Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,22 +14,22 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 37 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -38,7 +38,8 @@ 38 38 * Support wireless OTA update firmware 39 39 * Uplink on periodically 40 40 * Downlink to change configure 41 -* 8500mAh Battery for long term use 46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB) 47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS) 42 42 43 43 == 1.3 Specification == 44 44 ... ... @@ -45,7 +45,7 @@ 45 45 46 46 (% style="color:#037691" %)**Common DC Characteristics:** 47 47 48 -* Supply Voltage: built8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v 49 49 * Operating Temperature: -40 ~~ 85°C 50 50 51 51 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -88,11 +88,10 @@ 88 88 == 1.5 Button & LEDs == 89 89 90 90 91 -[[image: Main.User.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]] 92 92 93 - 94 94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 95 -|=(% style="width: 167px;background-color:# D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action** 96 96 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 97 97 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 98 98 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -107,7 +107,7 @@ 107 107 == 1.6 BLE connection == 108 108 109 109 110 -SN50v3-LB supports BLE remote configure. 115 +SN50v3-LB/LS supports BLE remote configure. 111 111 112 112 113 113 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -122,35 +122,40 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 513102034-2.png]]130 +[[image:image-20230610163213-1.png||height="404" width="699"]] 126 126 127 127 128 128 == 1.8 Mechanical == 129 129 135 +=== 1.8.1 for LB version === 130 130 131 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 132 132 133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 134 134 140 + 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 143 +=== 1.8.2 for LS version === 137 137 138 - == HoleOption ==145 +[[image:image-20231231203439-3.png||height="385" width="886"]] 139 139 140 140 141 - SN50v3-LBhasdifferent holesize optionsfor different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:148 +== 1.9 Hole Option == 142 142 150 + 151 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 152 + 143 143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 144 144 145 145 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 146 146 147 147 148 -= 2. Configure SN50v3-LB to connect to LoRaWAN network = 158 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network = 149 149 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.163 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,12 +158,12 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.171 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 174 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS. 165 165 166 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 176 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below: 167 167 168 168 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 169 169 ... ... @@ -192,10 +192,10 @@ 192 192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 193 193 194 194 195 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 205 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 196 196 197 197 198 -Press the button for 5 seconds to activate the SN50v3-LB. 208 +Press the button for 5 seconds to activate the SN50v3-LB/LS. 199 199 200 200 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 201 201 ... ... @@ -207,52 +207,52 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 220 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 214 214 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 -|(% colspan="6" style="background-color:# d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**226 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT228 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 233 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 - *0x01: EU868239 +0x01: EU868 230 230 231 - *0x02: US915241 +0x02: US915 232 232 233 - *0x03: IN865243 +0x03: IN865 234 234 235 - *0x04: AU915245 +0x04: AU915 236 236 237 - *0x05: KZ865247 +0x05: KZ865 238 238 239 - *0x06: RU864249 +0x06: RU864 240 240 241 - *0x07: AS923251 +0x07: AS923 242 242 243 - *0x08: AS923-1253 +0x08: AS923-1 244 244 245 - *0x09: AS923-2255 +0x09: AS923-2 246 246 247 - *0x0a: AS923-3257 +0x0a: AS923-3 248 248 249 - *0x0b: CN470259 +0x0b: CN470 250 250 251 - *0x0c: EU433261 +0x0c: EU433 252 252 253 - *0x0d: KR920263 +0x0d: KR920 254 254 255 - *0x0e: MA869265 +0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 289 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 293 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 298 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload. 291 291 300 +2. All modes share the same Payload Explanation from HERE. 301 + 302 +3. By default, the device will send an uplink message every 20 minutes. 