<
From version < 43.18 >
edited by Xiaoling
on 2023/05/16 14:16
To version < 44.2 >
edited by Xiaoling
on 2023/05/18 08:57
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -30,6 +30,7 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -276,19 +276,22 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
291 291  
291 +2. All modes share the same Payload Explanation from HERE.
292 +
293 +3. By default, the device will send an uplink message every 20 minutes.
294 +
295 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -295,7 +295,7 @@
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
299 299  |**Value**|Bat|(% style="width:191px" %)(((
300 300  Temperature(DS18B20)(PC13)
301 301  )))|(% style="width:78px" %)(((
... ... @@ -311,12 +311,14 @@
311 311  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312 312  
313 313  
318 +
314 314  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 315  
321 +
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 318  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
325 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
320 320  |**Value**|BAT|(% style="width:196px" %)(((
321 321  Temperature(DS18B20)(PC13)
322 322  )))|(% style="width:87px" %)(((
... ... @@ -325,34 +325,35 @@
325 325  Digital in(PB15) & Digital Interrupt(PA8)
326 326  )))|(% style="width:208px" %)(((
327 327  Distance measure by:1) LIDAR-Lite V3HP
328 -Or 2) Ultrasonic Sensor
334 +Or
335 +2) Ultrasonic Sensor
329 329  )))|(% style="width:117px" %)Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
340 +
333 333  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334 334  
335 335  [[image:image-20230512173758-5.png||height="563" width="712"]]
336 336  
345 +
337 337  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338 338  
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
348 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
340 340  
341 341  [[image:image-20230512173903-6.png||height="596" width="715"]]
342 342  
352 +
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 -(% style="width:1113px" %)
346 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
355 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
356 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
347 347  |**Value**|BAT|(% style="width:183px" %)(((
348 -Temperature(DS18B20)
349 -(PC13)
358 +Temperature(DS18B20)(PC13)
350 350  )))|(% style="width:173px" %)(((
351 -Digital in(PB15) &
352 -Digital Interrupt(PA8)
360 +Digital in(PB15) & Digital Interrupt(PA8)
353 353  )))|(% style="width:84px" %)(((
354 -ADC
355 -(PA4)
362 +ADC(PA4)
356 356  )))|(% style="width:323px" %)(((
357 357  Distance measure by:1)TF-Mini plus LiDAR
358 358  Or 
... ... @@ -361,15 +361,17 @@
361 361  
362 362  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
363 363  
371 +
364 364  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
365 365  
366 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
367 367  
368 368  [[image:image-20230512180609-7.png||height="555" width="802"]]
369 369  
378 +
370 370  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
371 371  
372 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
373 373  
374 374  [[image:image-20230513105207-4.png||height="469" width="802"]]
375 375  
... ... @@ -376,29 +376,25 @@
376 376  
377 377  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
378 378  
388 +
379 379  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
380 380  
381 -(% style="width:1031px" %)
382 -|=(((
391 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
383 383  **Size(bytes)**
384 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
385 385  |**Value**|(% style="width:68px" %)(((
386 -ADC1
387 -(PA4)
396 +ADC1(PA4)
388 388  )))|(% style="width:75px" %)(((
389 -ADC2
390 -(PA5)
398 +ADC2(PA5)
391 391  )))|(((
392 -ADC3
393 -(PA8)
400 +ADC3(PA8)
394 394  )))|(((
395 395  Digital Interrupt(PB15)
396 396  )))|(% style="width:304px" %)(((
397 -Temperature
398 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
404 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
399 399  )))|(% style="width:163px" %)(((
400 -Humidity
401 -(SHT20 or SHT31)
406 +Humidity(SHT20 or SHT31)
402 402  )))|(% style="width:53px" %)Bat
403 403  
404 404  [[image:image-20230513110214-6.png]]
... ... @@ -409,20 +409,16 @@
409 409  
410 410  This mode has total 11 bytes. As shown below:
411 411  
412 -(% style="width:1017px" %)
413 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
417 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
414 414  |**Value**|BAT|(% style="width:186px" %)(((
415 -Temperature1(DS18B20)
416 -(PC13)
420 +Temperature1(DS18B20)(PC13)
417 417  )))|(% style="width:82px" %)(((
418 -ADC
419 -(PA4)
422 +ADC(PA4)
420 420  )))|(% style="width:210px" %)(((
421 -Digital in(PB15) &
422 -Digital Interrupt(PA8) 
424 +Digital in(PB15) & Digital Interrupt(PA8) 
423 423  )))|(% style="width:191px" %)Temperature2(DS18B20)
424 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
425 -(PB8)
426 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
426 426  
427 427  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
428 428  
... ... @@ -429,46 +429,50 @@
429 429  [[image:image-20230513134006-1.png||height="559" width="736"]]
430 430  
431 431  
433 +
432 432  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
433 433  
436 +
434 434  [[image:image-20230512164658-2.png||height="532" width="729"]]
435 435  
436 436  Each HX711 need to be calibrated before used. User need to do below two steps:
437 437  
438 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
439 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
440 440  1. (((
441 441  Weight has 4 bytes, the unit is g.
