<
From version < 43.17 >
edited by Xiaoling
on 2023/05/16 14:14
To version < 87.12 >
edited by Xiaoling
on 2024/01/03 14:04
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,22 +14,22 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
37 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -38,7 +38,8 @@
38 38  * Support wireless OTA update firmware
39 39  * Uplink on periodically
40 40  * Downlink to change configure
41 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
42 42  
43 43  == 1.3 Specification ==
44 44  
... ... @@ -45,7 +45,7 @@
45 45  
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v
49 49  * Operating Temperature: -40 ~~ 85°C
50 50  
51 51  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -88,11 +88,11 @@
88 88  == 1.5 Button & LEDs ==
89 89  
90 90  
91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
92 92  
93 93  
94 94  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
96 96  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 97  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 98  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -107,7 +107,7 @@
107 107  == 1.6 BLE connection ==
108 108  
109 109  
110 -SN50v3-LB supports BLE remote configure.
116 +SN50v3-LB/LS supports BLE remote configure.
111 111  
112 112  
113 113  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -122,35 +122,40 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
131 +[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
129 129  
136 +=== 1.8.1 for LB version ===
130 130  
131 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132 132  
133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134 134  
141 +
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
144 +=== 1.8.2 for LS version ===
137 137  
138 -== Hole Option ==
146 +[[image:image-20231231203439-3.png||height="385" width="886"]]
139 139  
140 140  
141 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
149 +== 1.9 Hole Option ==
142 142  
151 +
152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
153 +
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
144 144  
145 145  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146 146  
147 147  
148 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
149 149  
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,12 +158,12 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
165 165  
166 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
167 167  
168 168  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
169 169  
... ... @@ -192,10 +192,10 @@
192 192  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193 193  
194 194  
195 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
196 196  
197 197  
198 -Press the button for 5 seconds to activate the SN50v3-LB.
209 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
199 199  
200 200  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201 201  
... ... @@ -207,52 +207,52 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
214 214  
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
227 +|(% colspan="6" style="background-color:#4F81BD;color:white" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
229 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -*0x01: EU868
240 +0x01: EU868
230 230  
231 -*0x02: US915
242 +0x02: US915
232 232  
233 -*0x03: IN865
244 +0x03: IN865
234 234  
235 -*0x04: AU915
246 +0x04: AU915
236 236  
237 -*0x05: KZ865
248 +0x05: KZ865
238 238  
239 -*0x06: RU864
250 +0x06: RU864
240 240  
241 -*0x07: AS923
252 +0x07: AS923
242 242  
243 -*0x08: AS923-1
254 +0x08: AS923-1
244 244  
245 -*0x09: AS923-2
256 +0x09: AS923-2
246 246  
247 -*0x0a: AS923-3
258 +0x0a: AS923-3
248 248  
249 -*0x0b: CN470
260 +0x0b: CN470
250 250  
251 -*0x0c: EU433
262 +0x0c: EU433
252 252  
253 -*0x0d: KR920
264 +0x0d: KR920
254 254  
255 -*0x0e: MA869
266 +0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -276,19 +276,22 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
294 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
291 291  
301 +2. All modes share the same Payload Explanation from HERE.
302 +
303 +3. By default, the device will send an uplink message every 20 minutes.
