Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor NodeUser Manual1 +SN50v3-LB User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -1,5 +1,4 @@ 1 -(% style="text-align:center" %) 2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 1 +[[image:image-20230511201248-1.png||height="403" width="489"]] 3 3 4 4 5 5 ... ... @@ -16,15 +16,18 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 - 20 20 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 20 + 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 23 + 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 + 26 26 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 27 27 29 + 28 28 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 30 ... ... @@ -42,7 +42,6 @@ 42 42 43 43 == 1.3 Specification == 44 44 45 - 46 46 (% style="color:#037691" %)**Common DC Characteristics:** 47 47 48 48 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -79,7 +79,6 @@ 79 79 80 80 == 1.4 Sleep mode and working mode == 81 81 82 - 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -137,7 +137,6 @@ 137 137 138 138 == Hole Option == 139 139 140 - 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 142 142 143 143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -291,21 +291,31 @@ 291 291 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 - 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2** 299 -|**Value**|Bat|(% style="width:191px" %)((( 300 -Temperature(DS18B20)(PC13) 301 -)))|(% style="width:78px" %)((( 302 -ADC(PA4) 295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 +|**Value**|Bat|((( 297 +Temperature(DS18B20) 298 + 299 +(PC13) 300 +)))|((( 301 +ADC 302 + 303 +(PA4) 303 303 )))|(% style="width:216px" %)((( 304 -Digital in(PB15)&Digital Interrupt(PA8) 305 -)))|(% style="width:308px" %)((( 306 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 307 -)))|(% style="width:154px" %)((( 308 -Humidity(SHT20 or SHT31) 305 +Digital in(PB15) & 306 + 307 +Digital Interrupt(PA8) 308 + 309 + 310 +)))|(% style="width:342px" %)((( 311 +Temperature 312 + 313 +(SHT20 or SHT31 or BH1750 Illumination Sensor) 314 +)))|(% style="width:171px" %)((( 315 +Humidity 316 + 317 +(SHT20 or SHT31) 309 309 ))) 310 310 311 311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] ... ... @@ -315,26 +315,33 @@ 315 315 316 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 317 317 318 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2** 320 -|**Value**|BAT|(% style="width:196px" %)((( 321 -Temperature(DS18B20)(PC13) 322 -)))|(% style="width:87px" %)((( 323 -ADC(PA4) 324 -)))|(% style="width:189px" %)((( 325 -Digital in(PB15) & Digital Interrupt(PA8) 326 -)))|(% style="width:208px" %)((( 327 -Distance measure by:1) LIDAR-Lite V3HP 328 -Or 2) Ultrasonic Sensor 329 -)))|(% style="width:117px" %)Reserved 327 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 328 +|**Value**|BAT|((( 329 +Temperature(DS18B20) 330 330 331 +(PC13) 332 +)))|((( 333 +ADC 334 + 335 +(PA4) 336 +)))|((( 337 +Digital in(PB15) & 338 + 339 +Digital Interrupt(PA8) 340 +)))|((( 341 +Distance measure by: 342 +1) LIDAR-Lite V3HP 343 +Or 344 +2) Ultrasonic Sensor 345 +)))|Reserved 346 + 331 331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 332 332 333 - (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**349 +**Connection of LIDAR-Lite V3HP:** 334 334 335 335 [[image:image-20230512173758-5.png||height="563" width="712"]] 336 336 337 - (% style="color:blue" %)**Connection to Ultrasonic Sensor:**353 +**Connection to Ultrasonic Sensor:** 338 338 339 339 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 340 340 ... ... @@ -342,22 +342,24 @@ 342 342 343 343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 344 344 345 -(% style="width:1113px" %) 346 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2** 347 -|**Value**|BAT|(% style="width:183px" %)((( 361 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 362 +|**Value**|BAT|((( 348 348 Temperature(DS18B20) 364 + 349 349 (PC13) 350 -)))|( % style="width:173px" %)(((366 +)))|((( 351 351 Digital in(PB15) & 368 + 352 352 Digital Interrupt(PA8) 353 -)))|( % style="width:84px" %)(((370 +)))|((( 354 354 ADC 372 + 355 355 (PA4) 356 -)))|( % style="width:323px" %)(((374 +)))|((( 357 357 Distance measure by:1)TF-Mini plus LiDAR 358 358 Or 359 359 2) TF-Luna LiDAR 360 -)))| (% style="width:188px" %)Distance signal strength378 +)))|Distance signal strength 361 361 362 362 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 363 363 ... ... @@ -384,20 +384,25 @@ 384 384 )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1 385 385 |**Value**|(% style="width:68px" %)((( 386 386 ADC1 405 + 387 387 (PA4) 388 388 )))|(% style="width:75px" %)((( 389 389 ADC2 409 + 390 390 (PA5) 391 391 )))|((( 392 392 ADC3 413 + 393 393 (PA8) 394 394 )))|((( 395 395 Digital Interrupt(PB15) 396 396 )))|(% style="width:304px" %)((( 397 397 Temperature 419 + 398 398 (SHT20 or SHT31 or BH1750 Illumination Sensor) 399 399 )))|(% style="width:163px" %)((( 400 400 Humidity 423 + 401 401 (SHT20 or SHT31) 402 402 )))|(% style="width:53px" %)Bat 403 403 ... ... @@ -416,9 +416,11 @@ 416 416 (PC13) 417 417 )))|(% style="width:82px" %)((( 418 418 ADC 442 + 419 419 (PA4) 420 420 )))|(% style="width:210px" %)((( 421 421 Digital in(PB15) & 446 + 422 422 Digital Interrupt(PA8) 423 423 )))|(% style="width:191px" %)Temperature2(DS18B20) 424 424 (PB9)|(% style="width:183px" %)Temperature3(DS18B20) ... ... @@ -449,20 +449,25 @@ 449 449 450 450 Check the response of this command and adjust the value to match the real value for thing. 451 451 452 -(% style="width: 767px" %)477 +(% style="width:982px" %) 453 453 |=((( 454 454 **Size(bytes)** 455 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width:85px;" %)**2**|=(% style="width:186px;" %)**1**|=(% style="width: 100px;" %)**4**456 -|**Value**|BAT|(% style="width: 193px" %)(((480 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 481 +|**Value**|BAT|(% style="width:282px" %)((( 457 457 Temperature(DS18B20) 483 + 458 458 (PC13) 459 -)))|(% style="width:85px" %)((( 485 + 486 + 487 +)))|(% style="width:119px" %)((( 460 460 ADC 489 + 461 461 (PA4) 462 -)))|(% style="width: 186px" %)(((491 +)))|(% style="width:279px" %)((( 463 463 Digital in(PB15) & 493 + 464 464 Digital Interrupt(PA8) 465 -)))|(% style="width:10 0px" %)Weight495 +)))|(% style="width:106px" %)Weight 466 466 467 467 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 468 468 ... ... @@ -485,12 +485,15 @@ 485 485 (PC13) 486 486 )))|(% style="width:108px" %)((( 487 487 ADC 518 + 488 488 (PA4) 489 489 )))|(% style="width:126px" %)((( 490 490 Digital in 522 + 491 491 (PB15) 492 492 )))|(% style="width:145px" %)((( 493 493 Count 526 + 494 494 (PA8) 495 495 ))) 496 496 ... ... @@ -499,41 +499,46 @@ 499 499 500 500 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 501 501 502 -(% style="width:1108px" %) 503 503 |=((( 504 504 **Size(bytes)** 505 -)))|=**2**|= (% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width: 100px;" %)2506 -|**Value**|BAT|( % style="width:188px" %)(((537 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 538 +|**Value**|BAT|((( 507 507 Temperature(DS18B20) 540 + 508 508 (PC13) 509 -)))|( % style="width:83px" %)(((542 +)))|((( 510 510 ADC 544 + 511 511 (PA5) 512 -)))|( % style="width:184px" %)(((546 +)))|((( 513 513 Digital Interrupt1(PA8) 514 -)))| (% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved548 +)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved 515 515 516 516 [[image:image-20230513111203-7.png||height="324" width="975"]] 517 517 518 518 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 519 519 520 -(% style="width:9 22px" %)554 +(% style="width:917px" %) 521 521 |=((( 522 522 **Size(bytes)** 523 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2557 +)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 79px;" %)2 524 524 |**Value**|BAT|(% style="width:207px" %)((( 525 525 Temperature(DS18B20) 560 + 526 526 (PC13) 527 527 )))|(% style="width:94px" %)((( 528 528 ADC1 564 + 529 529 (PA4) 530 530 )))|(% style="width:198px" %)((( 531 531 Digital Interrupt(PB15) 532 532 )))|(% style="width:84px" %)((( 533 533 ADC2 570 + 534 534 (PA5) 535 -)))|(% style="width: 82px" %)(((572 +)))|(% style="width:79px" %)((( 