445 +
446 +
447 +
442 442  )))
443 443  
444 444  For example:
445 445  
446 -**AT+GETSENSORVALUE =0**
452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
447 447  
448 448  Response:  Weight is 401 g
449 449  
450 450  Check the response of this command and adjust the value to match the real value for thing.
451 451  
452 -(% style="width:767px" %)
453 -|=(((
458 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
459 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
454 454  **Size(bytes)**
455 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
461 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
456 456  |**Value**|BAT|(% style="width:193px" %)(((
457 -Temperature(DS18B20)
458 -(PC13)
463 +Temperature(DS18B20)(PC13)
459 459  )))|(% style="width:85px" %)(((
460 -ADC
461 -(PA4)
465 +ADC(PA4)
462 462  )))|(% style="width:186px" %)(((
463 -Digital in(PB15) &
464 -Digital Interrupt(PA8)
467 +Digital in(PB15) & Digital Interrupt(PA8)
465 465  )))|(% style="width:100px" %)Weight
466 466  
467 467  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
468 468  
469 469  
473 +
470 470  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
471 471  
476 +
472 472  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473 473  
474 474  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -475,40 +475,37 @@
475 475  
476 476  [[image:image-20230512181814-9.png||height="543" width="697"]]
477 477  
478 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
479 479  
480 -(% style="width:961px" %)
481 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
482 -|**Value**|BAT|(% style="width:256px" %)(((
483 -Temperature(DS18B20)
484 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
484 484  
485 -(PC13)
486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 +|**Value**|BAT|(% style="width:256px" %)(((
489 +Temperature(DS18B20)(PC13)
486 486  )))|(% style="width:108px" %)(((
487 -ADC
488 -(PA4)
491 +ADC(PA4)
489 489  )))|(% style="width:126px" %)(((
490 -Digital in
491 -(PB15)
493 +Digital in(PB15)
492 492  )))|(% style="width:145px" %)(((
493 -Count
494 -(PA8)
495 +Count(PA8)
495 495  )))
496 496  
497 497  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
498 498  
499 499  
501 +
500 500  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501 501  
502 -(% style="width:1108px" %)
503 -|=(((
504 +
505 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
506 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
504 504  **Size(bytes)**
505 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
508 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
506 506  |**Value**|BAT|(% style="width:188px" %)(((
507 507  Temperature(DS18B20)
508 508  (PC13)
509 509  )))|(% style="width:83px" %)(((
510 -ADC
511 -(PA5)
513 +ADC(PA5)
512 512  )))|(% style="width:184px" %)(((
513 513  Digital Interrupt1(PA8)
514 514  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -515,26 +515,25 @@
515 515  
516 516  [[image:image-20230513111203-7.png||height="324" width="975"]]
517 517  
520 +
518 518  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
519 519  
520 -(% style="width:922px" %)
521 -|=(((
523 +
524 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
525 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
522 522  **Size(bytes)**
523 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
527 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
524 524  |**Value**|BAT|(% style="width:207px" %)(((
525 525  Temperature(DS18B20)
526 526  (PC13)
527 527  )))|(% style="width:94px" %)(((
528 -ADC1
529 -(PA4)
532 +ADC1(PA4)
530 530  )))|(% style="width:198px" %)(((
531 531  Digital Interrupt(PB15)
532 532  )))|(% style="width:84px" %)(((
533 -ADC2
534 -(PA5)
536 +ADC2(PA5)
535 535  )))|(% style="width:82px" %)(((
536 -ADC3
537 -(PA8)
538 +ADC3(PA8)
538 538  )))
539 539  
540 540  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -542,50 +542,50 @@
542 542  
543 543  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
544 544  
545 -(% style="width:1010px" %)
546 -|=(((
546 +
547 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
548 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
547 547  **Size(bytes)**
548 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
550 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
549 549  |**Value**|BAT|(((
550 -Temperature1(DS18B20)
551 -(PC13)
552 +Temperature
553 +(DS18B20)(PC13)
552 552  )))|(((
553 -Temperature2(DS18B20)
554 -(PB9)
555 +Temperature2
556 +(DS18B20)(PB9)
555 555  )))|(((
556 556  Digital Interrupt
557 557  (PB15)
558 558  )))|(% style="width:193px" %)(((
559 -Temperature3(DS18B20)
560 -(PB8)
561 +Temperature3
562 +(DS18B20)(PB8)
561 561  )))|(% style="width:78px" %)(((
562 -Count1
563 -(PA8)
564 +Count1(PA8)
564 564  )))|(% style="width:78px" %)(((
565 -Count2
566 -(PA4)
566 +Count2(PA4)
567 567  )))
568 568  
569 569  [[image:image-20230513111255-9.png||height="341" width="899"]]
570 570  
571 -**The newly added AT command is issued correspondingly:**
571 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
572 572  
573 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
573 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
574 574  
575 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
575 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
576 576  
577 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
577 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
578 578  
579 -**AT+SETCNT=aa,bb** 
580 580  
580 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
581 +
581 581  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
582 582  
583 583  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
584 584  
585 585  
586 -
587 587  === 2.3.3  ​Decode payload ===
588 588  
589 +
589 589  While using TTN V3 network, you can add the payload format to decode the payload.
