<
From version < 43.20 >
edited by Xiaoling
on 2023/05/16 14:19
To version < 41.4 >
edited by Xiaoling
on 2023/05/16 10:42
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,15 +16,18 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
21 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
27 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
30 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -137,7 +137,6 @@
137 137  
138 138  == Hole Option ==
139 139  
140 -
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -291,21 +291,32 @@
291 291  
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 -
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
296 +(% style="width:1110px" %)
297 +|**Size(bytes)**|**2**|(% style="width:191px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**
299 299  |**Value**|Bat|(% style="width:191px" %)(((
300 -Temperature(DS18B20)(PC13)
299 +Temperature(DS18B20)
300 +
301 +(PC13)
301 301  )))|(% style="width:78px" %)(((
302 -ADC(PA4)
303 +ADC
304 +
305 +(PA4)
303 303  )))|(% style="width:216px" %)(((
304 -Digital in(PB15)&Digital Interrupt(PA8)
307 +Digital in(PB15) &
308 +
309 +Digital Interrupt(PA8)
310 +
311 +
305 305  )))|(% style="width:308px" %)(((
306 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
313 +Temperature
314 +
315 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
307 307  )))|(% style="width:154px" %)(((
308 -Humidity(SHT20 or SHT31)
317 +Humidity
318 +
319 +(SHT20 or SHT31)
309 309  )))
310 310  
311 311  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -315,26 +315,34 @@
315 315  
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
329 +(% style="width:1011px" %)
330 +|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
320 320  |**Value**|BAT|(% style="width:196px" %)(((
321 -Temperature(DS18B20)(PC13)
332 +Temperature(DS18B20)
333 +
334 +(PC13)
322 322  )))|(% style="width:87px" %)(((
323 -ADC(PA4)
336 +ADC
337 +
338 +(PA4)
324 324  )))|(% style="width:189px" %)(((
325 -Digital in(PB15) & Digital Interrupt(PA8)
340 +Digital in(PB15) &
341 +
342 +Digital Interrupt(PA8)
326 326  )))|(% style="width:208px" %)(((
327 -Distance measure by:1) LIDAR-Lite V3HP
328 -Or 2) Ultrasonic Sensor
344 +Distance measure by:
345 +1) LIDAR-Lite V3HP
346 +Or
347 +2) Ultrasonic Sensor
329 329  )))|(% style="width:117px" %)Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
333 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
352 +**Connection of LIDAR-Lite V3HP:**
334 334  
335 335  [[image:image-20230512173758-5.png||height="563" width="712"]]
336 336  
337 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
356 +**Connection to Ultrasonic Sensor:**
338 338  
339 339  Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
340 340  
... ... @@ -342,17 +342,24 @@
342 342  
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
346 -|(% style="width:50px" %)**Size(bytes)**|(% style="width:20px" %)**2**|(% style="width:100px" %)**2**|(% style="width:100px" %)**1**|(% style="width:50px" %)**2**|(% style="width:120px" %)**2**|(% style="width:80px" %)**2**
364 +(% style="width:1113px" %)
365 +|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
347 347  |**Value**|BAT|(% style="width:183px" %)(((
348 -Temperature(DS18B20)(PC13)
367 +Temperature(DS18B20)
368 +
369 +(PC13)
349 349  )))|(% style="width:173px" %)(((
350 -Digital in(PB15) & Digital Interrupt(PA8)
371 +Digital in(PB15) &
372 +
373 +Digital Interrupt(PA8)
351 351  )))|(% style="width:84px" %)(((
352 -ADC(PA4)
375 +ADC
376 +
377 +(PA4)
353 353  )))|(% style="width:323px" %)(((
354 354  Distance measure by:1)TF-Mini plus LiDAR
355 -Or 2) TF-Luna LiDAR
380 +Or 
381 +2) TF-Luna LiDAR
356 356  )))|(% style="width:188px" %)Distance signal  strength
357 357  
358 358  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -380,20 +380,25 @@
380 380  )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
381 381  |**Value**|(% style="width:68px" %)(((
382 382  ADC1
409 +
383 383  (PA4)
384 384  )))|(% style="width:75px" %)(((
385 385  ADC2
413 +
386 386  (PA5)
387 387  )))|(((
388 388  ADC3
417 +
389 389  (PA8)
390 390  )))|(((
391 391  Digital Interrupt(PB15)
392 392  )))|(% style="width:304px" %)(((
393 393  Temperature
423 +
394 394  (SHT20 or SHT31 or BH1750 Illumination Sensor)
395 395  )))|(% style="width:163px" %)(((
396 396  Humidity
427 +
397 397  (SHT20 or SHT31)
398 398  )))|(% style="width:53px" %)Bat
399 399  
... ... @@ -412,9 +412,11 @@
412 412  (PC13)
413 413  )))|(% style="width:82px" %)(((
414 414  ADC
446 +
415 415  (PA4)
416 416  )))|(% style="width:210px" %)(((
417 417  Digital in(PB15) &
450 +
418 418  Digital Interrupt(PA8) 
419 419  )))|(% style="width:191px" %)Temperature2(DS18B20)
420 420  (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
... ... @@ -451,12 +451,17 @@
451 451  )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
452 452  |**Value**|BAT|(% style="width:193px" %)(((
453 453  Temperature(DS18B20)
487 +
454 454  (PC13)
489 +
490 +
