<
From version < 43.21 >
edited by Xiaoling
on 2023/05/16 14:22
To version < 105.1 >
edited by Bei Jinggeng
on 2024/12/04 15:00
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Bei
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,22 +14,22 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + Li-ion battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
37 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -38,7 +38,8 @@
38 38  * Support wireless OTA update firmware
39 39  * Uplink on periodically
40 40  * Downlink to change configure
41 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-ion battery (SN50v3-LS)
42 42  
43 43  == 1.3 Specification ==
44 44  
... ... @@ -45,7 +45,7 @@
45 45  
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
49 49  * Operating Temperature: -40 ~~ 85°C
50 50  
51 51  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -88,11 +88,10 @@
88 88  == 1.5 Button & LEDs ==
89 89  
90 90  
91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
92 92  
93 -
94 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
99 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
96 96  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 97  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 98  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -107,7 +107,7 @@
107 107  == 1.6 BLE connection ==
108 108  
109 109  
110 -SN50v3-LB supports BLE remote configure.
115 +SN50v3-LB/LS supports BLE remote configure.
111 111  
112 112  
113 113  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -122,35 +122,39 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
130 +[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
129 129  
135 +=== 1.8.1 for LB version ===
130 130  
131 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132 132  
133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138 +[[image:image-20240924112806-1.png||height="548" width="894"]]
134 134  
135 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== Hole Option ==
142 +=== 1.8.2 for LS version ===
139 139  
144 +[[image:image-20231231203439-3.png||height="385" width="886"]]
140 140  
141 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
147 +== 1.9 Hole Option ==
148 +
149 +
150 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
151 +
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144 144  
145 145  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146 146  
147 147  
148 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
157 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
149 149  
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
162 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,12 +158,12 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
170 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
173 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
165 165  
166 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
175 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
167 167  
168 168  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
169 169  
... ... @@ -191,12 +191,10 @@
191 191  
192 192  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193 193  
203 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
194 194  
195 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
205 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
196 196  
197 -
198 -Press the button for 5 seconds to activate the SN50v3-LB.
199 -
200 200  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201 201  
202 202  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
... ... @@ -207,52 +207,52 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
214 214  
215 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
222 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
223 +|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
225 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -*0x01: EU868
236 +0x01: EU868
230 230  
231 -*0x02: US915
238 +0x02: US915
232 232  
233 -*0x03: IN865
240 +0x03: IN865
234 234  
235 -*0x04: AU915
242 +0x04: AU915
236 236  
237 -*0x05: KZ865
244 +0x05: KZ865
238 238  
239 -*0x06: RU864
246 +0x06: RU864
240 240  
241 -*0x07: AS923
248 +0x07: AS923
242 242  
243 -*0x08: AS923-1
250 +0x08: AS923-1
244 244  
245 -*0x09: AS923-2
252 +0x09: AS923-2
246 246  
247 -*0x0a: AS923-3
254 +0x0a: AS923-3
248 248  
249 -*0x0b: CN470
256 +0x0b: CN470
250 250  
251 -*0x0c: EU433
258 +0x0c: EU433
252 252  
253 -*0x0d: KR920
260 +0x0d: KR920
254 254  
255 -*0x0e: MA869
262 +0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -276,27 +276,30 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
286 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
290 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
291 291  
297 +2. All modes share the same Payload Explanation from HERE.
298 +
299 +3. By default, the device will send an uplink message every 20 minutes.
