Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 16 added, 0 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
Details
- Page properties
-
- Content
-
... ... @@ -3,7 +3,7 @@ 3 3 4 4 5 5 6 -**Table of Contents :**6 +**Table of Contents:** 7 7 8 8 {{toc/}} 9 9 ... ... @@ -19,7 +19,7 @@ 19 19 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 ... ... @@ -27,9 +27,9 @@ 27 27 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 32 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 513102034-2.png]]125 +[[image:image-20230610163213-1.png||height="404" width="699"]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,7 +135,7 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 138 +== 1.9 Hole Option == 139 139 140 140 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.161 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 210 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -215,44 +215,44 @@ 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT218 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 - *0x01: EU868229 +0x01: EU868 230 230 231 - *0x02: US915231 +0x02: US915 232 232 233 - *0x03: IN865233 +0x03: IN865 234 234 235 - *0x04: AU915235 +0x04: AU915 236 236 237 - *0x05: KZ865237 +0x05: KZ865 238 238 239 - *0x06: RU864239 +0x06: RU864 240 240 241 - *0x07: AS923241 +0x07: AS923 242 242 243 - *0x08: AS923-1243 +0x08: AS923-1 244 244 245 - *0x09: AS923-2245 +0x09: AS923-2 246 246 247 - *0x0a: AS923-3247 +0x0a: AS923-3 248 248 249 - *0x0b: CN470249 +0x0b: CN470 250 250 251 - *0x0c: EU433251 +0x0c: EU433 252 252 253 - *0x0d: KR920253 +0x0d: KR920 254 254 255 - *0x0e: MA869255 +0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 279 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 283 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 288 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 291 291 290 +2. All modes share the same Payload Explanation from HERE. 291 + 292 +3. By default, the device will send an uplink message every 20 minutes. 293 + 294 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,8 +295,8 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**299 -| **Value**|Bat|(% style="width:191px" %)(((301 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 302 +|Value|Bat|(% style="width:191px" %)((( 300 300 Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( 302 302 ADC(PA4) ... ... @@ -313,11 +313,12 @@ 313 313 314 314 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 315 315 319 + 316 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 317 317 318 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 319 -|(% style=" width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**320 -| **Value**|BAT|(% style="width:196px" %)(((323 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 324 +|Value|BAT|(% style="width:196px" %)((( 321 321 Temperature(DS18B20)(PC13) 322 322 )))|(% style="width:87px" %)((( 323 323 ADC(PA4) ... ... @@ -324,81 +324,78 @@ 324 324 )))|(% style="width:189px" %)((( 325 325 Digital in(PB15) & Digital Interrupt(PA8) 326 326 )))|(% style="width:208px" %)((( 327 -Distance measure by:1) LIDAR-Lite V3HP 331 +Distance measure by: 1) LIDAR-Lite V3HP 328 328 Or 2) Ultrasonic Sensor 329 329 )))|(% style="width:117px" %)Reserved 330 330 331 331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 332 332 337 + 333 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 334 334 335 335 [[image:image-20230512173758-5.png||height="563" width="712"]] 336 336 342 + 337 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 338 338 339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 345 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 340 340 341 341 [[image:image-20230512173903-6.png||height="596" width="715"]] 342 342 349 + 343 343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 344 344 345 -(% style="width:1113px" %) 346 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2** 347 -|**Value**|BAT|(% style="width:183px" %)((( 348 -Temperature(DS18B20) 349 -(PC13) 352 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 353 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 354 +|Value|BAT|(% style="width:183px" %)((( 355 +Temperature(DS18B20)(PC13) 350 350 )))|(% style="width:173px" %)((( 351 -Digital in(PB15) & 352 -Digital Interrupt(PA8) 357 +Digital in(PB15) & Digital Interrupt(PA8) 353 353 )))|(% style="width:84px" %)((( 354 -ADC 355 -(PA4) 359 +ADC(PA4) 356 356 )))|(% style="width:323px" %)((( 357 357 Distance measure by:1)TF-Mini plus LiDAR 358 -Or 359 -2) TF-Luna LiDAR 362 +Or 2) TF-Luna LiDAR 360 360 )))|(% style="width:188px" %)Distance signal strength 361 361 362 362 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 363 363 367 + 364 364 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 365 365 366 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 370 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 367 367 368 368 [[image:image-20230512180609-7.png||height="555" width="802"]] 369 