536 536 ADC3 574 + 537 537 (PA8) 538 538 ))) 539 539 ... ... @@ -548,21 +548,27 @@ 548 548 )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4 549 549 |**Value**|BAT|((( 550 550 Temperature1(DS18B20) 589 + 551 551 (PC13) 552 552 )))|((( 553 553 Temperature2(DS18B20) 593 + 554 554 (PB9) 555 555 )))|((( 556 556 Digital Interrupt 597 + 557 557 (PB15) 558 558 )))|(% style="width:193px" %)((( 559 559 Temperature3(DS18B20) 601 + 560 560 (PB8) 561 561 )))|(% style="width:78px" %)((( 562 562 Count1 605 + 563 563 (PA8) 564 564 )))|(% style="width:78px" %)((( 565 565 Count2 609 + 566 566 (PA4) 567 567 ))) 568 568 ... ... @@ -606,7 +606,7 @@ 606 606 607 607 ==== 2.3.3.2 Temperature (DS18B20) ==== 608 608 609 -If there is a DS18B20 connected to P C13 pin. The temperature will be uploaded in the payload.653 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 610 610 611 611 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 612 612 ... ... @@ -634,7 +634,7 @@ 634 634 ((( 635 635 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 636 636 637 - (% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.681 +**Note:**The maximum voltage input supports 3.6V. 638 638 ))) 639 639 640 640 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== ... ... @@ -645,18 +645,17 @@ 645 645 646 646 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 647 647 648 - (% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.692 +**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 649 649 650 - 651 651 ==== 2.3.3.5 Digital Interrupt ==== 652 652 653 653 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 654 654 655 - (% style="color:blue" %)**~ Interrupt connection method:**698 +**~ Interrupt connection method:** 656 656 657 657 [[image:image-20230513105351-5.png||height="147" width="485"]] 658 658 659 - (% style="color:blue" %)**Example to use with door sensor :**702 +**Example to use with door sensor :** 660 660 661 661 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 662 662 ... ... @@ -664,7 +664,7 @@ 664 664 665 665 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 666 666 667 - (% style="color:blue" %)**~ Below is the installation example:**710 +**~ Below is the installation example:** 668 668 669 669 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 670 670 ... ... @@ -689,7 +689,7 @@ 689 689 690 690 The command is: 691 691 692 - (% style="color:blue" %)**AT+INTMOD1=1 **(%%)~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)735 +**AT+INTMOD1=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 693 693 694 694 Below shows some screen captures in TTN V3: 695 695 ... ... @@ -704,14 +704,14 @@ 704 704 705 705 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 706 706 707 -We have made an example to show how to use the I2C interface to connect to the SHT20 /SHT31 Temperature and Humidity Sensor.750 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 708 708 709 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 /SHT31code in SN50_v3 will be a good reference.752 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 710 710 711 711 Below is the connection to SHT20/ SHT31. The connection is as below: 712 712 713 713 714 -[[image:image-20230513103633-3.png||height=" 448" width="716"]]757 +[[image:image-20230513103633-3.png||height="636" width="1017"]] 715 715 716 716 The device will be able to get the I2C sensor data now and upload to IoT Server. 717 717 ... ... @@ -766,7 +766,7 @@ 766 766 767 767 The 5V output time can be controlled by AT Command. 768 768 769 - (% style="color:blue" %)**AT+5VT=1000**812 +**AT+5VT=1000** 770 770 771 771 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 772 772 ... ... @@ -778,9 +778,9 @@ 778 778 779 779 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 780 780 781 -[[image:image-20230512172447-4.png||height=" 416" width="712"]]824 +[[image:image-20230512172447-4.png||height="593" width="1015"]] 782 782 783 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]826 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 784 784 785 785 786 786 ==== 2.3.3.12 Working MOD ==== ... ... @@ -801,8 +801,6 @@ 801 801 * 7: MOD8 802 802 * 8: MOD9 803 803 804 - 805 - 806 806 == 2.4 Payload Decoder file == 807 807 808 808 ... ... @@ -810,7 +810,7 @@ 810 810 811 811 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 812 812 813 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50 _v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]854 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]] 814 814 815 815 816 816 ... ... @@ -854,6 +854,7 @@ 854 854 855 855 === 3.3.1 Set Transmit Interval Time === 856 856 898 + 857 857 Feature: Change LoRaWAN End Node Transmit Interval. 