300 +
301 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
307 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
308 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
309 +|Value|Bat|(% style="width:191px" %)(((
300 300  Temperature(DS18B20)(PC13)
301 301  )))|(% style="width:78px" %)(((
302 302  ADC(PA4)
... ... @@ -313,11 +313,12 @@
313 313  
314 314  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 315  
326 +
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 -|**Value**|BAT|(% style="width:196px" %)(((
329 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
330 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
331 +|Value|BAT|(% style="width:196px" %)(((
321 321  Temperature(DS18B20)(PC13)
322 322  )))|(% style="width:87px" %)(((
323 323  ADC(PA4)
... ... @@ -324,27 +324,30 @@
324 324  )))|(% style="width:189px" %)(((
325 325  Digital in(PB15) & Digital Interrupt(PA8)
326 326  )))|(% style="width:208px" %)(((
327 -Distance measure by:1) LIDAR-Lite V3HP
338 +Distance measure by: 1) LIDAR-Lite V3HP
328 328  Or 2) Ultrasonic Sensor
329 329  )))|(% style="width:117px" %)Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
344 +
333 333  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334 334  
335 335  [[image:image-20230512173758-5.png||height="563" width="712"]]
336 336  
349 +
337 337  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338 338  
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
352 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
340 340  
341 341  [[image:image-20230512173903-6.png||height="596" width="715"]]
342 342  
356 +
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**
347 -|**Value**|BAT|(% style="width:183px" %)(((
359 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
360 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
361 +|Value|BAT|(% style="width:183px" %)(((
348 348  Temperature(DS18B20)(PC13)
349 349  )))|(% style="width:173px" %)(((
350 350  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -352,49 +352,47 @@
352 352  ADC(PA4)
353 353  )))|(% style="width:323px" %)(((
354 354  Distance measure by:1)TF-Mini plus LiDAR
355 -Or 2) TF-Luna LiDAR
369 +Or 2) TF-Luna LiDAR
356 356  )))|(% style="width:188px" %)Distance signal  strength
357 357  
358 358  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
359 359  
374 +
360 360  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
361 361  
362 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
363 363  
364 364  [[image:image-20230512180609-7.png||height="555" width="802"]]
365 365  
381 +
366 366  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
367 367  
368 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
384 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
369 369  
370 -[[image:image-20230513105207-4.png||height="469" width="802"]]
386 +[[image:image-20230610170047-1.png||height="452" width="799"]]
371 371  
372 372  
373 373  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
374 374  
391 +
375 375  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
376 376  
377 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
378 -|=(((
379 -(% style="width: 50px;" %)**Size(bytes)**
380 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
381 -|**Value**|(% style="width:68px" %)(((
382 -ADC1
383 -(PA4)
394 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
395 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
396 +**Size(bytes)**
397 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
398 +|Value|(% style="width:68px" %)(((
399 +ADC1(PA4)
384 384  )))|(% style="width:75px" %)(((
385 -ADC2
386 -(PA5)
401 +ADC2(PA5)
387 387  )))|(((
388 -ADC3
389 -(PA8)
403 +ADC3(PA8)
390 390  )))|(((
391 391  Digital Interrupt(PB15)
392 392  )))|(% style="width:304px" %)(((
393 -Temperature
394 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
407 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
395 395  )))|(% style="width:163px" %)(((
396 -Humidity
397 -(SHT20 or SHT31)
409 +Humidity(SHT20 or SHT31)
398 398  )))|(% style="width:53px" %)Bat
399 399  
400 400  [[image:image-20230513110214-6.png]]
... ... @@ -405,59 +405,57 @@
405 405  
406 406  This mode has total 11 bytes. As shown below:
407 407  
408 -(% style="width:1017px" %)
409 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
410 -|**Value**|BAT|(% style="width:186px" %)(((
411 -Temperature1(DS18B20)
412 -(PC13)
420 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
421 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
422 +|Value|BAT|(% style="width:186px" %)(((
423 +Temperature1(DS18B20)(PC13)
413 413  )))|(% style="width:82px" %)(((
414 -ADC
415 -(PA4)
425 +ADC(PA4)
416 416  )))|(% style="width:210px" %)(((
417 -Digital in(PB15) &
418 -Digital Interrupt(PA8) 
427 +Digital in(PB15) & Digital Interrupt(PA8) 
419 419  )))|(% style="width:191px" %)Temperature2(DS18B20)
420 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
421 -(PB8)
429 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
422 422  
423 423  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
424 424  
433 +
425 425  [[image:image-20230513134006-1.png||height="559" width="736"]]
426 426  
427 427  
428 428  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
429 429  
439 +
430 430  [[image:image-20230512164658-2.png||height="532" width="729"]]
431 431  
432 432  Each HX711 need to be calibrated before used. User need to do below two steps:
433 433  
434 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
435 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
444 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
436 436  1. (((
437 437  Weight has 4 bytes, the unit is g.
448 +
449 +
450 +
438 438  )))
439 439  
440 440  For example:
441 441  
442 -**AT+GETSENSORVALUE =0**
455 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
443 443  
444 444  Response:  Weight is 401 g
445 445  
446 446  Check the response of this command and adjust the value to match the real value for thing.