303 + 304 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,8 +295,8 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**299 -| **Value**|Bat|(% style="width:191px" %)(((311 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:130px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2** 312 +|Value|Bat|(% style="width:191px" %)((( 300 300 Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( 302 302 ADC(PA4) ... ... @@ -313,11 +313,12 @@ 313 313 314 314 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 315 315 329 + 316 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 317 317 318 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 319 -|(% style=" width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**320 -| **Value**|BAT|(% style="width:196px" %)(((333 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:30px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2** 334 +|Value|BAT|(% style="width:196px" %)((( 321 321 Temperature(DS18B20)(PC13) 322 322 )))|(% style="width:87px" %)((( 323 323 ADC(PA4) ... ... @@ -324,27 +324,30 @@ 324 324 )))|(% style="width:189px" %)((( 325 325 Digital in(PB15) & Digital Interrupt(PA8) 326 326 )))|(% style="width:208px" %)((( 327 -Distance measure by:1) LIDAR-Lite V3HP 341 +Distance measure by: 1) LIDAR-Lite V3HP 328 328 Or 2) Ultrasonic Sensor 329 329 )))|(% style="width:117px" %)Reserved 330 330 331 331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 332 332 347 + 333 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 334 334 335 335 [[image:image-20230512173758-5.png||height="563" width="712"]] 336 336 352 + 337 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 338 338 339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 355 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 340 340 341 341 [[image:image-20230512173903-6.png||height="596" width="715"]] 342 342 359 + 343 343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 344 344 345 345 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 346 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**347 -| **Value**|BAT|(% style="width:183px" %)(((363 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:80px" %)**2** 364 +|Value|BAT|(% style="width:183px" %)((( 348 348 Temperature(DS18B20)(PC13) 349 349 )))|(% style="width:173px" %)((( 350 350 Digital in(PB15) & Digital Interrupt(PA8) ... ... @@ -352,49 +352,47 @@ 352 352 ADC(PA4) 353 353 )))|(% style="width:323px" %)((( 354 354 Distance measure by:1)TF-Mini plus LiDAR 355 -Or 372 +Or 2) TF-Luna LiDAR 356 356 )))|(% style="width:188px" %)Distance signal strength 357 357 358 358 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 359 359 377 + 360 360 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 361 361 362 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 380 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 363 363 364 364 [[image:image-20230512180609-7.png||height="555" width="802"]] 365 365 384 + 366 366 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 367 367 368 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 387 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 369 369 370 -[[image:image-20230 513105207-4.png||height="469" width="802"]]389 +[[image:image-20230610170047-1.png||height="452" width="799"]] 371 371 372 372 373 373 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 374 374 394 + 375 375 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 376 376 377 377 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 378 -|=((( 379 -(% style="width: 50px;" %)**Size(bytes)** 380 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1 381 -|**Value**|(% style="width:68px" %)((( 382 -ADC1 383 -(PA4) 398 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 399 +**Size(bytes)** 400 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1 401 +|Value|(% style="width:68px" %)((( 402 +ADC1(PA4) 384 384 )))|(% style="width:75px" %)((( 385 -ADC2 386 -(PA5) 404 +ADC2(PA5) 387 387 )))|((( 388 -ADC3 389 -(PA8) 406 +ADC3(PA8) 390 390 )))|((( 391 391 Digital Interrupt(PB15) 392 392 )))|(% style="width:304px" %)((( 393 -Temperature 394 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 410 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 395 395 )))|(% style="width:163px" %)((( 396 -Humidity 397 -(SHT20 or SHT31) 412 +Humidity(SHT20 or SHT31) 398 398 )))|(% style="width:53px" %)Bat 399 399 400 400 [[image:image-20230513110214-6.png]] ... ... @@ -405,59 +405,57 @@ 405 405 406 406 This mode has total 11 bytes. As shown below: 407 407 408 -(% style="width:1017px" %) 409 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 410 -|**Value**|BAT|(% style="width:186px" %)((( 411 -Temperature1(DS18B20) 412 -(PC13) 423 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 424 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2** 425 +|Value|BAT|(% style="width:186px" %)((( 426 +Temperature1(DS18B20)(PC13) 413 