytes)** 502 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2506 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 503 503 |**Value**|BAT|(% style="width:188px" %)((( 504 504 Temperature(DS18B20) 505 505 (PC13) 506 506 )))|(% style="width:83px" %)((( 507 -ADC 508 -(PA5) 511 +ADC(PA5) 509 509 )))|(% style="width:184px" %)((( 510 510 Digital Interrupt1(PA8) 511 511 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -512,26 +512,25 @@ 512 512 513 513 [[image:image-20230513111203-7.png||height="324" width="975"]] 514 514 518 + 515 515 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 516 516 517 -(% style="width:922px" %) 518 -|=((( 521 + 522 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 523 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 519 519 **Size(bytes)** 520 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2525 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 521 521 |**Value**|BAT|(% style="width:207px" %)((( 522 522 Temperature(DS18B20) 523 523 (PC13) 524 524 )))|(% style="width:94px" %)((( 525 -ADC1 526 -(PA4) 530 +ADC1(PA4) 527 527 )))|(% style="width:198px" %)((( 528 528 Digital Interrupt(PB15) 529 529 )))|(% style="width:84px" %)((( 530 -ADC2 531 -(PA5) 534 +ADC2(PA5) 532 532 )))|(% style="width:82px" %)((( 533 -ADC3 534 -(PA8) 536 +ADC3(PA8) 535 535 ))) 536 536 537 537 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -539,50 +539,50 @@ 539 539 540 540 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 541 541 542 -(% style="width:1010px" %) 543 -|=((( 544 + 545 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 546 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 544 544 **Size(bytes)** 545 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4548 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 546 546 |**Value**|BAT|((( 547 -Temperature 1(DS18B20)548 -(PC13) 550 +Temperature 551 +(DS18B20)(PC13) 549 549 )))|((( 550 -Temperature2 (DS18B20)551 -(PB9) 553 +Temperature2 554 +(DS18B20)(PB9) 552 552 )))|((( 553 553 Digital Interrupt 554 554 (PB15) 555 555 )))|(% style="width:193px" %)((( 556 -Temperature3 (DS18B20)557 -(PB8) 559 +Temperature3 560 +(DS18B20)(PB8) 558 558 )))|(% style="width:78px" %)((( 559 -Count1 560 -(PA8) 562 +Count1(PA8) 561 561 )))|(% style="width:78px" %)((( 562 -Count2 563 -(PA4) 564 +Count2(PA4) 564 564 ))) 565 565 566 566 [[image:image-20230513111255-9.png||height="341" width="899"]] 567 567 568 -**The newly added AT command is issued correspondingly:** 569 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 569 569 570 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**571 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 571 571 572 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**573 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 573 573 574 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**575 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 575 575 576 -**AT+SETCNT=aa,bb** 577 577 578 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 579 + 578 578 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 579 579 580 580 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 581 581 582 582 583 - 584 584 === 2.3.3 Decode payload === 585 585 587 + 586 586 While using TTN V3 network, you can add the payload format to decode the payload. 587 587 588 588 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -589,13 +589,14 @@ 589 589 590 590 The payload decoder function for TTN V3 are here: 591 591 592 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 594 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 593 593 594 594 595 595 ==== 2.3.3.1 Battery Info ==== 596 596 597 -Check the battery voltage for SN50v3. 598 598 600 +Check the battery voltage for SN50v3-LB. 601 + 599 599 Ex1: 0x0B45 = 2885mV 600 600 601 601 Ex2: 0x0B49 = 2889mV ... ... @@ -603,16 +603,18 @@ 603 603 604 604 ==== 2.3.3.2 Temperature (DS18B20) ==== 605 605 609 + 606 606 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 607 607 608 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]612 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 609 609 610 -**Connection:** 614 +(% style="color:blue" %)**Connection:** 611 611 612 612 [[image:image-20230512180718-8.png||height="538" width="647"]] 613 613 614 -**Example**: 615 615 619 +(% style="color:blue" %)**Example**: 620 + 616 616 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 617 617 618 618 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -622,6 +622,7 @@ 622 622 623 623 ==== 2.3.3.3 Digital Input ==== 624 624 630 + 625 625 The digital input for pin PB15, 626 626 627 627 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -631,11 +631,14 @@ 631 631 ((( 632 632 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 633 633 634 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 640 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 641 + 642 + 635 635 ))) 636 636 637 637 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 638 638 647 + 639 639 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 640 640 641 641 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -642,17 +642,20 @@ 642 642 643 643 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 644 644 645 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 646 646 655 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 647 647 657 + 648 648 ==== 2.3.3.5 Digital Interrupt ==== 649 649 650 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 651 651 652 - (% style="color:blue"%)**~Interruptconnection