304 +
305 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -295,8 +295,8 @@
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:35px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
312 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
313 +|Value|Bat|(% style="width:191px" %)(((
300 300  Temperature(DS18B20)(PC13)
301 301  )))|(% style="width:78px" %)(((
302 302  ADC(PA4)
... ... @@ -313,11 +313,12 @@
313 313  
314 314  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 315  
330 +
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 318  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 -|**Value**|BAT|(% style="width:196px" %)(((
334 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
335 +|Value|BAT|(% style="width:196px" %)(((
321 321  Temperature(DS18B20)(PC13)
322 322  )))|(% style="width:87px" %)(((
323 323  ADC(PA4)
... ... @@ -324,81 +324,78 @@
324 324  )))|(% style="width:189px" %)(((
325 325  Digital in(PB15) & Digital Interrupt(PA8)
326 326  )))|(% style="width:208px" %)(((
327 -Distance measure by:1) LIDAR-Lite V3HP
342 +Distance measure by: 1) LIDAR-Lite V3HP
328 328  Or 2) Ultrasonic Sensor
329 329  )))|(% style="width:117px" %)Reserved
330 330  
331 331  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 332  
348 +
333 333  (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334 334  
335 335  [[image:image-20230512173758-5.png||height="563" width="712"]]
336 336  
353 +
337 337  (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338 338  
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
356 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
340 340  
341 341  [[image:image-20230512173903-6.png||height="596" width="715"]]
342 342  
360 +
343 343  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 344  
345 -(% style="width:1113px" %)
346 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
347 -|**Value**|BAT|(% style="width:183px" %)(((
348 -Temperature(DS18B20)
349 -(PC13)
363 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
364 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
365 +|Value|BAT|(% style="width:183px" %)(((
366 +Temperature(DS18B20)(PC13)
350 350  )))|(% style="width:173px" %)(((
351 -Digital in(PB15) &
352 -Digital Interrupt(PA8)
368 +Digital in(PB15) & Digital Interrupt(PA8)
353 353  )))|(% style="width:84px" %)(((
354 -ADC
355 -(PA4)
370 +ADC(PA4)
356 356  )))|(% style="width:323px" %)(((
357 357  Distance measure by:1)TF-Mini plus LiDAR
358 -Or 
359 -2) TF-Luna LiDAR
373 +Or 2) TF-Luna LiDAR
360 360  )))|(% style="width:188px" %)Distance signal  strength
361 361  
362 362  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
363 363  
378 +
364 364  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
365 365  
366 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
367 367  
368 368  [[image:image-20230512180609-7.png||height="555" width="802"]]
369 369  
385 +
370 370  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
371 371  
372 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
388 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
373 373  
374 -[[image:image-20230513105207-4.png||height="469" width="802"]]
390 +[[image:image-20230610170047-1.png||height="452" width="799"]]
375 375  
376 376  
377 377  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
378 378  
395 +
379 379  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
380 380  
381 -(% style="width:1031px" %)
382 -|=(((
398 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
399 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
383 383  **Size(bytes)**
384 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
385 -|**Value**|(% style="width:68px" %)(((
386 -ADC1
387 -(PA4)
401 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
402 +|Value|(% style="width:68px" %)(((
403 +ADC1(PA4)
388 388  )))|(% style="width:75px" %)(((
389 -ADC2
390 -(PA5)
405 +ADC2(PA5)
391 391  )))|(((
392 -ADC3
393 -(PA8)
407 +ADC3(PA8)
394 394  )))|(((
395 395  Digital Interrupt(PB15)
396 396  )))|(% style="width:304px" %)(((
397 -Temperature
398 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
411 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
399 399  )))|(% style="width:163px" %)(((
400 -Humidity
401 -(SHT20 or SHT31)
413 +Humidity(SHT20 or SHT31)
402 402  )))|(% style="width:53px" %)Bat
403 403  
404 404  [[image:image-20230513110214-6.png]]
... ... @@ -409,59 +409,57 @@
409 409  
410 410  This mode has total 11 bytes. As shown below:
411 411  
412 -(% style="width:1017px" %)
413 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
414 -|**Value**|BAT|(% style="width:186px" %)(((
415 -Temperature1(DS18B20)
416 -(PC13)
424 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
425 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
426 +|Value|BAT|(% style="width:186px" %)(((
427 +Temperature1(DS18B20)(PC13)
417 417  )))|(% style="width:82px" %)(((
418 -ADC
419 -(PA4)
429 +ADC(PA4)
420 420  )))|(% style="width:210px" %)(((
421 -Digital in(PB15) &
422 -Digital Interrupt(PA8) 
431 +Digital in(PB15) & Digital Interrupt(PA8) 
423 423  )))|(% style="width:191px" %)Temperature2(DS18B20)
424 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
425 -(PB8)
433 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
426 426  
427 427  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
428 428  
437 +
429 429  [[image:image-20230513134006-1.png||height="559" width="736"]]
430 430  
431 431  
432 432  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
433 433  
443 +
434 434  [[image:image-20230512164658-2.png||height="532" width="729"]]
435 435  
436 436  Each HX711 need to be calibrated before used. User need to do below two steps:
437 437  
438 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
439 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
448 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
449 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
440 440  1. (((
441 441  Weight has 4 bytes, the unit is g.
452 +
453 +
454 +
442 442  )))
443 443  
444 444  For example:
445 445  
446 -**AT+GETSENSORVALUE =0**
459 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
447 447  
448 448  Response:  Weight is 401 g
449 449  
450 450  Check the response of this command and adjust the value to match the real value for thing.