413 )))|(% style="width:82px" %)((( 414 -ADC 415 -(PA4) 428 +ADC(PA4) 416 416 )))|(% style="width:210px" %)((( 417 -Digital in(PB15) & 418 -Digital Interrupt(PA8) 430 +Digital in(PB15) & Digital Interrupt(PA8) 419 419 )))|(% style="width:191px" %)Temperature2(DS18B20) 420 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 421 -(PB8) 432 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 422 422 423 423 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 424 424 436 + 425 425 [[image:image-20230513134006-1.png||height="559" width="736"]] 426 426 427 427 428 428 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 429 429 442 + 430 430 [[image:image-20230512164658-2.png||height="532" width="729"]] 431 431 432 432 Each HX711 need to be calibrated before used. User need to do below two steps: 433 433 434 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 435 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 447 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 448 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 436 436 1. ((( 437 437 Weight has 4 bytes, the unit is g. 451 + 452 + 453 + 438 438 ))) 439 439 440 440 For example: 441 441 442 -**AT+GETSENSORVALUE =0** 458 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 443 443 444 444 Response: Weight is 401 g 445 445 446 446 Check the response of this command and adjust the value to match the real value for thing. 447 447 448 -(% style="width: 767px" %)449 -|=((( 464 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 465 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 450 450 **Size(bytes)** 451 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4** 452 -|**Value**|BAT|(% style="width:193px" %)((( 453 -Temperature(DS18B20) 454 -(PC13) 467 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4** 468 +|Value|BAT|(% style="width:193px" %)((( 469 +Temperature(DS18B20)(PC13) 455 455 )))|(% style="width:85px" %)((( 456 -ADC 457 -(PA4) 471 +ADC(PA4) 458 458 )))|(% style="width:186px" %)((( 459 -Digital in(PB15) & 460 -Digital Interrupt(PA8) 473 +Digital in(PB15) & Digital Interrupt(PA8) 461 461 )))|(% style="width:100px" %)Weight 462 462 463 463 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -465,6 +465,7 @@ 465 465 466 466 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 467 467 481 + 468 468 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 469 469 470 470 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -471,23 +471,19 @@ 471 471 472 472 [[image:image-20230512181814-9.png||height="543" width="697"]] 473 473 474 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 475 475 476 -(% style="width:961px" %) 477 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 478 -|**Value**|BAT|(% style="width:256px" %)((( 479 -Temperature(DS18B20) 489 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 480 480 481 -(PC13) 491 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 492 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4** 493 +|Value|BAT|(% style="width:256px" %)((( 494 +Temperature(DS18B20)(PC13) 482 482 )))|(% style="width:108px" %)((( 483 -ADC 484 -(PA4) 496 +ADC(PA4) 485 485 )))|(% style="width:126px" %)((( 486 -Digital in 487 -(PB15) 498 +Digital in(PB15) 488 488 )))|(% style="width:145px" %)((( 489 -Count 490 -(PA8) 500 +Count(PA8) 491 491 ))) 492 492 493 493 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] ... ... @@ -495,16 +495,16 @@ 495 495 496 496 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 497 497 498 -(% style="width:1108px" %) 499 -|=((( 508 + 509 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 510 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 500 500 **Size(bytes)** 501 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2502 -| **Value**|BAT|(% style="width:188px" %)(((512 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2 513 +|Value|BAT|(% style="width:188px" %)((( 503 503 Temperature(DS18B20) 504 504 (PC13) 505 505 )))|(% style="width:83px" %)((( 506 -ADC 507 -(PA5) 517 +ADC(PA5) 508 508 )))|(% style="width:184px" %)((( 509 509 Digital Interrupt1(PA8) 510 510 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -511,26 +511,25 @@ 511 511 512 512 [[image:image-20230513111203-7.png||height="324" width="975"]] 513 513 524 + 514 514 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 515 515 516 -(% style="width:922px" %) 517 -|=((( 527 + 528 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 529 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 518 518 **Size(bytes)** 519 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2520 -| **Value**|BAT|(% style="width:207px" %)(((531 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2 532 +|Value|BAT|(% style="width:207px" %)((( 521 521 Temperature(DS18B20) 522 522 (PC13) 523 523 )))|(% style="width:94px" %)((( 524 -ADC1 525 -(PA4) 536 +ADC1(PA4) 526 526 )))|(% style="width:198px" %)((( 527 527 Digital Interrupt(PB15) 528 528 )))|(% style="width:84px" %)((( 529 -ADC2 