method:**661 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 653 653 663 +(% style="color:blue" %)** Interrupt connection method:** 664 + 654 654 [[image:image-20230513105351-5.png||height="147" width="485"]] 655 655 667 + 656 656 (% style="color:blue" %)**Example to use with door sensor :** 657 657 658 658 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -659,22 +659,23 @@ 659 659 660 660 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 661 661 662 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.674 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 663 663 664 -(% style="color:blue" %)**~ Below is the installation example:** 665 665 666 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:677 +(% style="color:blue" %)**Below is the installation example:** 667 667 679 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 680 + 668 668 * ((( 669 -One pin to SN50 _v3's PA8 pin682 +One pin to SN50v3-LB's PA8 pin 670 670 ))) 671 671 * ((( 672 -The other pin to SN50 _v3's VDD pin685 +The other pin to SN50v3-LB's VDD pin 673 673 ))) 674 674 675 675 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 676 676 677 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 690 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 678 678 679 679 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 680 680 ... ... @@ -686,30 +686,33 @@ 686 686 687 687 The command is: 688 688 689 -(% style="color:blue" %)**AT+INTMOD1=1 702 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 690 690 691 691 Below shows some screen captures in TTN V3: 692 692 693 693 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 694 694 695 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 696 696 709 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 710 + 697 697 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 698 698 699 699 700 700 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 701 701 716 + 702 702 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 703 703 704 704 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 705 705 706 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.721 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 707 707 723 + 708 708 Below is the connection to SHT20/ SHT31. The connection is as below: 709 709 710 - 711 711 [[image:image-20230513103633-3.png||height="448" width="716"]] 712 712 728 + 713 713 The device will be able to get the I2C sensor data now and upload to IoT Server. 714 714 715 715 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -727,23 +727,26 @@ 727 727 728 728 ==== 2.3.3.7 Distance Reading ==== 729 729 730 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 731 731 747 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 732 732 749 + 733 733 ==== 2.3.3.8 Ultrasonic Sensor ==== 734 734 752 + 735 735 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 736 736 737 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.755 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 738 738 739 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 757 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 740 740 741 741 The picture below shows the connection: 742 742 743 743 [[image:image-20230512173903-6.png||height="596" width="715"]] 744 744 745 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 746 746 764 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 765 + 747 747 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 748 748 749 749 **Example:** ... ... @@ -751,16 +751,17 @@ 751 751 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 752 752 753 753 754 - 755 755 ==== 2.3.3.9 Battery Output - BAT pin ==== 756 756 757 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 758 758 776 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 759 759 778 + 760 760 ==== 2.3.3.10 +5V Output ==== 761 761 762 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 763 763 782 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 783 + 764 764 The 5V output time can be controlled by AT Command. 765 765 766 766 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -767,21 +767,23 @@ 767 767 768 768 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 769 769 770 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 790 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 771 771 772 772 773 - 774 774 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 775 775 795 + 776 776 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 777 777 778 778 [[image:image-20230512172447-4.png||height="416" width="712"]] 779 779 800 + 780 780 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 781 781 782 782 783 783 ==== 2.3.3.12 Working MOD ==== 784 784 806 + 785 785 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 786 786 787 787 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -798,8 +798,6 @@ 798 798 * 7: MOD8 799 799 * 8: MOD9 800 800 801 - 802 - 803 803 == 2.4 Payload Decoder file == 804 804 805 805 ... ... @@ -810,7 +810,6 @@ 810 810 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 811 811 812 812 813 - 814 814 == 2.5 Frequency Plans == 815 815 816 816 ... ... @@ -846,11 +846,12 @@ 846 846 == 3.3 Commands special design for SN50v3-LB == 847 847 848 848 849 -These commands only valid for S3 1x-LB, as below:868 +These commands only valid for SN50v3-LB, as below: 850 850 851 851 852 852 === 3.3.1 Set Transmit Interval Time === 853 853 873 + 854 854 Feature: Change LoRaWAN End Node Transmit Interval. 