451 451  
452 -(% style="width:767px" %)
453 -|=(((
465 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
466 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
454 454  **Size(bytes)**
455 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
456 -|**Value**|BAT|(% style="width:193px" %)(((
457 -Temperature(DS18B20)
458 -(PC13)
468 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
469 +|Value|BAT|(% style="width:193px" %)(((
470 +Temperature(DS18B20)(PC13)
459 459  )))|(% style="width:85px" %)(((
460 -ADC
461 -(PA4)
472 +ADC(PA4)
462 462  )))|(% style="width:186px" %)(((
463 -Digital in(PB15) &
464 -Digital Interrupt(PA8)
474 +Digital in(PB15) & Digital Interrupt(PA8)
465 465  )))|(% style="width:100px" %)Weight
466 466  
467 467  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -469,6 +469,7 @@
469 469  
470 470  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
471 471  
482 +
472 472  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473 473  
474 474  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -475,23 +475,19 @@
475 475  
476 476  [[image:image-20230512181814-9.png||height="543" width="697"]]
477 477  
478 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
479 479  
480 -(% style="width:961px" %)
481 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
482 -|**Value**|BAT|(% style="width:256px" %)(((
483 -Temperature(DS18B20)
490 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
484 484  
485 -(PC13)
492 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
493 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
494 +|Value|BAT|(% style="width:256px" %)(((
495 +Temperature(DS18B20)(PC13)
486 486  )))|(% style="width:108px" %)(((
487 -ADC
488 -(PA4)
497 +ADC(PA4)
489 489  )))|(% style="width:126px" %)(((
490 -Digital in
491 -(PB15)
499 +Digital in(PB15)
492 492  )))|(% style="width:145px" %)(((
493 -Count
494 -(PA8)
501 +Count(PA8)
495 495  )))
496 496  
497 497  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -499,16 +499,16 @@
499 499  
500 500  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501 501  
502 -(% style="width:1108px" %)
503 -|=(((
509 +
510 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
511 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
504 504  **Size(bytes)**
505 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
506 -|**Value**|BAT|(% style="width:188px" %)(((
513 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
514 +|Value|BAT|(% style="width:188px" %)(((
507 507  Temperature(DS18B20)
508 508  (PC13)
509 509  )))|(% style="width:83px" %)(((
510 -ADC
511 -(PA5)
518 +ADC(PA5)
512 512  )))|(% style="width:184px" %)(((
513 513  Digital Interrupt1(PA8)
514 514  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -515,26 +515,25 @@
515 515  
516 516  [[image:image-20230513111203-7.png||height="324" width="975"]]
517 517  
525 +
518 518  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
519 519  
520 -(% style="width:922px" %)
521 -|=(((
528 +
529 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
530 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
522 522  **Size(bytes)**
523 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
524 -|**Value**|BAT|(% style="width:207px" %)(((
532 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
533 +|Value|BAT|(% style="width:207px" %)(((
525 525  Temperature(DS18B20)
526 526  (PC13)
527 527  )))|(% style="width:94px" %)(((
528 -ADC1
529 -(PA4)
537 +ADC1(PA4)
530 530  )))|(% style="width:198px" %)(((
531 531  Digital Interrupt(PB15)
532 532  )))|(% style="width:84px" %)(((
533 -ADC2
534 -(PA5)
541 +ADC2(PA5)
535 535  )))|(% style="width:82px" %)(((
536 -ADC3
537 -(PA8)
543 +ADC3(PA8)
538 538  )))
539 539  
540 540  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -542,50 +542,152 @@
542 542  
543 543  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
544 544  
545 -(% style="width:1010px" %)
546 -|=(((
551 +
552 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
553 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
547 547  **Size(bytes)**
548 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
549 -|**Value**|BAT|(((
550 -Temperature1(DS18B20)
551 -(PC13)
555 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
556 +|Value|BAT|(((
557 +Temperature
558 +(DS18B20)(PC13)
552 552  )))|(((
553 -Temperature2(DS18B20)
554 -(PB9)
560 +Temperature2
561 +(DS18B20)(PB9)
555 555  )))|(((
556 556  Digital Interrupt
557 557  (PB15)
558 558  )))|(% style="width:193px" %)(((
559 -Temperature3(DS18B20)