530 -(PA5) 540 +ADC2(PA5) 531 531 )))|(% style="width:82px" %)((( 532 -ADC3 533 -(PA8) 542 +ADC3(PA8) 534 534 ))) 535 535 536 536 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -538,50 +538,152 @@ 538 538 539 539 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 540 540 541 -(% style="width:1010px" %) 542 -|=((( 550 + 551 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 552 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)((( 543 543 **Size(bytes)** 544 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4545 -| **Value**|BAT|(((546 -Temperature 1(DS18B20)547 -(PC13) 554 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4 555 +|Value|BAT|((( 556 +Temperature 557 +(DS18B20)(PC13) 548 548 )))|((( 549 -Temperature2 (DS18B20)550 -(PB9) 559 +Temperature2 560 +(DS18B20)(PB9) 551 551 )))|((( 552 552 Digital Interrupt 553 553 (PB15) 554 554 )))|(% style="width:193px" %)((( 555 -Temperature3 (DS18B20)556 -(PB8) 565 +Temperature3 566 +(DS18B20)(PB8) 557 557 )))|(% style="width:78px" %)((( 558 -Count1 559 -(PA8) 568 +Count1(PA8) 560 560 )))|(% style="width:78px" %)((( 561 -Count2 562 -(PA4) 570 +Count2(PA4) 563 563 ))) 564 564 565 565 [[image:image-20230513111255-9.png||height="341" width="899"]] 566 566 567 -**The newly added AT command is issued correspondingly:** 575 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 568 568 569 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**577 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 570 570 571 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**579 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 572 572 573 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**581 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 574 574 575 -**AT+SETCNT=aa,bb** 576 576 584 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 585 + 577 577 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 578 578 579 579 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 580 580 581 581 591 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ==== 582 582 593 + 594 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 595 + 596 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 597 + 598 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 599 + 600 + 601 +===== 2.3.2.10.a Uplink, PWM input capture ===== 602 + 603 + 604 +[[image:image-20230817172209-2.png||height="439" width="683"]] 605 + 606 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 607 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2** 608 +|Value|Bat|(% style="width:191px" %)((( 609 +Temperature(DS18B20)(PC13) 610 +)))|(% style="width:78px" %)((( 611 +ADC(PA4) 612 +)))|(% style="width:135px" %)((( 613 +PWM_Setting 614 +&Digital Interrupt(PA8) 615 +)))|(% style="width:70px" %)((( 616 +Pulse period 617 +)))|(% style="width:89px" %)((( 618 +Duration of high level 619 +))) 620 + 621 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 622 + 623 + 624 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 625 + 626 +**Frequency:** 627 + 628 +(% class="MsoNormal" %) 629 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 630 + 631 +(% class="MsoNormal" %) 632 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 633 + 634 + 635 +(% class="MsoNormal" %) 636 +**Duty cycle:** 637 + 638 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 639 + 640 +[[image:image-20230818092200-1.png||height="344" width="627"]] 641 + 642 + 643 +===== 2.3.2.10.b Uplink, PWM output ===== 644 + 645 + 646 +[[image:image-20230817172209-2.png||height="439" width="683"]] 647 + 648 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 649 + 650 +a is the time delay of the output, the unit is ms. 651 + 652 +b is the output frequency, the unit is HZ. 653 + 654 +c is the duty cycle of the output, the unit is %. 655 + 656 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 657 + 658 +aa is the time delay of the output, the unit is ms. 659 + 660 +bb is the output frequency, the unit is HZ. 661 + 662 +cc is the duty cycle of the output, the unit is %. 663 + 664 + 665 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 666 + 667 +The oscilloscope displays as follows: 668 + 669 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 670 + 671 + 672 +===== 2.3.2.10.c Downlink, PWM output ===== 673 + 674 + 675 +[[image:image-20230817173800-3.png||height="412" width="685"]] 676 + 677 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 678 + 679 + xx xx xx is the output frequency, the unit is HZ. 680 + 681 + yy is the duty cycle of the output, the unit is %. 682 + 683 + zz zz is the time delay of the output, the unit is ms. 684 + 685 + 686 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 687 + 688 +The oscilloscope displays as follows: 689 + 690 +[[image:image-20230817173858-5.png||height="634" width="843"]] 691 + 692 + 583 583 === 2.3.3 Decode payload === 584 584 695 + 585 585 While using TTN V3 network, you can add the payload format to decode the payload. 