369 374 + 370 370 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 371 371 372 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 373 373 374 -[[image:image-20230 513105207-4.png||height="469" width="802"]]379 +[[image:image-20230610170047-1.png||height="452" width="799"]] 375 375 376 376 377 377 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 378 378 384 + 379 379 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 380 380 381 -(% style="width: 1031px" %)382 -|=((( 387 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 388 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 383 383 **Size(bytes)** 384 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1 385 -|**Value**|(% style="width:68px" %)((( 386 -ADC1 387 -(PA4) 390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 391 +|Value|(% style="width:68px" %)((( 392 +ADC1(PA4) 388 388 )))|(% style="width:75px" %)((( 389 -ADC2 390 -(PA5) 394 +ADC2(PA5) 391 391 )))|((( 392 -ADC3 393 -(PA8) 396 +ADC3(PA8) 394 394 )))|((( 395 395 Digital Interrupt(PB15) 396 396 )))|(% style="width:304px" %)((( 397 -Temperature 398 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 400 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 399 399 )))|(% style="width:163px" %)((( 400 -Humidity 401 -(SHT20 or SHT31) 402 +Humidity(SHT20 or SHT31) 402 402 )))|(% style="width:53px" %)Bat 403 403 404 404 [[image:image-20230513110214-6.png]] ... ... @@ -409,59 +409,57 @@ 409 409 410 410 This mode has total 11 bytes. As shown below: 411 411 412 -(% style="width:1017px" %) 413 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 414 -|**Value**|BAT|(% style="width:186px" %)((( 415 -Temperature1(DS18B20) 416 -(PC13) 413 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 415 +|Value|BAT|(% style="width:186px" %)((( 416 +Temperature1(DS18B20)(PC13) 417 417 )))|(% style="width:82px" %)((( 418 -ADC 419 -(PA4) 418 +ADC(PA4) 420 420 )))|(% style="width:210px" %)((( 421 -Digital in(PB15) & 422 -Digital Interrupt(PA8) 420 +Digital in(PB15) & Digital Interrupt(PA8) 423 423 )))|(% style="width:191px" %)Temperature2(DS18B20) 424 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 425 -(PB8) 422 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 426 426 427 427 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 428 428 426 + 429 429 [[image:image-20230513134006-1.png||height="559" width="736"]] 430 430 431 431 432 432 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 433 433 432 + 434 434 [[image:image-20230512164658-2.png||height="532" width="729"]] 435 435 436 436 Each HX711 need to be calibrated before used. User need to do below two steps: 437 437 438 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 439 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 437 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 438 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 440 440 1. ((( 441 441 Weight has 4 bytes, the unit is g. 441 + 442 + 443 + 442 442 ))) 443 443 444 444 For example: 445 445 446 -**AT+GETSENSORVALUE =0** 448 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 447 447 448 448 Response: Weight is 401 g 449 449 450 450 Check the response of this command and adjust the value to match the real value for thing. 451 451 452 -(% style="width: 767px" %)453 -|=((( 454 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 455 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 454 454 **Size(bytes)** 455 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4** 456 -|**Value**|BAT|(% style="width:193px" %)((( 457 -Temperature(DS18B20) 458 -(PC13) 457 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 458 +|Value|BAT|(% style="width:193px" %)((( 459 +Temperature(DS18B20)(PC13) 459 459 )))|(% style="width:85px" %)((( 460 -ADC 461 -(PA4) 461 +ADC(PA4) 462 462 )))|(% style="width:186px" %)((( 463 -Digital in(PB15) & 464 -Digital Interrupt(PA8) 463 +Digital in(PB15) & Digital Interrupt(PA8) 465 465 )))|(% style="width:100px" %)Weight 466 466 467 467 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -469,6 +469,7 @@ 469 469 470 470 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 471 471 471 + 472 472 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 473 473 474 474 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -475,23 +475,19 @@ 475 475 476 476 [[image:image-20230512181814-9.png||height="543" width="697"]] 477 477 478 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 479 479 480 -(% style="width:961px" %) 481 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 482 -|**Value**|BAT|(% style="width:256px" %)((( 483 -Temperature(DS18B20) 479 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 484 484 485 -(PC13) 481 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 482 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 483 +|Value|BAT|(% style="width:256px" %)((( 484 +Temperature(DS18B20)(PC13) 486 486 )))|(% style="width:108px" %)((( 487 -ADC 488 -(PA4) 486 +ADC(PA4) 489 489 )))|(% style="width:126px" %)((( 