447 447  
448 -(% style="width:767px" %)
449 -|=(((
461 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
462 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
450 450  **Size(bytes)**
451 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
452 -|**Value**|BAT|(% style="width:193px" %)(((
453 -Temperature(DS18B20)
454 -(PC13)
464 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
465 +|Value|BAT|(% style="width:193px" %)(((
466 +Temperature(DS18B20)(PC13)
455 455  )))|(% style="width:85px" %)(((
456 -ADC
457 -(PA4)
468 +ADC(PA4)
458 458  )))|(% style="width:186px" %)(((
459 -Digital in(PB15) &
460 -Digital Interrupt(PA8)
470 +Digital in(PB15) & Digital Interrupt(PA8)
461 461  )))|(% style="width:100px" %)Weight
462 462  
463 463  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -465,6 +465,7 @@
465 465  
466 466  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
467 467  
478 +
468 468  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
469 469  
470 470  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -471,23 +471,19 @@
471 471  
472 472  [[image:image-20230512181814-9.png||height="543" width="697"]]
473 473  
474 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
475 475  
476 -(% style="width:961px" %)
477 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
478 -|**Value**|BAT|(% style="width:256px" %)(((
479 -Temperature(DS18B20)
486 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
480 480  
481 -(PC13)
488 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
489 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
490 +|Value|BAT|(% style="width:256px" %)(((
491 +Temperature(DS18B20)(PC13)
482 482  )))|(% style="width:108px" %)(((
483 -ADC
484 -(PA4)
493 +ADC(PA4)
485 485  )))|(% style="width:126px" %)(((
486 -Digital in
487 -(PB15)
495 +Digital in(PB15)
488 488  )))|(% style="width:145px" %)(((
489 -Count
490 -(PA8)
497 +Count(PA8)
491 491  )))
492 492  
493 493  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -495,16 +495,16 @@
495 495  
496 496  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
497 497  
498 -(% style="width:1108px" %)
499 -|=(((
505 +
506 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
507 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
500 500  **Size(bytes)**
501 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
502 -|**Value**|BAT|(% style="width:188px" %)(((
509 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
510 +|Value|BAT|(% style="width:188px" %)(((
503 503  Temperature(DS18B20)
504 504  (PC13)
505 505  )))|(% style="width:83px" %)(((
506 -ADC
507 -(PA5)
514 +ADC(PA5)
508 508  )))|(% style="width:184px" %)(((
509 509  Digital Interrupt1(PA8)
510 510  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -511,26 +511,25 @@
511 511  
512 512  [[image:image-20230513111203-7.png||height="324" width="975"]]
513 513  
521 +
514 514  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
515 515  
516 -(% style="width:922px" %)
517 -|=(((
524 +
525 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
526 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
518 518  **Size(bytes)**
519 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
520 -|**Value**|BAT|(% style="width:207px" %)(((
528 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
529 +|Value|BAT|(% style="width:207px" %)(((
521 521  Temperature(DS18B20)
522 522  (PC13)
523 523  )))|(% style="width:94px" %)(((
524 -ADC1
525 -(PA4)
533 +ADC1(PA4)
526 526  )))|(% style="width:198px" %)(((
527 527  Digital Interrupt(PB15)
528 528  )))|(% style="width:84px" %)(((
529 -ADC2
530 -(PA5)
537 +ADC2(PA5)
531 531  )))|(% style="width:82px" %)(((
532 -ADC3
533 -(PA8)
539 +ADC3(PA8)
534 534  )))
535 535  
536 536  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -538,50 +538,207 @@
538 538  
539 539  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
540 540  
541 -(% style="width:1010px" %)
542 -|=(((
547 +
548 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
549 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
543 543  **Size(bytes)**
544 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
545 -|**Value**|BAT|(((
546 -Temperature1(DS18B20)
547 -(PC13)
551 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
552 +|Value|BAT|(((
553 +Temperature
554 +(DS18B20)(PC13)
548 548  )))|(((
549 -Temperature2(DS18B20)
550 -(PB9)
556 +Temperature2
557 +(DS18B20)(PB9)
551 551  )))|(((
552 552  Digital Interrupt
553 553  (PB15)
554 554  )))|(% style="width:193px" %)(((
555 -Temperature3(DS18B20)
556 -(PB8)
562 +Temperature3
563 +(DS18B20)(PB8)
557 557  )))|(% style="width:78px" %)(((
558 -Count1
559 -(PA8)
565 +Count1(PA8)
560 560  )))|(% style="width:78px" %)(((
561 -Count2
562 -(PA4)
567 +Count2(PA4)
563 563  )))
564 564  
565 565  [[image:image-20230513111255-9.png||height="341" width="899"]]
566 566  
567 -**The newly added AT command is issued correspondingly:**
572 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
568 568  
569 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
574 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
570 570  
571 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
576 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
572 572  
573 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
578 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
574 574  
575 -**AT+SETCNT=aa,bb** 
576 576  
581 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
582 +
577 577  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
578 578  
579 579  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
580 580  
581 581  
588 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
582 582  
590 +
591 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
592 +
593 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
594 +
595 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
596 +
597 +
598 +===== 2.3.2.10.a  Uplink, PWM input capture =====
599 +
600 +
601 +[[image:image-20230817172209-2.png||height="439" width="683"]]
602 +
603 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
604 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
605 +|Value|Bat|(% style="width:191px" %)(((
606 +Temperature(DS18B20)(PC13)
607 +)))|(% style="width:78px" %)(((
608 +ADC(PA4)
609 +)))|(% style="width:135px" %)(((
610 +PWM_Setting
611 +&Digital Interrupt(PA8)
612 +)))|(% style="width:70px" %)(((
613 +Pulse period
614 +)))|(% style="width:89px" %)(((
615 +Duration of high level
616 +)))
617 +
618 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
619 +
620 +
621 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
622 +
623 +**Frequency:**
624 +
625 +(% class="MsoNormal" %)
626 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
627 +
628 +(% class="MsoNormal" %)
629 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
630 +
631 +
632 +(% class="MsoNormal" %)
633 +**Duty cycle:**
634 +
635 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
636 +
637 +[[image:image-20230818092200-1.png||height="344" width="627"]]
638 +
639 +
640 +===== 2.3.2.10.b  Uplink, PWM output =====
641 +
642 +
643 +[[image:image-20230817172209-2.png||height="439" width="683"]]
644 +
645 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
646 +
647 +a is the time delay of the output, the unit is ms.