586 586 587 587 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -588,13 +588,14 @@ 588 588 589 589 The payload decoder function for TTN V3 are here: 590 590 591 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 702 +SN50v3-LB/LS TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 592 592 593 593 594 594 ==== 2.3.3.1 Battery Info ==== 595 595 596 -Check the battery voltage for SN50v3. 597 597 708 +Check the battery voltage for SN50v3-LB/LS. 709 + 598 598 Ex1: 0x0B45 = 2885mV 599 599 600 600 Ex2: 0x0B49 = 2889mV ... ... @@ -602,16 +602,18 @@ 602 602 603 603 ==== 2.3.3.2 Temperature (DS18B20) ==== 604 604 717 + 605 605 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 606 606 607 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]720 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 608 608 609 -**Connection:** 722 +(% style="color:blue" %)**Connection:** 610 610 611 611 [[image:image-20230512180718-8.png||height="538" width="647"]] 612 612 613 -**Example**: 614 614 727 +(% style="color:blue" %)**Example**: 728 + 615 615 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 616 616 617 617 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -621,6 +621,7 @@ 621 621 622 622 ==== 2.3.3.3 Digital Input ==== 623 623 738 + 624 624 The digital input for pin PB15, 625 625 626 626 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -630,28 +630,40 @@ 630 630 ((( 631 631 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 632 632 633 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 748 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 749 + 750 + 634 634 ))) 635 635 636 636 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 637 637 638 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 639 639 640 - Whenthemeasuredoutput voltage of thesensorisnot withinthe rangeof0Vand1.1V,theoutputvoltageterminal of theensor shall be divided The example in the following figure istoreduce the output voltage of the sensorby three timesIf it is necessary toreduce moretimes,calculate according to the formula in the figure and connect the corresponding resistance in series.756 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 641 641 758 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 759 + 642 642 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 643 643 644 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 645 645 763 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 646 646 765 + 766 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 767 + 768 +[[image:image-20230811113449-1.png||height="370" width="608"]] 769 + 770 + 771 + 647 647 ==== 2.3.3.5 Digital Interrupt ==== 648 648 649 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 650 650 651 - (% style="color:blue"%)**~Interruptconnection method:**775 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server. 652 652 777 +(% style="color:blue" %)** Interrupt connection method:** 778 + 653 653 [[image:image-20230513105351-5.png||height="147" width="485"]] 654 654 781 + 655 655 (% style="color:blue" %)**Example to use with door sensor :** 656 656 657 657 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -658,22 +658,23 @@ 658 658 659 659 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 660 660 661 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.788 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window. 662 662 663 -(% style="color:blue" %)**~ Below is the installation example:** 664 664 665 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:791 +(% style="color:blue" %)**Below is the installation example:** 666 666 793 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows: 794 + 667 667 * ((( 668 -One pin to SN50 _v3's PA8 pin796 +One pin to SN50v3-LB/LS's PA8 pin 669 669 ))) 670 670 * ((( 671 -The other pin to SN50 _v3's VDD pin799 +The other pin to SN50v3-LB/LS's VDD pin 672 672 ))) 673 673 674 674 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 675 675 676 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 804 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 677 677 678 678 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 679 679 ... ... @@ -685,29 +685,32 @@ 685 685 686 686 The command is: 687 687 688 -(% style="color:blue" %)**AT+INTMOD1=1 816 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 689 689 690 690 Below shows some screen captures in TTN V3: 691 691 692 692 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 693 693 694 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 695 695 823 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 824 + 696 696 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 697 697 698 698 699 699 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 700 700 830 + 701 701 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 702 702 703 703 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 704 704 705 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.835 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.