590 590  
591 591  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -592,13 +592,14 @@
592 592  
593 593  The payload decoder function for TTN V3 are here:
594 594  
595 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
596 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
596 596  
597 597  
598 598  ==== 2.3.3.1 Battery Info ====
599 599  
600 -Check the battery voltage for SN50v3.
601 601  
602 +Check the battery voltage for SN50v3-LB.
603 +
602 602  Ex1: 0x0B45 = 2885mV
603 603  
604 604  Ex2: 0x0B49 = 2889mV
... ... @@ -606,16 +606,18 @@
606 606  
607 607  ==== 2.3.3.2  Temperature (DS18B20) ====
608 608  
611 +
609 609  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
610 610  
611 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
614 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
612 612  
613 -**Connection:**
616 +(% style="color:blue" %)**Connection:**
614 614  
615 615  [[image:image-20230512180718-8.png||height="538" width="647"]]
616 616  
617 -**Example**:
618 618  
621 +(% style="color:blue" %)**Example**:
622 +
619 619  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
620 620  
621 621  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -625,6 +625,7 @@
625 625  
626 626  ==== 2.3.3.3 Digital Input ====
627 627  
632 +
628 628  The digital input for pin PB15,
629 629  
630 630  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -634,11 +634,14 @@
634 634  (((
635 635  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
636 636  
637 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
642 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
643 +
644 +
638 638  )))
639 639  
640 640  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
641 641  
649 +
642 642  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
643 643  
644 644  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -645,17 +645,20 @@
645 645  
646 646  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
647 647  
648 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
649 649  
657 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
650 650  
659 +
651 651  ==== 2.3.3.5 Digital Interrupt ====
652 652  
653 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
654 654  
655 -(% style="color:blue" %)**~ Interrupt connection method:**
663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
656 656  
665 +(% style="color:blue" %)** Interrupt connection method:**
666 +
657 657  [[image:image-20230513105351-5.png||height="147" width="485"]]
658 658  
669 +
659 659  (% style="color:blue" %)**Example to use with door sensor :**
660 660  
661 661  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -662,22 +662,23 @@
662 662  
663 663  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
664 664  
665 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
666 666  
667 -(% style="color:blue" %)**~ Below is the installation example:**
668 668  
669 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
679 +(% style="color:blue" %)**Below is the installation example:**
670 670  
681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
682 +
671 671  * (((
672 -One pin to SN50_v3's PA8 pin
684 +One pin to SN50v3-LB's PA8 pin
673 673  )))
674 674  * (((
675 -The other pin to SN50_v3's VDD pin
687 +The other pin to SN50v3-LB's VDD pin
676 676  )))
677 677  
678 678  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
679 679  
680 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
692 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
681 681  
682 682  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
683 683  
... ... @@ -689,12 +689,13 @@
689 689  
690 690  The command is:
691 691  
692 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
704 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
693 693  
694 694  Below shows some screen captures in TTN V3:
695 695  
696 696  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
697 697  
710 +
698 698  In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
699 699  
700 700  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
... ... @@ -702,15 +702,16 @@
702 702  
703 703  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
704 704  
718 +
705 705  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
706 706  
707 707  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
708 708  
709 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
723 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
710 710  
725 +
711 711  Below is the connection to SHT20/ SHT31. The connection is as below:
712 712  
713 -
714 714  [[image:image-20230513103633-3.png||height="448" width="716"]]
715 715  
716 716  The device will be able to get the I2C sensor data now and upload to IoT Server.