858 858 859 859 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -879,11 +879,9 @@ 879 879 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 880 880 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 881 881 882 - 883 - 884 884 === 3.3.2 Get Device Status === 885 885 886 -Send a LoRaWAN downlink to ask thedevicetosenditsstatus.926 +Send a LoRaWAN downlink to ask device send Alarm settings. 887 887 888 888 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 889 889 ... ... @@ -892,6 +892,7 @@ 892 892 893 893 === 3.3.3 Set Interrupt Mode === 894 894 935 + 895 895 Feature, Set Interrupt mode for GPIO_EXIT. 896 896 897 897 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -928,8 +928,6 @@ 928 928 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 929 929 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 930 930 931 - 932 - 933 933 === 3.3.4 Set Power Output Duration === 934 934 935 935 Control the output duration 5V . Before each sampling, device will ... ... @@ -946,6 +946,7 @@ 946 946 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 947 947 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 948 948 500(default) 988 + 949 949 OK 950 950 ))) 951 951 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( ... ... @@ -958,11 +958,9 @@ 958 958 959 959 The first and second bytes are the time to turn on. 960 960 961 -* Example 1: Downlink Payload: 070000 962 -* Example 2: Downlink Payload: 0701F4 1001 +* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1002 +* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 963 963 964 - 965 - 966 966 === 3.3.5 Set Weighing parameters === 967 967 968 968 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. ... ... @@ -977,6 +977,7 @@ 977 977 978 978 (% style="color:blue" %)**Downlink Command: 0x08** 979 979 1018 + 980 980 Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 981 981 982 982 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. ... ... @@ -987,8 +987,6 @@ 987 987 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 988 988 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 989 989 990 - 991 - 992 992 === 3.3.6 Set Digital pulse count value === 993 993 994 994 Feature: Set the pulse count value. ... ... @@ -1004,6 +1004,7 @@ 1004 1004 1005 1005 (% style="color:blue" %)**Downlink Command: 0x09** 1006 1006 1044 + 1007 1007 Format: Command Code (0x09) followed by 5 bytes. 1008 1008 1009 1009 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. ... ... @@ -1011,8 +1011,6 @@ 1011 1011 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1012 1012 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1013 1013 1014 - 1015 - 1016 1016 === 3.3.7 Set Workmode === 1017 1017 1018 1018 Feature: Switch working mode. ... ... @@ -1026,18 +1026,18 @@ 1026 1026 ))) 1027 1027 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1028 1028 OK 1065 + 1029 1029 Attention:Take effect after ATZ 1030 1030 ))) 1031 1031 1032 1032 (% style="color:blue" %)**Downlink Command: 0x0A** 1033 1033 1071 + 1034 1034 Format: Command Code (0x0A) followed by 1 bytes. 1035 1035 1036 1036 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1037 1037 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1038 1038 1039 - 1040 - 1041 1041 = 4. Battery & Power Consumption = 1042 1042 1043 1043 ... ... @@ -1111,5 +1111,4 @@ 1111 1111 1112 1112 1113 1113 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1114 - 1115 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]] 1150 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.0 KB - Content