** 706 706 837 + 707 707 Below is the connection to SHT20/ SHT31. The connection is as below: 708 708 840 +[[image:image-20230610170152-2.png||height="501" width="846"]] 709 709 710 -[[image:image-20230513103633-3.png||height="448" width="716"]] 711 711 712 712 The device will be able to get the I2C sensor data now and upload to IoT Server. 713 713 ... ... @@ -726,23 +726,26 @@ 726 726 727 727 ==== 2.3.3.7 Distance Reading ==== 728 728 729 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 730 730 861 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 731 731 863 + 732 732 ==== 2.3.3.8 Ultrasonic Sensor ==== 733 733 866 + 734 734 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 735 735 736 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.869 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 737 737 738 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 871 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 739 739 740 740 The picture below shows the connection: 741 741 742 742 [[image:image-20230512173903-6.png||height="596" width="715"]] 743 743 744 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 745 745 878 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 879 + 746 746 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 747 747 748 748 **Example:** ... ... @@ -750,16 +750,17 @@ 750 750 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 751 751 752 752 753 - 754 754 ==== 2.3.3.9 Battery Output - BAT pin ==== 755 755 756 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 757 757 890 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon. 758 758 892 + 759 759 ==== 2.3.3.10 +5V Output ==== 760 760 761 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 762 762 896 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 897 + 763 763 The 5V output time can be controlled by AT Command. 764 764 765 765 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -766,21 +766,51 @@ 766 766 767 767 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 768 768 769 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 904 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 770 770 771 771 772 - 773 773 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 774 774 909 + 775 775 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 776 776 777 777 [[image:image-20230512172447-4.png||height="416" width="712"]] 778 778 914 + 779 779 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 780 780 781 781 782 -==== 2.3.3.12 W orkingMOD ====918 +==== 2.3.3.12 PWM MOD ==== 783 783 920 + 921 +* ((( 922 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 923 +))) 924 +* ((( 925 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 926 +))) 927 + 928 + [[image:image-20230817183249-3.png||height="320" width="417"]] 929 + 930 +* ((( 931 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 932 +))) 933 +* ((( 934 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 935 +))) 936 +* ((( 937 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 938 + 939 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 940 + 941 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used. 942 + 943 +b) If the output duration is more than 30 seconds, better to use external power source. 944 +))) 945 + 946 +==== 2.3.3.13 Working MOD ==== 947 + 948 + 784 784 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 785 785 786 786 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -796,9 +796,8 @@ 796 796 * 6: MOD7 797 797 * 7: MOD8 798 798 * 8: MOD9 964 +* 9: MOD10 799 799 800 - 801 - 802 802 == 2.4 Payload Decoder file == 803 803 804 804 ... ... @@ -809,21 +809,20 @@ 809 809 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 810 810 811 811 812 - 813 813 == 2.5 Frequency Plans == 814 814 815 815 816 -The SN50v3-LB uses OTAA mode and below frequency plans by default. Ifuserwanttouseit withdifferent frequencyplan, pleaserefer theATcommandsets.979 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country. 817 817 818 818 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 819 819 820 820 821 -= 3. Configure SN50v3-LB = 984 += 3. Configure SN50v3-LB/LS = 822 822 823 823 == 3.1 Configure Methods == 824 824 825 825 826 -SN50v3-LB supports below configure method: 989 +SN50v3-LB/LS supports below configure method: 827 827 828 828 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 829 829 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -842,20 +842,21 @@ 842 842 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 843 843 844 844 845 -== 3.3 Commands special design for SN50v3-LB == 1008 +== 3.3 Commands special design for SN50v3-LB/LS == 846 846 847 847 848 -These commands only valid for S3 1x-LB, as below:1011 +These commands only valid for SN50v3-LB/LS, as below: 849 849 850 850 851 851 === 3.3.1 Set Transmit Interval Time === 852 852 1016 + 853 853 Feature: Change LoRaWAN End Node Transmit Interval. 