648 +
649 +b is the output frequency, the unit is HZ.
650 +
651 +c is the duty cycle of the output, the unit is %.
652 +
653 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
654 +
655 +aa is the time delay of the output, the unit is ms.
656 +
657 +bb is the output frequency, the unit is HZ.
658 +
659 +cc is the duty cycle of the output, the unit is %.
660 +
661 +
662 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
663 +
664 +The oscilloscope displays as follows:
665 +
666 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
667 +
668 +
669 +===== 2.3.2.10.c  Downlink, PWM output =====
670 +
671 +
672 +[[image:image-20230817173800-3.png||height="412" width="685"]]
673 +
674 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
675 +
676 + xx xx xx is the output frequency, the unit is HZ.
677 +
678 + yy is the duty cycle of the output, the unit is %.
679 +
680 + zz zz is the time delay of the output, the unit is ms.
681 +
682 +
683 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
684 +
685 +The oscilloscope displays as follows:
686 +
687 +[[image:image-20230817173858-5.png||height="634" width="843"]]
688 +
689 +
690 +
691 +==== 2.3.2.11  MOD~=11 (TEMP117)(Since firmware V1.3.0) ====
692 +
693 +
694 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
695 +
696 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
697 +|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
698 +|Value|Bat|(% style="width:191px" %)(((
699 +Temperature(DS18B20)(PC13)
700 +)))|(% style="width:78px" %)(((
701 +ADC(PA4)
702 +)))|(% style="width:216px" %)(((
703 +Digital in(PB15)&Digital Interrupt(PA8)
704 +)))|(% style="width:308px" %)(((
705 +Temperature
706 +
707 +(TEMP117)
708 +)))|(% style="width:154px" %)(((
709 +Reserved position, meaningless
710 +
711 +(0x0000)
712 +)))
713 +
714 +[[image:image-20240717113113-1.png||height="352" width="793"]]
715 +
716 +Connection:
717 +
718 +[[image:image-20240717141528-2.jpeg||height="430" width="654"]]
719 +
720 +
721 +==== 2.3.2.12  MOD~=12 (Count+SHT31)(Since firmware V1.3.1) ====
722 +
723 +
724 +This mode has total 11 bytes. As shown below:
725 +
726 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
727 +|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
728 +|Value|BAT|(% style="width:86px" %)(((
729 + Temperature_SHT31
730 +)))|(% style="width:86px" %)(((
731 +Humidity_SHT31
732 +)))|(% style="width:86px" %)(((
733 + Digital in(PB15)
734 +)))|(% style="width:86px" %)(((
735 +Count(PA8)
736 +)))
737 +
738 +[[image:image-20240717150948-5.png||height="389" width="979"]]
739 +
740 +Wiring example:
741 +
742 +[[image:image-20240717152224-6.jpeg||height="359" width="680"]]
743 +
744 +
583 583  === 2.3.3  ​Decode payload ===
584 584  
747 +
585 585  While using TTN V3 network, you can add the payload format to decode the payload.
586 586  
587 587  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -588,13 +588,14 @@
588 588  
589 589  The payload decoder function for TTN V3 are here:
590 590  
591 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
754 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
592 592  
593 593  
594 594  ==== 2.3.3.1 Battery Info ====
595 595  
596 -Check the battery voltage for SN50v3.
597 597  
760 +Check the battery voltage for SN50v3-LB/LS.