560 -(PB8)
566 +Temperature3
567 +(DS18B20)(PB8)
561 561  )))|(% style="width:78px" %)(((
562 -Count1
563 -(PA8)
569 +Count1(PA8)
564 564  )))|(% style="width:78px" %)(((
565 -Count2
566 -(PA4)
571 +Count2(PA4)
567 567  )))
568 568  
569 569  [[image:image-20230513111255-9.png||height="341" width="899"]]
570 570  
571 -**The newly added AT command is issued correspondingly:**
576 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
572 572  
573 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
578 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
574 574  
575 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
580 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
576 576  
577 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
582 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
578 578  
579 -**AT+SETCNT=aa,bb** 
580 580  
585 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
586 +
581 581  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
582 582  
583 583  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
584 584  
585 585  
592 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
586 586  
594 +
595 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
596 +
597 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
598 +
599 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
600 +
601 +
602 +===== 2.3.2.10.a  Uplink, PWM input capture =====
603 +
604 +
605 +[[image:image-20230817172209-2.png||height="439" width="683"]]
606 +
607 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
608 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
609 +|Value|Bat|(% style="width:191px" %)(((
610 +Temperature(DS18B20)(PC13)
611 +)))|(% style="width:78px" %)(((
612 +ADC(PA4)
613 +)))|(% style="width:135px" %)(((
614 +PWM_Setting
615 +&Digital Interrupt(PA8)
616 +)))|(% style="width:70px" %)(((
617 +Pulse period
618 +)))|(% style="width:89px" %)(((
619 +Duration of high level
620 +)))
621 +
622 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
623 +
624 +
625 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
626 +
627 +**Frequency:**
628 +
629 +(% class="MsoNormal" %)
630 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
631 +
632 +(% class="MsoNormal" %)
633 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
634 +
635 +
636 +(% class="MsoNormal" %)
637 +**Duty cycle:**
638 +
639 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
640 +
641 +[[image:image-20230818092200-1.png||height="344" width="627"]]
642 +
643 +
644 +===== 2.3.2.10.b  Uplink, PWM output =====
645 +
646 +
647 +[[image:image-20230817172209-2.png||height="439" width="683"]]
648 +
649 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
650 +
651 +a is the time delay of the output, the unit is ms.
652 +
653 +b is the output frequency, the unit is HZ.
654 +
655 +c is the duty cycle of the output, the unit is %.
656 +
657 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
658 +
659 +aa is the time delay of the output, the unit is ms.
660 +
661 +bb is the output frequency, the unit is HZ.
662 +
663 +cc is the duty cycle of the output, the unit is %.
664 +
665 +
666 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
667 +
668 +The oscilloscope displays as follows:
669 +
670 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
671 +
672 +
673 +===== 2.3.2.10.c  Downlink, PWM output =====
674 +
675 +
676 +[[image:image-20230817173800-3.png||height="412" width="685"]]
677 +
678 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
679 +
680 + xx xx xx is the output frequency, the unit is HZ.
681 +
682 + yy is the duty cycle of the output, the unit is %.
683 +
684 + zz zz is the time delay of the output, the unit is ms.
685 +
686 +
687 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
688 +
689 +The oscilloscope displays as follows:
690 +
691 +[[image:image-20230817173858-5.png||height="634" width="843"]]
692 +
693 +
587 587  === 2.3.3  ​Decode payload ===
588 588  
696 +
589 589  While using TTN V3 network, you can add the payload format to decode the payload.
590 590  
591 591  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -592,13 +592,14 @@
592 592  
593 593  The payload decoder function for TTN V3 are here:
594 594  
595 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
703 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
596 596  
597 597  
598 598  ==== 2.3.3.1 Battery Info ====
599 599  
600 -Check the battery voltage for SN50v3.
601 601  
709 +Check the battery voltage for SN50v3-LB/LS.