854 854 855 855 (% style="color:blue" %)**AT Command: AT+TDC** 856 856 857 857 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 858 -|=(% style="width: 156px;background-color:# D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**1022 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response** 859 859 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 860 860 30000 861 861 OK ... ... @@ -875,25 +875,25 @@ 875 875 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 876 876 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 877 877 878 - 879 - 880 880 === 3.3.2 Get Device Status === 881 881 1044 + 882 882 Send a LoRaWAN downlink to ask the device to send its status. 883 883 884 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 011047 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 885 885 886 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 1049 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 887 887 888 888 889 889 === 3.3.3 Set Interrupt Mode === 890 890 1054 + 891 891 Feature, Set Interrupt mode for GPIO_EXIT. 892 892 893 -(% style="color:blue" %)**AT Command: AT+INTMOD1 ,AT+INTMOD2,AT+INTMOD3**1057 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 894 894 895 895 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 896 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1060 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 897 897 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 898 898 0 899 899 OK ... ... @@ -908,7 +908,6 @@ 908 908 )))|(% style="width:157px" %)OK 909 909 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 910 910 Set Transmit Interval 911 - 912 912 trigger by rising edge. 913 913 )))|(% style="width:157px" %)OK 914 914 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -924,10 +924,9 @@ 924 924 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 925 925 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 926 926 927 - 928 - 929 929 === 3.3.4 Set Power Output Duration === 930 930 1092 + 931 931 Control the output duration 5V . Before each sampling, device will 932 932 933 933 ~1. first enable the power output to external sensor, ... ... @@ -939,7 +939,7 @@ 939 939 (% style="color:blue" %)**AT Command: AT+5VT** 940 940 941 941 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 942 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1104 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 943 943 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 944 944 500(default) 945 945 OK ... ... @@ -957,18 +957,17 @@ 957 957 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 958 958 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 959 959 960 - 961 - 962 962 === 3.3.5 Set Weighing parameters === 963 963 1124 + 964 964 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 965 965 966 966 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 967 967 968 968 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 969 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1130 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 970 970 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 971 -|(% style="width:154px" %)AT+WEIGAP= ?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)1132 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 972 972 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 973 973 974 974 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -983,10 +983,9 @@ 983 983 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 984 984 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 985 985 986 - 987 - 988 988 === 3.3.6 Set Digital pulse count value === 989 989 1149 + 990 990 Feature: Set the pulse count value. 991 991 992 992 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -994,7 +994,7 @@ 994 994 (% style="color:blue" %)**AT Command: AT+SETCNT** 995 995 996 996 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 997 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1157 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 998 998 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 999 999 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1000 1000 ... ... @@ -1007,16 +1007,15 @@ 1007 1007 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1008 1008 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1009 1009 1010 - 1011 - 1012 1012 === 3.3.7 Set Workmode === 1013 1013 1172 + 1014 1014 Feature: Switch working mode. 1015 1015 1016 1016 (% style="color:blue" %)**AT Command: AT+MOD** 1017 1017 1018 1018 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1019 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1178 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response** 1020 1020 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1021 1021 OK 1022 1022 ))) ... ... @@ -1032,13 +1032,97 @@ 1032 1032 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1033 1033 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1034 1034 1194 +=== 3.3.8 PWM setting === 1035 1035 1036 1036 1037 - = 4. Battery&PowerConsumption=1197 +Feature: Set the time acquisition unit for PWM input capture. 