761 +
598 598  Ex1: 0x0B45 = 2885mV
599 599  
600 600  Ex2: 0x0B49 = 2889mV
... ... @@ -602,16 +602,18 @@
602 602  
603 603  ==== 2.3.3.2  Temperature (DS18B20) ====
604 604  
769 +
605 605  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
606 606  
607 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
772 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
608 608  
609 -**Connection:**
774 +(% style="color:blue" %)**Connection:**
610 610  
611 611  [[image:image-20230512180718-8.png||height="538" width="647"]]
612 612  
613 -**Example**:
614 614  
779 +(% style="color:blue" %)**Example**:
780 +
615 615  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
616 616  
617 617  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -621,6 +621,7 @@
621 621  
622 622  ==== 2.3.3.3 Digital Input ====
623 623  
790 +
624 624  The digital input for pin PB15,
625 625  
626 626  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -630,28 +630,40 @@
630 630  (((
631 631  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
632 632  
633 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
800 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
801 +
802 +
634 634  )))
635 635  
636 636  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
637 637  
638 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
639 639  
640 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
808 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
641 641  
810 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
811 +
642 642  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
643 643  
644 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
645 645  
815 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
646 646  
817 +
818 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
819 +
820 +[[image:image-20230811113449-1.png||height="370" width="608"]]
821 +
822 +
823 +
647 647  ==== 2.3.3.5 Digital Interrupt ====
648 648  
649 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
650 650  
651 -(% style="color:blue" %)**~ Interrupt connection method:**
827 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
652 652  
829 +(% style="color:blue" %)** Interrupt connection method:**
830 +
653 653  [[image:image-20230513105351-5.png||height="147" width="485"]]
654 654  
833 +
655 655  (% style="color:blue" %)**Example to use with door sensor :**
656 656  
657 657  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -658,22 +658,23 @@
658 658  
659 659  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
660 660  
661 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
840 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
662 662  
663 -(% style="color:blue" %)**~ Below is the installation example:**
664 664  
665 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
843 +(% style="color:blue" %)**Below is the installation example:**
666 666  
845 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
846 +
667 667  * (((
668 -One pin to SN50_v3's PA8 pin
848 +One pin to SN50v3-LB/LS's PA8 pin
669 669  )))
670 670  * (((
671 -The other pin to SN50_v3's VDD pin
851 +The other pin to SN50v3-LB/LS's VDD pin
672 672  )))
673 673  
674 674  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
675 675  
676 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
856 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
677 677  
678 678  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
679 679  
... ... @@ -685,29 +685,32 @@
685 685  
686 686  The command is:
687 687  
688 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
868 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
689 689  
690 690  Below shows some screen captures in TTN V3:
691 691  
692 692  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
693 693  
694 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
695 695  
875 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
876 +
696 696  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
697 697  
698 698  
699 699  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
700 700  
882 +
701 701  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
702 702  
703 703  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
704 704  
705 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
887 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
706 706  
889 +
707 707  Below is the connection to SHT20/ SHT31. The connection is as below:
708 708  
892 +[[image:image-20230610170152-2.png||height="501" width="846"]]
709 709  
710 -[[image:image-20230513103633-3.png||height="448" width="716"]]
711 711  
712 712  The device will be able to get the I2C sensor data now and upload to IoT Server.
713 713  
... ... @@ -726,23 +726,26 @@
726 726  
727 727  ==== 2.3.3.7  ​Distance Reading ====
728 728  
729 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
730 730  
913 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
731 731  
915 +
732 732  ==== 2.3.3.8 Ultrasonic Sensor ====
733 733  
918 +
734 734  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
735 735  
736 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
921 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
737 737  
738 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
923 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
739 739  
740 740  The picture below shows the connection:
741 741  
742 742  [[image:image-20230512173903-6.png||height="596" width="715"]]
743 743  
744 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
745 745  
930 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
931 +
746 746  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
747 747  
748 748  **Example:**
... ... @@ -750,16 +750,17 @@
750 750  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
751 751  
752 752  
753 -
754 754  ==== 2.3.3.9  Battery Output - BAT pin ====
755 755  
756 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
757 757  
942 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
758 758  
944 +
759 759  ==== 2.3.3.10  +5V Output ====
760 760  
761 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
762 762  
948 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
949 +
763 763  The 5V output time can be controlled by AT Command.