855 855 856 856 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -876,25 +876,25 @@ 876 876 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 877 877 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 878 878 879 - 880 - 881 881 === 3.3.2 Get Device Status === 882 882 901 + 883 883 Send a LoRaWAN downlink to ask the device to send its status. 884 884 885 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01904 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 886 886 887 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 906 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 888 888 889 889 890 890 === 3.3.3 Set Interrupt Mode === 891 891 911 + 892 892 Feature, Set Interrupt mode for GPIO_EXIT. 893 893 894 894 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 895 895 896 896 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 897 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**917 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 898 898 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 899 899 0 900 900 OK ... ... @@ -909,7 +909,6 @@ 909 909 )))|(% style="width:157px" %)OK 910 910 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 911 911 Set Transmit Interval 912 - 913 913 trigger by rising edge. 914 914 )))|(% style="width:157px" %)OK 915 915 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -925,10 +925,9 @@ 925 925 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 926 926 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 927 927 928 - 929 - 930 930 === 3.3.4 Set Power Output Duration === 931 931 949 + 932 932 Control the output duration 5V . Before each sampling, device will 933 933 934 934 ~1. first enable the power output to external sensor, ... ... @@ -940,7 +940,7 @@ 940 940 (% style="color:blue" %)**AT Command: AT+5VT** 941 941 942 942 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 943 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**961 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 944 944 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 945 945 500(default) 946 946 OK ... ... @@ -958,16 +958,15 @@ 958 958 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 959 959 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 960 960 961 - 962 - 963 963 === 3.3.5 Set Weighing parameters === 964 964 981 + 965 965 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 966 966 967 967 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 968 968 969 969 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 970 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**987 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 971 971 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 972 972 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 973 973 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -984,10 +984,9 @@ 984 984 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 985 985 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 986 986 987 - 988 - 989 989 === 3.3.6 Set Digital pulse count value === 990 990 1006 + 991 991 Feature: Set the pulse count value. 992 992 993 993 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -995,7 +995,7 @@ 995 995 (% style="color:blue" %)**AT Command: AT+SETCNT** 996 996 997 997 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 998 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1014 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 999 999 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1000 1000 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1001 1001 ... ... @@ -1008,16 +1008,15 @@ 1008 1008 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1009 1009 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1010 1010 1011 - 1012 - 1013 1013 === 3.3.7 Set Workmode === 1014 1014 1029 + 1015 1015 Feature: Switch working mode. 1016 1016 1017 1017 (% style="color:blue" %)**AT Command: AT+MOD** 1018 1018 1019 1019 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1020 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1035 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1021 1021 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1022 1022 OK 1023 1023 ))) ... ... @@ -1033,8 +1033,6 @@ 1033 1033 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1034 1034 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1035 1035 1036 - 1037 - 1038 1038 = 4. Battery & Power Consumption = 1039 1039 1040 1040 ... ... @@ -1047,17 +1047,16 @@ 1047 1047 1048 1048 1049 1049 (% class="wikigeneratedid" %) 1050 -User can change firmware SN50v3-LB to: 1063 +**User can change firmware SN50v3-LB to:** 1051 1051 1052 1052 * Change Frequency band/ region. 1053 1053 * Update with new features. 1054 1054 * Fix bugs. 1055 1055 1056 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1069 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1057 1057 1071 +**Methods to Update Firmware:** 1058 1058 1059 -Methods to Update Firmware: 1060 - 1061 1061 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1062 1062 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1063 1063 ... ... @@ -1065,6 +1065,7 @@ 1065 1065 1066 1066 == 6.1 Where can i find source code of SN50v3-LB? == 1067 1067 1080 + 1068 1068 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1069 1069 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1070 1070 ... ... @@ -1093,6 +1093,7 @@ 1093 1093 1094 1094 = 8. Packing Info = 1095 1095 1109 + 1096 1096 (% style="color:#037691" %)**Package Includes**: 1097 1097 1098 1098 * SN50v3-LB LoRaWAN Generic Node