490 -Digital in 491 -(PB15) 488 +Digital in(PB15) 492 492 )))|(% style="width:145px" %)((( 493 -Count 494 -(PA8) 490 +Count(PA8) 495 495 ))) 496 496 497 497 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] ... ... @@ -499,16 +499,16 @@ 499 499 500 500 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 501 501 502 -(% style="width:1108px" %) 503 -|=((( 498 + 499 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 500 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 504 504 **Size(bytes)** 505 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2506 -| **Value**|BAT|(% style="width:188px" %)(((502 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 503 +|Value|BAT|(% style="width:188px" %)((( 507 507 Temperature(DS18B20) 508 508 (PC13) 509 509 )))|(% style="width:83px" %)((( 510 -ADC 511 -(PA5) 507 +ADC(PA5) 512 512 )))|(% style="width:184px" %)((( 513 513 Digital Interrupt1(PA8) 514 514 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -515,26 +515,25 @@ 515 515 516 516 [[image:image-20230513111203-7.png||height="324" width="975"]] 517 517 514 + 518 518 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 519 519 520 -(% style="width:922px" %) 521 -|=((( 517 + 518 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 519 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 522 522 **Size(bytes)** 523 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2524 -| **Value**|BAT|(% style="width:207px" %)(((521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 522 +|Value|BAT|(% style="width:207px" %)((( 525 525 Temperature(DS18B20) 526 526 (PC13) 527 527 )))|(% style="width:94px" %)((( 528 -ADC1 529 -(PA4) 526 +ADC1(PA4) 530 530 )))|(% style="width:198px" %)((( 531 531 Digital Interrupt(PB15) 532 532 )))|(% style="width:84px" %)((( 533 -ADC2 534 -(PA5) 530 +ADC2(PA5) 535 535 )))|(% style="width:82px" %)((( 536 -ADC3 537 -(PA8) 532 +ADC3(PA8) 538 538 ))) 539 539 540 540 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -542,50 +542,149 @@ 542 542 543 543 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 544 544 545 -(% style="width:1010px" %) 546 -|=((( 540 + 541 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 542 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 547 547 **Size(bytes)** 548 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4549 -| **Value**|BAT|(((550 -Temperature 1(DS18B20)551 -(PC13) 544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 545 +|Value|BAT|((( 546 +Temperature 547 +(DS18B20)(PC13) 552 552 )))|((( 553 -Temperature2 (DS18B20)554 -(PB9) 549 +Temperature2 550 +(DS18B20)(PB9) 555 555 )))|((( 556 556 Digital Interrupt 557 557 (PB15) 558 558 )))|(% style="width:193px" %)((( 559 -Temperature3 (DS18B20)560 -(PB8) 555 +Temperature3 556 +(DS18B20)(PB8) 561 561 )))|(% style="width:78px" %)((( 562 -Count1 563 -(PA8) 558 +Count1(PA8) 564 564 )))|(% style="width:78px" %)((( 565 -Count2 566 -(PA4) 560 +Count2(PA4) 567 567 ))) 568 568 569 569 [[image:image-20230513111255-9.png||height="341" width="899"]] 570 570 571 -**The newly added AT command is issued correspondingly:** 565 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 572 572 573 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**567 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 574 574 575 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**569 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 576 576 577 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**571 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 578 578 579 -**AT+SETCNT=aa,bb** 580 580 574 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 575 + 581 581 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 582 582 583 583 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 584 584 585 585 581 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 586 586 583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 + 585 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 + 587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 + 589 + 590 +===== 2.3.2.10.a Uplink, PWM input capture ===== 591 + 592 + 593 +[[image:image-20230817172209-2.png||height="439" width="683"]] 594 + 595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 597 +|Value|Bat|(% style="width:191px" %)((( 598 +Temperature(DS18B20)(PC13) 599 +)))|(% style="width:78px" %)((( 600 +ADC(PA4) 601 +)))|(% style="width:135px" %)((( 602 +PWM_Setting 603 +&Digital Interrupt(PA8) 604 +)))|(% style="width:70px" %)((( 605 +Pulse period 606 +)))|(% style="width:89px" %)((( 607 +Duration of high level 608 +))) 609 + 610 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 611 + 612 + 613 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 614 + 615 +**Frequency:** 616 + 617 +(% class="MsoNormal" %) 618 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 619 + 620 +(% class="MsoNormal" %) 621 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 622 + 623 + 624 +(% class="MsoNormal" %) 625 +**Duty cycle:** 626 + 627 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 628 + 629 +[[image:image-20230818092200-1.png||height="344" width="627"]] 630 + 631 +===== 2.3.2.10.b Uplink, PWM output ===== 632 + 633 +[[image:image-20230817172209-2.png||height="439" width="683"]] 634 + 635 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 636 + 637 +a is the time delay of the output, the unit is ms. 638 + 639 +b is the output frequency, the unit is HZ. 640 + 641 +c is the duty cycle of the output, the unit is %. 