764 764  
765 765  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -766,21 +766,51 @@
766 766  
767 767  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
768 768  
769 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
956 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
770 770  
771 771  
772 -
773 773  ==== 2.3.3.11  BH1750 Illumination Sensor ====
774 774  
961 +
775 775  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
776 776  
777 777  [[image:image-20230512172447-4.png||height="416" width="712"]]
778 778  
966 +
779 779  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
780 780  
781 781  
782 -==== 2.3.3.12  Working MOD ====
970 +==== 2.3.3.12  PWM MOD ====
783 783  
972 +
973 +* (((
974 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
975 +)))
976 +* (((
977 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
978 +)))
979 +
980 + [[image:image-20230817183249-3.png||height="320" width="417"]]
981 +
982 +* (((
983 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
984 +)))
985 +* (((
986 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
987 +)))
988 +* (((
989 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
990 +
991 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
992 +
993 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
994 +
995 +b) If the output duration is more than 30 seconds, better to use external power source. 
996 +)))
997 +
998 +==== 2.3.3.13  Working MOD ====
999 +
1000 +
784 784  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
785 785  
786 786  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -796,9 +796,8 @@
796 796  * 6: MOD7
797 797  * 7: MOD8
798 798  * 8: MOD9
1016 +* 9: MOD10
799 799  
800 -
801 -
802 802  == 2.4 Payload Decoder file ==
803 803  
804 804  
... ... @@ -809,21 +809,20 @@
809 809  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
810 810  
811 811  
812 -
813 813  == 2.5 Frequency Plans ==
814 814  
815 815  
816 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
1031 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
817 817  
818 818  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
819 819  
820 820  
821 -= 3. Configure SN50v3-LB =
1036 += 3. Configure SN50v3-LB/LS =
822 822  
823 823  == 3.1 Configure Methods ==
824 824  
825 825  
826 -SN50v3-LB supports below configure method:
1041 +SN50v3-LB/LS supports below configure method:
827 827  
828 828  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
829 829  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -842,20 +842,21 @@
842 842  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
843 843  
844 844  
845 -== 3.3 Commands special design for SN50v3-LB ==
1060 +== 3.3 Commands special design for SN50v3-LB/LS ==
846 846  
847 847  
848 -These commands only valid for S31x-LB, as below:
1063 +These commands only valid for SN50v3-LB/LS, as below:
849 849  
850 850  
851 851  === 3.3.1 Set Transmit Interval Time ===
852 852  
1068 +
853 853  Feature: Change LoRaWAN End Node Transmit Interval.
854 854  
855 855  (% style="color:blue" %)**AT Command: AT+TDC**
856 856  
857 857  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
858 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1074 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
859 859  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
860 860  30000
861 861  OK
... ... @@ -875,59 +875,61 @@
875 875  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
876 876  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
877 877  
878 -
879 -
880 880  === 3.3.2 Get Device Status ===
881 881  
1096 +
882 882  Send a LoRaWAN downlink to ask the device to send its status.
883 883  
884 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1099 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
885 885  
886 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
1101 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
887 887  
888 888  
889 889  === 3.3.3 Set Interrupt Mode ===
890 890  
891 -Feature, Set Interrupt mode for GPIO_EXIT.
892 892  
893 -(% style="color:blue" %)**AT Command: AT+INTMOD1AT+INTMOD2,AT+INTMOD3**
1107 +Feature, Set Interrupt mode for PB14, PB15, PA4.
894 894  
895 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
896 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
897 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
898 -0
899 -OK
900 -the mode is 0 =Disable Interrupt
901 -)))
902 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
903 -Set Transmit Interval
904 -0. (Disable Interrupt),
905 -~1. (Trigger by rising and falling edge)
906 -2. (Trigger by falling edge)
907 -3. (Trigger by rising edge)
908 -)))|(% style="width:157px" %)OK
909 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
910 -Set Transmit Interval
1109 +Before using the interrupt function of the **INT** pin, users can set the interrupt triggering mode as required.
911 911  
912 -trigger by rising edge.
913 -)))|(% style="width:157px" %)OK
914 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1111 +(% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx**
915 915  
916 -(% style="color:blue" %)**Downlink Command: 0x06**
1113 +(% style="color:#4472c4" %)**AT+INTMODx:**
917 917  
1115 +* (% style="color:#4472c4" %)**AT+INTMOD1   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB14**(%%) pin.
1116 +* (% style="color:#4472c4" %)**AT+INTMOD2   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
1117 +* (% style="color:#4472c4" %)**AT+INTMOD3   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1118 +
1119 +**Parameter setting:**
1120 +
1121 +* **0:** Disable Interrupt
1122 +* **1:** Trigger by rising and falling edge
1123 +* **2:** Trigger by falling edge
1124 +* **3: **Trigger by rising edge
1125 +
1126 +**Example:**
1127 +
1128 +* AT+INTMOD1=0  ~/~/Disable the PB14 pin interrupt function
1129 +* AT+INTMOD2=2  ~/~/Set the interrupt of the PB15 pin to be triggered by the falling edge
1130 +* AT+INTMOD3=3  ~/~/Set the interrupt of the PA4 pin to be triggered by the rising edge
1131 +
1132 +(% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb**
1133 +
918 918  Format: Command Code (0x06) followed by 3 bytes.