1038 1038 1199 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1039 1039 1040 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1201 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1202 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response** 1203 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1204 +0(default) 1205 +OK 1206 +))) 1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1208 +OK 1209 + 1210 +))) 1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1041 1041 1213 +(% style="color:blue" %)**Downlink Command: 0x0C** 1214 + 1215 +Format: Command Code (0x0C) followed by 1 bytes. 1216 + 1217 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1218 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1219 + 1220 +**Feature: Set PWM output time, output frequency and output duty cycle.** 1221 + 1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1223 + 1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1225 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response** 1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1227 +0,0,0(default) 1228 +OK 1229 +))) 1230 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1231 +OK 1232 + 1233 +))) 1234 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1235 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1236 + 1237 + 1238 +)))|(% style="width:137px" %)((( 1239 +OK 1240 +))) 1241 + 1242 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1243 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters** 1244 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1245 +AT+PWMOUT=a,b,c 1246 + 1247 + 1248 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1249 +Set PWM output time, output frequency and output duty cycle. 1250 + 1251 +((( 1252 + 1253 +))) 1254 + 1255 +((( 1256 + 1257 +))) 1258 +)))|(% style="width:242px" %)((( 1259 +a: Output time (unit: seconds) 1260 +The value ranges from 0 to 65535. 1261 +When a=65535, PWM will always output. 1262 +))) 1263 +|(% style="width:242px" %)((( 1264 +b: Output frequency (unit: HZ) 1265 +))) 1266 +|(% style="width:242px" %)((( 1267 +c: Output duty cycle (unit: %) 1268 +The value ranges from 0 to 100. 1269 +))) 1270 + 1271 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1272 + 1273 +Format: Command Code (0x0B01) followed by 6 bytes. 1274 + 1275 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1276 + 1277 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1278 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1279 + 1280 += 4. Battery & Power Cons = 1281 + 1282 + 1283 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1284 + 1042 1042 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1043 1043 1044 1044 ... ... @@ -1046,31 +1046,47 @@ 1046 1046 1047 1047 1048 1048 (% class="wikigeneratedid" %) 1049 -User can change firmware SN50v3-LB to: 1292 +**User can change firmware SN50v3-LB/LS to:** 1050 1050 1051 1051 * Change Frequency band/ region. 1052 1052 * Update with new features. 1053 1053 * Fix bugs. 1054 1054 1055 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1298 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1056 1056 1300 +**Methods to Update Firmware:** 1057 1057 1058 -Methods to Update Firmware: 1302 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1303 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1059 1059 1060 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1061 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1062 - 1063 1063 = 6. FAQ = 1064 1064 1065 -== 6.1 Where can i find source code of SN50v3-LB? == 1307 +== 6.1 Where can i find source code of SN50v3-LB/LS? == 1066 1066 1309 + 1067 1067 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1068 1068 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1069 1069 1313 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? == 1314 + 1315 + 1316 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1317 + 1318 + 1319 +== 6.3 How to put several sensors to a SN50v3-LB/LS? == 1320 + 1321 + 1322 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1323 + 1324 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1325 + 1326 +[[image:image-20230810121434-1.png||height="242" width="656"]] 1327 + 1328 + 1070 1070 = 7. Order Info = 1071 1071 1072 1072 1073 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1332 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY** 1074 1074 1075 1075 (% style="color:red" %)**XX**(%%): The default frequency band 1076 1076 ... ... @@ -1092,9 +1092,10 @@ 1092 1092 1093 1093 = 8. Packing Info = 1094 1094 1354 + 1095 1095 (% style="color:#037691" %)**Package Includes**: 1096 1096 1097 -* SN50v3-LB LoRaWAN Generic Node 1357 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node 1098 1098 1099 1099 (% style="color:#037691" %)**Dimension and weight**: 1100 1100
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content