642 + 643 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 644 + 645 +aa is the time delay of the output, the unit is ms. 646 + 647 +bb is the output frequency, the unit is HZ. 648 + 649 +cc is the duty cycle of the output, the unit is %. 650 + 651 + 652 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 653 + 654 +The oscilloscope displays as follows: 655 + 656 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 657 + 658 + 659 +===== 2.3.2.10.c Downlink, PWM output ===== 660 + 661 + 662 +[[image:image-20230817173800-3.png||height="412" width="685"]] 663 + 664 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 665 + 666 + xx xx xx is the output frequency, the unit is HZ. 667 + 668 + yy is the duty cycle of the output, the unit is %. 669 + 670 + zz zz is the time delay of the output, the unit is ms. 671 + 672 + 673 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 674 + 675 +The oscilloscope displays as follows: 676 + 677 +[[image:image-20230817173858-5.png||height="694" width="921"]] 678 + 679 + 587 587 === 2.3.3 Decode payload === 588 588 682 + 589 589 While using TTN V3 network, you can add the payload format to decode the payload. 590 590 591 591 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -592,13 +592,14 @@ 592 592 593 593 The payload decoder function for TTN V3 are here: 594 594 595 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 689 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 596 596 597 597 598 598 ==== 2.3.3.1 Battery Info ==== 599 599 600 -Check the battery voltage for SN50v3. 601 601 695 +Check the battery voltage for SN50v3-LB. 696 + 602 602 Ex1: 0x0B45 = 2885mV 603 603 604 604 Ex2: 0x0B49 = 2889mV ... ... @@ -606,16 +606,18 @@ 606 606 607 607 ==== 2.3.3.2 Temperature (DS18B20) ==== 608 608 704 + 609 609 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 610 610 611 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]707 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 612 612 613 -**Connection:** 709 +(% style="color:blue" %)**Connection:** 614 614 615 615 [[image:image-20230512180718-8.png||height="538" width="647"]] 616 616 617 -**Example**: 618 618 714 +(% style="color:blue" %)**Example**: 715 + 619 619 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 620 620 621 621 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -625,6 +625,7 @@ 625 625 626 626 ==== 2.3.3.3 Digital Input ==== 627 627 725 + 628 628 The digital input for pin PB15, 629 629 630 630 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -634,28 +634,38 @@ 634 634 ((( 635 635 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 636 636 637 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 735 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 736 + 737 + 638 638 ))) 639 639 640 640 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 641 641 642 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 643 643 644 - Whenthemeasuredoutput voltage of thesensorisnot withinthe rangeof0Vand1.1V,theoutputvoltageterminal of theensor shall be divided The example in the following figure istoreduce the output voltage of the sensorby three timesIf it is necessary toreduce moretimes,calculate according to the formula in the figure and connect the corresponding resistance in series.743 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 645 645 745 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 746 + 646 646 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 647 647 648 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 649 649 750 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 650 650 752 + 753 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 754 + 755 +[[image:image-20230811113449-1.png||height="370" width="608"]] 756 + 651 651 ==== 2.3.3.5 Digital Interrupt ==== 652 652 653 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 654 654 655 - (% style="color:blue"%)**~Interruptconnection method:**760 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 656 656 762 +(% style="color:blue" %)** Interrupt connection method:** 763 + 657 657 [[image:image-20230513105351-5.png||height="147" width="485"]] 658 658 766 + 659 659 (% style="color:blue" %)**Example to use with door sensor :** 660 660 661 661 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -662,22 +662,23 @@ 662 662 663 663 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 664 664 665 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.773 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 