919 919  
920 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1136 +(% style="color:#4472c4" %)**aa:**(%%) Set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PB14 Pin (% style="background-color:yellow" %)**01**(%%)**: **PB15 Pin (% style="background-color:yellow" %)**02**(%%): PA4 Pin.)
921 921  
922 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
923 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
924 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
925 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1138 +(% style="color:#4472c4" %)**bb: **(%%)Set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
926 926  
1140 +**Example:**
927 927  
1142 +* Downlink Payload: **06 00 00 01     **~/~/ Equal to AT+INTMOD1=1
1143 +* Downlink Payload: **06 00 01 02     **~/~/ Equal to AT+INTMOD2=2
1144 +* Downlink Payload: **06 00 02 03     **~/~/ Equal to AT+INTMOD3=3
928 928  
929 929  === 3.3.4 Set Power Output Duration ===
930 930  
1148 +
931 931  Control the output duration 5V . Before each sampling, device will
932 932  
933 933  ~1. first enable the power output to external sensor,
... ... @@ -939,7 +939,7 @@
939 939  (% style="color:blue" %)**AT Command: AT+5VT**
940 940  
941 941  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
942 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1160 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
943 943  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
944 944  500(default)
945 945  OK
... ... @@ -957,18 +957,17 @@
957 957  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
958 958  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
959 959  
960 -
961 -
962 962  === 3.3.5 Set Weighing parameters ===
963 963  
1180 +
964 964  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
965 965  
966 966  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
967 967  
968 968  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
969 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1186 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
970 970  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
971 -|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1188 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
972 972  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
973 973  
974 974  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -983,10 +983,9 @@
983 983  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
984 984  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
985 985  
986 -
987 -
988 988  === 3.3.6 Set Digital pulse count value ===
989 989  
1205 +
990 990  Feature: Set the pulse count value.
991 991  
992 992  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -993,8 +993,8 @@
993 993  
994 994  (% style="color:blue" %)**AT Command: AT+SETCNT**
995 995  
996 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
997 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1212 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1213 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
998 998  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
999 999  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1000 1000  
... ... @@ -1007,16 +1007,15 @@
1007 1007  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1008 1008  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1009 1009  
1010 -
1011 -
1012 1012  === 3.3.7 Set Workmode ===
1013 1013  
1228 +
1014 1014  Feature: Switch working mode.
1015 1015  
1016 1016  (% style="color:blue" %)**AT Command: AT+MOD**
1017 1017  
1018 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1019 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1233 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1234 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1020 1020  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1021 1021  OK
1022 1022  )))
... ... @@ -1032,13 +1032,99 @@
1032 1032  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1033 1033  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1034 1034  
1250 +=== 3.3.8 PWM setting ===
1035 1035  
1036 1036  
1037 -= 4. Battery & Power Consumption =
1253 +Feature: Set the time acquisition unit for PWM input capture.
1038 1038  
1255 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1039 1039  
1040 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1257 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1258 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1259 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1260 +0(default)
1261 +OK
1262 +)))
1263 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1264 +OK
1265 +
1266 +)))
1267 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1041 1041  
1269 +(% style="color:blue" %)**Downlink Command: 0x0C**
1270 +
1271 +Format: Command Code (0x0C) followed by 1 bytes.
1272 +
1273 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1274 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1275 +
1276 +**Feature: Set PWM output time, output frequency and output duty cycle.**
1277 +
1278 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1279 +
1280 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1281 +|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1282 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1283 +0,0,0(default)
1284 +OK
1285 +)))
1286 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1287 +OK
1288 +
1289 +)))
1290 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1291 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1292 +
1293 +
1294 +)))|(% style="width:137px" %)(((
1295 +OK
1296 +)))
1297 +
1298 +(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1299 +|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1300 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1301 +AT+PWMOUT=a,b,c
1302 +
1303 +
1304 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1305 +Set PWM output time, output frequency and output duty cycle.
1306 +
1307 +(((
1308 +
1309 +)))
1310 +
1311 +(((
1312 +
1313 +)))
1314 +)))|(% style="width:242px" %)(((
1315 +a: Output time (unit: seconds)
1316 +The value ranges from 0 to 65535.
1317 +When a=65535, PWM will always output.