455 455  )))|(% style="width:85px" %)(((
456 456  ADC
493 +
457 457  (PA4)
458 458  )))|(% style="width:186px" %)(((
459 459  Digital in(PB15) &
497 +
460 460  Digital Interrupt(PA8)
461 461  )))|(% style="width:100px" %)Weight
462 462  
... ... @@ -481,12 +481,15 @@
481 481  (PC13)
482 482  )))|(% style="width:108px" %)(((
483 483  ADC
522 +
484 484  (PA4)
485 485  )))|(% style="width:126px" %)(((
486 486  Digital in
526 +
487 487  (PB15)
488 488  )))|(% style="width:145px" %)(((
489 489  Count
530 +
490 490  (PA8)
491 491  )))
492 492  
... ... @@ -501,9 +501,11 @@
501 501  )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
502 502  |**Value**|BAT|(% style="width:188px" %)(((
503 503  Temperature(DS18B20)
545 +
504 504  (PC13)
505 505  )))|(% style="width:83px" %)(((
506 506  ADC
549 +
507 507  (PA5)
508 508  )))|(% style="width:184px" %)(((
509 509  Digital Interrupt1(PA8)
... ... @@ -519,17 +519,21 @@
519 519  )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
520 520  |**Value**|BAT|(% style="width:207px" %)(((
521 521  Temperature(DS18B20)
565 +
522 522  (PC13)
523 523  )))|(% style="width:94px" %)(((
524 524  ADC1
569 +
525 525  (PA4)
526 526  )))|(% style="width:198px" %)(((
527 527  Digital Interrupt(PB15)
528 528  )))|(% style="width:84px" %)(((
529 529  ADC2
575 +
530 530  (PA5)
531 531  )))|(% style="width:82px" %)(((
532 532  ADC3
579 +
533 533  (PA8)
534 534  )))
535 535  
... ... @@ -544,21 +544,27 @@
544 544  )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
545 545  |**Value**|BAT|(((
546 546  Temperature1(DS18B20)
594 +
547 547  (PC13)
548 548  )))|(((
549 549  Temperature2(DS18B20)
598 +
550 550  (PB9)
551 551  )))|(((
552 552  Digital Interrupt
602 +
553 553  (PB15)
554 554  )))|(% style="width:193px" %)(((
555 555  Temperature3(DS18B20)
606 +
556 556  (PB8)
557 557  )))|(% style="width:78px" %)(((
558 558  Count1
610 +
559 559  (PA8)
560 560  )))|(% style="width:78px" %)(((
561 561  Count2
614 +
562 562  (PA4)
563 563  )))
564 564  
... ... @@ -602,7 +602,7 @@
602 602  
603 603  ==== 2.3.3.2  Temperature (DS18B20) ====
604 604  
605 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
658 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
606 606  
607 607  More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
608 608  
... ... @@ -630,7 +630,7 @@
630 630  (((
631 631  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
632 632  
633 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
686 +**Note:**The maximum voltage input supports 3.6V.
634 634  )))
635 635  
636 636  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
... ... @@ -641,18 +641,17 @@
641 641  
642 642  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
643 643  
644 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
697 +**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
645 645  
646 -
647 647  ==== 2.3.3.5 Digital Interrupt ====
648 648  
649 649  Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
650 650  
651 -(% style="color:blue" %)**~ Interrupt connection method:**
703 +**~ Interrupt connection method:**
652 652  
653 653  [[image:image-20230513105351-5.png||height="147" width="485"]]
654 654  
655 -(% style="color:blue" %)**Example to use with door sensor :**
707 +**Example to use with door sensor :**
656 656  
657 657  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
658 658  
... ... @@ -660,7 +660,7 @@
660 660  
661 661  When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
662 662  
663 -(% style="color:blue" %)**~ Below is the installation example:**
715 +**~ Below is the installation example:**
664 664  
665 665  Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
666 666  
... ... @@ -685,7 +685,7 @@
685 685  
686 686  The command is:
687 687  
688 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
740 +**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
689 689  
690 690  Below shows some screen captures in TTN V3:
691 691  
... ... @@ -762,7 +762,7 @@
762 762  
763 763  The 5V output time can be controlled by AT Command.
764 764  
765 -(% style="color:blue" %)**AT+5VT=1000**
817 +**AT+5VT=1000**
766 766  
767 767  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
768 768  
... ... @@ -797,8 +797,6 @@
797 797  * 7: MOD8
798 798  * 8: MOD9
799 799  
800 -
801 -
802 802  == 2.4 Payload Decoder file ==
803 803  
804 804  
... ... @@ -942,6 +942,7 @@
942 942  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
943 943  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
944 944  500(default)
995 +
945 945  OK
946 946  )))
947 947  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -1022,6 +1022,7 @@
1022 1022  )))
1023 1023  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1024 1024  OK
1076 +
1025 1025  Attention:Take effect after ATZ
1026 1026  )))
1027 1027  
... ... @@ -1107,5 +1107,4 @@
1107 1107  
1108 1108  
1109 1109  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1110 -
1111 1111  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0