666 666 667 -(% style="color:blue" %)**~ Below is the installation example:** 668 668 669 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:776 +(% style="color:blue" %)**Below is the installation example:** 670 670 778 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 779 + 671 671 * ((( 672 -One pin to SN50 _v3's PA8 pin781 +One pin to SN50v3-LB's PA8 pin 673 673 ))) 674 674 * ((( 675 -The other pin to SN50 _v3's VDD pin784 +The other pin to SN50v3-LB's VDD pin 676 676 ))) 677 677 678 678 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 679 679 680 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 789 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 681 681 682 682 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 683 683 ... ... @@ -689,29 +689,32 @@ 689 689 690 690 The command is: 691 691 692 -(% style="color:blue" %)**AT+INTMOD1=1 801 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 693 693 694 694 Below shows some screen captures in TTN V3: 695 695 696 696 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 697 697 698 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 699 699 808 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 809 + 700 700 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 701 701 702 702 703 703 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 704 704 815 + 705 705 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 706 706 707 707 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 708 708 709 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.820 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 710 710 822 + 711 711 Below is the connection to SHT20/ SHT31. The connection is as below: 712 712 825 +[[image:image-20230610170152-2.png||height="501" width="846"]] 713 713 714 -[[image:image-20230513103633-3.png||height="448" width="716"]] 715 715 716 716 The device will be able to get the I2C sensor data now and upload to IoT Server. 717 717 ... ... @@ -730,23 +730,26 @@ 730 730 731 731 ==== 2.3.3.7 Distance Reading ==== 732 732 733 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 734 734 846 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 735 735 848 + 736 736 ==== 2.3.3.8 Ultrasonic Sensor ==== 737 737 851 + 738 738 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 739 739 740 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.854 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 741 741 742 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 856 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 743 743 744 744 The picture below shows the connection: 745 745 746 746 [[image:image-20230512173903-6.png||height="596" width="715"]] 747 747 748 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 749 749 863 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 864 + 750 750 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 751 751 752 752 **Example:** ... ... @@ -754,16 +754,17 @@ 754 754 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 755 755 756 756 757 - 758 758 ==== 2.3.3.9 Battery Output - BAT pin ==== 759 759 760 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 761 761 875 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 762 762 877 + 763 763 ==== 2.3.3.10 +5V Output ==== 764 764 765 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 766 766 881 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 882 + 767 767 The 5V output time can be controlled by AT Command. 768 768 769 769 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -770,21 +770,54 @@ 770 770 771 771 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 772 772 773 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 889 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 774 774 775 775 776 - 777 777 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 778 778 894 + 779 779 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 780 780 781 781 [[image:image-20230512172447-4.png||height="416" width="712"]] 782 782 899 + 783 783 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 784 784 785 785 786 -==== 2.3.3.12 W orkingMOD ====903 +==== 2.3.3.12 PWM MOD ==== 787 787 905 + 906 +* ((( 907 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 908 +))) 909 +* ((( 910 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 911 +))) 912 + 913 + [[image:image-20230817183249-3.png||height="320" width="417"]] 914 + 915 +* ((( 916 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 917 +))) 918 +* ((( 919 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 920 +))) 921 +* ((( 922 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 923 + 924 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 925 + 926 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 927 + 928 +b) If the output duration is more than 30 seconds, better to use external power source. 