1318 +)))
1319 +|(% style="width:242px" %)(((
1320 +b: Output frequency (unit: HZ)
1321 +)))
1322 +|(% style="width:242px" %)(((
1323 +c: Output duty cycle (unit: %)
1324 +The value ranges from 0 to 100.
1325 +)))
1326 +
1327 +(% style="color:blue" %)**Downlink Command: 0x0B**
1328 +
1329 +Format: Command Code (0x0B) followed by 6 bytes.
1330 +
1331 +0B + Output frequency (3bytes)+ Output duty cycle (1bytes)+Output time (2bytes)
1332 +
1333 +Downlink payload:0B bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1334 +
1335 +* Example 1: Downlink Payload: 0B 0003E8 32 0005 **~-~-->**  AT+PWMOUT=5,1000,50
1336 +* Example 2: Downlink Payload: 0B 0007D0 3C 000A **~-~-->**  AT+PWMOUT=10,2000,60
1337 +
1338 += 4. Battery & Power Cons =
1339 +
1340 +
1341 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1342 +
1042 1042  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1043 1043  
1044 1044  
... ... @@ -1046,32 +1046,66 @@
1046 1046  
1047 1047  
1048 1048  (% class="wikigeneratedid" %)
1049 -User can change firmware SN50v3-LB to:
1350 +**User can change firmware SN50v3-LB/LS to:**
1050 1050  
1051 1051  * Change Frequency band/ region.
1052 1052  * Update with new features.
1053 1053  * Fix bugs.
1054 1054  
1055 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1356 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1056 1056  
1358 +**Methods to Update Firmware:**
1057 1057  
1058 -Methods to Update Firmware:
1360 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1361 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1059 1059  
1060 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1061 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1363 += 6.  Developer Guide =
1062 1062  
1063 -= 6. FAQ =
1365 +SN50v3 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from:
1064 1064  
1065 -== 6.1 Where can i find source code of SN50v3-LB? ==
1367 +* (((
1368 +Software Source Code: [[Releases · dragino/SN50v3 (github.com)>>url:https://github.com/dragino/SN50v3/releases]]
1369 +)))
1370 +* (((
1371 +Hardware Design files:  **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1372 +)))
1373 +* (((
1374 +Compile instruction:[[Compile instruction>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Module/Compile%20and%20Upload%20Code%20to%20ASR6601%20Platform/]]
1375 +)))
1066 1066  
1067 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1068 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1377 +**~1. If you want to change frequency, modify the Preprocessor Symbols.**
1069 1069  
1070 -= 7. Order Info =
1379 +For example, change EU868 to US915
1071 1071  
1381 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656318662202-530.png?rev=1.1||alt="1656318662202-530.png"]]
1072 1072  
1073 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1383 +**2. Compile and build**
1074 1074  
1385 +[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627163212-17.png?rev=1.1||alt="image-20220627163212-17.png"]]
1386 +
1387 += 7. FAQ =
1388 +
1389 +== 7.1 How to generate PWM Output in SN50v3-LB/LS? ==
1390 +
1391 +
1392 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1393 +
1394 +
1395 +== 7.2 How to put several sensors to a SN50v3-LB/LS? ==
1396 +
1397 +
1398 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1399 +
1400 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1401 +
1402 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1403 +
1404 +
1405 += 8. Order Info =
1406 +
1407 +
1408 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1409 +
1075 1075  (% style="color:red" %)**XX**(%%): The default frequency band
1076 1076  
1077 1077  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
... ... @@ -1090,11 +1090,12 @@
1090 1090  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1091 1091  * (% style="color:red" %)**NH**(%%): No Hole
1092 1092  
1093 -= 8. ​Packing Info =
1428 += 9. ​Packing Info =
1094 1094  
1430 +
1095 1095  (% style="color:#037691" %)**Package Includes**:
1096 1096  
1097 -* SN50v3-LB LoRaWAN Generic Node
1433 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1098 1098  
1099 1099  (% style="color:#037691" %)**Dimension and weight**:
1100 1100  
... ... @@ -1103,7 +1103,7 @@
1103 1103  * Package Size / pcs : cm
1104 1104  * Weight / pcs : g
1105 1105  
1106 -= 9. Support =
1442 += 10. Support =
1107 1107  
1108 1108  
1109 1109  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
image-20240717113113-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +34.0 KB
Content
image-20240717141512-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +948.8 KB
Content
image-20240717141528-2.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +234.2 KB
Content
image-20240717145707-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +39.8 KB
Content
image-20240717150334-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +37.6 KB
Content
image-20240717150948-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +38.3 KB
Content
image-20240717152224-6.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +238.1 KB
Content
image-20240924112806-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +140.2 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0