... ... @@ -730,23 +730,26 @@
730 730  
731 731  ==== 2.3.3.7  ​Distance Reading ====
732 732  
733 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
734 734  
748 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
735 735  
750 +
736 736  ==== 2.3.3.8 Ultrasonic Sensor ====
737 737  
753 +
738 738  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
739 739  
740 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
756 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
741 741  
742 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
758 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
743 743  
744 744  The picture below shows the connection:
745 745  
746 746  [[image:image-20230512173903-6.png||height="596" width="715"]]
747 747  
748 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
749 749  
765 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
766 +
750 750  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
751 751  
752 752  **Example:**
... ... @@ -754,16 +754,17 @@
754 754  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
755 755  
756 756  
757 -
758 758  ==== 2.3.3.9  Battery Output - BAT pin ====
759 759  
776 +
760 760  The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
761 761  
762 762  
763 763  ==== 2.3.3.10  +5V Output ====
764 764  
765 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
766 766  
783 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
784 +
767 767  The 5V output time can be controlled by AT Command.
768 768  
769 769  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -773,18 +773,20 @@
773 773  By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
774 774  
775 775  
776 -
777 777  ==== 2.3.3.11  BH1750 Illumination Sensor ====
778 778  
796 +
779 779  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
780 780  
781 781  [[image:image-20230512172447-4.png||height="416" width="712"]]
782 782  
801 +
783 783  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
784 784  
785 785  
786 786  ==== 2.3.3.12  Working MOD ====
787 787  
807 +
788 788  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
789 789  
790 790  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -801,8 +801,6 @@
801 801  * 7: MOD8
802 802  * 8: MOD9
803 803  
804 -
805 -
806 806  == 2.4 Payload Decoder file ==
807 807  
808 808  
... ... @@ -813,7 +813,6 @@
813 813  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
814 814  
815 815  
816 -
817 817  == 2.5 Frequency Plans ==
818 818  
819 819  
... ... @@ -849,11 +849,12 @@
849 849  == 3.3 Commands special design for SN50v3-LB ==
850 850  
851 851  
852 -These commands only valid for S31x-LB, as below:
869 +These commands only valid for SN50v3-LB, as below:
853 853  
854 854  
855 855  === 3.3.1 Set Transmit Interval Time ===
856 856  
874 +
857 857  Feature: Change LoRaWAN End Node Transmit Interval.
858 858  
859 859  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -879,10 +879,9 @@
879 879  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
880 880  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
881 881  
882 -
883 -
884 884  === 3.3.2 Get Device Status ===
885 885  
902 +
886 886  Send a LoRaWAN downlink to ask the device to send its status.
887 887  
888 888  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
... ... @@ -892,6 +892,7 @@
892 892  
893 893  === 3.3.3 Set Interrupt Mode ===
894 894  
912 +
895 895  Feature, Set Interrupt mode for GPIO_EXIT.
896 896  
897 897  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
... ... @@ -912,7 +912,6 @@
912 912  )))|(% style="width:157px" %)OK
913 913  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
914 914  Set Transmit Interval
915 -
916 916  trigger by rising edge.
917 917  )))|(% style="width:157px" %)OK
918 918  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -928,10 +928,9 @@
928 928  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
929 929  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
930 930  
931 -
932 -
933 933  === 3.3.4 Set Power Output Duration ===
934 934  
950 +
935 935  Control the output duration 5V . Before each sampling, device will
936 936  
937 937  ~1. first enable the power output to external sensor,
... ... @@ -961,10 +961,9 @@
961 961  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
962 962  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
963 963  
964 -
965 -
966 966  === 3.3.5 Set Weighing parameters ===
967 967  
982 +
968 968  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
969 969  
970 970  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
... ... @@ -987,10 +987,9 @@
987 987  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
988 988  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
989 989  
990 -
991 -
992 992  === 3.3.6 Set Digital pulse count value ===
993 993  
1007 +
994 994  Feature: Set the pulse count value.
995 995  
996 996  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1011,10 +1011,9 @@
1011 1011  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1012 1012  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1013 1013  
1014 -
1015 -
1016 1016  === 3.3.7 Set Workmode ===
1017 1017  
1030 +
1018 1018  Feature: Switch working mode.
1019 1019  
1020 1020  (% style="color:blue" %)**AT Command: AT+MOD**
... ... @@ -1036,8 +1036,6 @@
1036 1036  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1037 1037  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1038 1038  
1039 -
1040 -
1041 1041  = 4. Battery & Power Consumption =
1042 1042  
1043 1043  
... ... @@ -1068,6 +1068,7 @@
1068 1068  
1069 1069  == 6.1 Where can i find source code of SN50v3-LB? ==
1070 1070  
1082 +
1071 1071  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1072 1072  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1073 1073  
... ... @@ -1096,6 +1096,7 @@
1096 1096  
1097 1097  = 8. ​Packing Info =
1098 1098  
1111 +
1099 1099  (% style="color:#037691" %)**Package Includes**:
1100 1100  
1101 1101  * SN50v3-LB LoRaWAN Generic Node
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0