929 + 930 + 931 + 932 +))) 933 + 934 +==== 2.3.3.13 Working MOD ==== 935 + 936 + 788 788 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 789 789 790 790 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -800,9 +800,8 @@ 800 800 * 6: MOD7 801 801 * 7: MOD8 802 802 * 8: MOD9 952 +* 9: MOD10 803 803 804 - 805 - 806 806 == 2.4 Payload Decoder file == 807 807 808 808 ... ... @@ -813,7 +813,6 @@ 813 813 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 814 814 815 815 816 - 817 817 == 2.5 Frequency Plans == 818 818 819 819 ... ... @@ -849,17 +849,18 @@ 849 849 == 3.3 Commands special design for SN50v3-LB == 850 850 851 851 852 -These commands only valid for S3 1x-LB, as below:999 +These commands only valid for SN50v3-LB, as below: 853 853 854 854 855 855 === 3.3.1 Set Transmit Interval Time === 856 856 1004 + 857 857 Feature: Change LoRaWAN End Node Transmit Interval. 858 858 859 859 (% style="color:blue" %)**AT Command: AT+TDC** 860 860 861 861 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 862 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 1010 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 863 863 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 864 864 30000 865 865 OK ... ... @@ -879,25 +879,25 @@ 879 879 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 880 880 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 881 881 882 - 883 - 884 884 === 3.3.2 Get Device Status === 885 885 1032 + 886 886 Send a LoRaWAN downlink to ask the device to send its status. 887 887 888 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 011035 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 889 889 890 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 1037 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 891 891 892 892 893 893 === 3.3.3 Set Interrupt Mode === 894 894 1042 + 895 895 Feature, Set Interrupt mode for GPIO_EXIT. 896 896 897 897 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 898 898 899 899 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 900 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1048 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 901 901 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 902 902 0 903 903 OK ... ... @@ -912,7 +912,6 @@ 912 912 )))|(% style="width:157px" %)OK 913 913 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 914 914 Set Transmit Interval 915 - 916 916 trigger by rising edge. 917 917 )))|(% style="width:157px" %)OK 918 918 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -928,10 +928,9 @@ 928 928 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 929 929 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 930 930 931 - 932 - 933 933 === 3.3.4 Set Power Output Duration === 934 934 1080 + 935 935 Control the output duration 5V . Before each sampling, device will 936 936 937 937 ~1. first enable the power output to external sensor, ... ... @@ -943,7 +943,7 @@ 943 943 (% style="color:blue" %)**AT Command: AT+5VT** 944 944 945 945 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 946 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1092 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 947 947 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 948 948 500(default) 949 949 OK ... ... @@ -961,16 +961,15 @@ 961 961 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 962 962 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 963 963 964 - 965 - 966 966 === 3.3.5 Set Weighing parameters === 967 967 1112 + 968 968 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 969 969 970 970 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 971 971 972 972 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 973 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1118 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 974 974 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 975 975 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 976 976 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -987,10 +987,9 @@ 987 987 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 988 988 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 989 989 990 - 991 - 992 992 === 3.3.6 Set Digital pulse count value === 993 993 1137 + 994 994 Feature: Set the pulse count value. 995 995 996 996 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -998,7 +998,7 @@ 998 998 (% style="color:blue" %)**AT Command: AT+SETCNT** 999 999 1000 1000 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1001 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1145 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1002 1002 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1003 1003 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1004 1004 ... ... @@ -1011,16 +1011,15 @@ 1011 1011 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1012 1012 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1013 1013 1014 - 1015 - 1016 1016 === 3.3.7 Set Workmode === 1017 1017 1160 + 1018 1018 Feature: Switch working mode. 1019 1019 1020 1020 (% style="color:blue" %)**AT Command: AT+MOD** 1021 1021 1022 1022 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1023 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1166 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1024 1024 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1025 1025 OK 1026 1026 ))) ... ... @@ -1036,11 +1036,102 @@ 1036 1036 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1037 1037 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1038 1038 1182 +(% id="H3.3.8PWMsetting" %) 1183 +=== 3.3.8 PWM setting === 1039 1039 1040 1040 1041 -= 4. Battery&PowerConsumption=1186 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1042 1042 1188 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1043 1043 1190 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1191 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1192 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1193 +0(default) 1194 + 1195 +OK 1196 +))) 1197 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1198 +OK 1199 + 1200 +))) 1201 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1202 + 1203 +(% style="color:blue" %)**Downlink Command: 0x0C** 1204 + 1205 +Format: Command Code (0x0C) followed by 1 bytes. 1206 + 1207 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1208 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1209 + 1210 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1211 + 1212 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1213 + 1214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1215 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1216 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1217 +0,0,0(default) 1218 + 1219 +OK 1220 +))) 1221 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1222 +OK 1223 + 1224 +))) 1225 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1226 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1227 + 1228 + 1229 +)))|(% style="width:137px" %)((( 1230 +OK 1231 +))) 1232 + 1233 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1234 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1235 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1236 +AT+PWMOUT=a,b,c 1237 + 1238 + 1239 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1240 +Set PWM output time, output frequency and output duty cycle. 1241 + 1242 +((( 1243 + 1244 +))) 1245 + 1246 +((( 1247 + 1248 +))) 1249 +)))|(% style="width:242px" %)((( 1250 +a: Output time (unit: seconds) 1251 + 1252 +The value ranges from 0 to 65535. 1253 + 1254 +When a=65535, PWM will always output. 1255 +))) 1256 +|(% style="width:242px" %)((( 1257 +b: Output frequency (unit: HZ) 1258 +))) 1259 +|(% style="width:242px" %)((( 1260 +c: Output duty cycle (unit: %) 1261 + 1262 +The value ranges from 0 to 100. 1263 +))) 1264 + 1265 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1266 + 1267 +Format: Command Code (0x0B01) followed by 6 bytes. 1268 + 1269 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1270 + 1271 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1272 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1273 + 1274 + 1275 += 4. Battery & Power Cons = 1276 + 1277 + 1044 1044 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1045 1045 1046 1046 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1050,27 +1050,43 @@ 1050 1050 1051 1051 1052 1052 (% class="wikigeneratedid" %) 1053 -User can change firmware SN50v3-LB to: 1287 +**User can change firmware SN50v3-LB to:** 1054 1054 1055 1055 * Change Frequency band/ region. 1056 1056 * Update with new features. 1057 1057 * Fix bugs. 1058 1058 1059 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1293 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1060 1060 1295 +**Methods to Update Firmware:** 1061 1061 1062 -Methods to Update Firmware: 1297 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1298 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1063 1063 1064 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1065 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1066 - 1067 1067 = 6. FAQ = 1068 1068 1069 1069 == 6.1 Where can i find source code of SN50v3-LB? == 1070 1070 1304 + 1071 1071 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1072 1072 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1073 1073 1308 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1309 + 1310 + 1311 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1312 + 1313 + 1314 +== 6.3 How to put several sensors to a SN50v3-LB? == 1315 + 1316 + 1317 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1318 + 1319 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1320 + 1321 +[[image:image-20230810121434-1.png||height="242" width="656"]] 1322 + 1323 + 1074 1074 = 7. Order Info = 1075 1075 1076 1076 ... ... @@ -1096,6 +1096,7 @@ 1096 1096 1097 1097 = 8. Packing Info = 1098 1098 1349 + 1099 1099 (% style="color:#037691" %)**Package Includes**: 1100 1100 1101 1101 * SN50v3-LB LoRaWAN Generic Node
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content