710 +
602 602  Ex1: 0x0B45 = 2885mV
603 603  
604 604  Ex2: 0x0B49 = 2889mV
... ... @@ -606,16 +606,18 @@
606 606  
607 607  ==== 2.3.3.2  Temperature (DS18B20) ====
608 608  
718 +
609 609  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
610 610  
611 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
721 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
612 612  
613 -**Connection:**
723 +(% style="color:blue" %)**Connection:**
614 614  
615 615  [[image:image-20230512180718-8.png||height="538" width="647"]]
616 616  
617 -**Example**:
618 618  
728 +(% style="color:blue" %)**Example**:
729 +
619 619  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
620 620  
621 621  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -625,6 +625,7 @@
625 625  
626 626  ==== 2.3.3.3 Digital Input ====
627 627  
739 +
628 628  The digital input for pin PB15,
629 629  
630 630  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -634,28 +634,40 @@
634 634  (((
635 635  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
636 636  
637 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
749 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
750 +
751 +
638 638  )))
639 639  
640 640  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
641 641  
642 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
643 643  
644 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
757 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
645 645  
759 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
760 +
646 646  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
647 647  
648 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
649 649  
764 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
650 650  
766 +
767 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
768 +
769 +[[image:image-20230811113449-1.png||height="370" width="608"]]
770 +
771 +
772 +
651 651  ==== 2.3.3.5 Digital Interrupt ====
652 652  
653 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
654 654  
655 -(% style="color:blue" %)**~ Interrupt connection method:**
776 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
656 656  
778 +(% style="color:blue" %)** Interrupt connection method:**
779 +
657 657  [[image:image-20230513105351-5.png||height="147" width="485"]]
658 658  
782 +
659 659  (% style="color:blue" %)**Example to use with door sensor :**
660 660  
661 661  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -662,22 +662,23 @@
662 662  
663 663  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
664 664  
665 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
789 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
666 666  
667 -(% style="color:blue" %)**~ Below is the installation example:**
668 668  
669 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
792 +(% style="color:blue" %)**Below is the installation example:**
670 670  
794 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
795 +
671 671  * (((
672 -One pin to SN50_v3's PA8 pin
797 +One pin to SN50v3-LB/LS's PA8 pin
673 673  )))
674 674  * (((
675 -The other pin to SN50_v3's VDD pin
800 +The other pin to SN50v3-LB/LS's VDD pin
676 676  )))
677 677  
678 678  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
679 679  
680 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
805 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
681 681  
682 682  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
683 683  
... ... @@ -689,29 +689,32 @@
689 689  
690 690  The command is:
691 691  
692 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
817 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
693 693  
694 694  Below shows some screen captures in TTN V3:
695 695  
696 696  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
697 697  
698 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
699 699  
824 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
825 +
700 700  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
701 701  
702 702  
703 703  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
704 704  
831 +
705 705  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
706 706  
707 707  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
708 708  
709 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
836 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
710 710  
838 +
711 711  Below is the connection to SHT20/ SHT31. The connection is as below:
712 712  
841 +[[image:image-20230610170152-2.png||height="501" width="846"]]
713 713  
714 -[[image:image-20230513103633-3.png||height="448" width="716"]]
715 715  
716 716  The device will be able to get the I2C sensor data now and upload to IoT Server.
717 717  
... ... @@ -730,23 +730,26 @@
730 730  
731 731  ==== 2.3.3.7  ​Distance Reading ====
732 732  
733 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
734 734  
862 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
735 735  
864 +
736 736  ==== 2.3.3.8 Ultrasonic Sensor ====
737 737  
867 +
738 738  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
739 739  
740 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
870 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
741 741  
742 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
872 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
743 743  
744 744  The picture below shows the connection:
745 745  
746 746  [[image:image-20230512173903-6.png||height="596" width="715"]]
747 747  
748 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
749 749  
879 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
880 +
750 750  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
751 751  
752 752  **Example:**
... ... @@ -754,16 +754,17 @@
754 754  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
755 755  
756 756  
757 -
758 758  ==== 2.3.3.9  Battery Output - BAT pin ====
759 759  
760 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
761 761  
891 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
762 762  
893 +
763 763  ==== 2.3.3.10  +5V Output ====
764 764  
765 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
766 766  
897 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
898 +
767 767  The 5V output time can be controlled by AT Command.
768 768  
769 769  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -770,21 +770,52 @@
770 770  
771 771  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
772 772  
773 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
905 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
774 774  
775 775  
776 -
777 777  ==== 2.3.3.11  BH1750 Illumination Sensor ====
778 778  
910 +
779 779  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
780 780  
781 781  [[image:image-20230512172447-4.png||height="416" width="712"]]
782 782  
915 +
783 783  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
784 784  
785 785  
786 -==== 2.3.3.12  Working MOD ====
919 +==== 2.3.3.12  PWM MOD ====
787 787  
921 +
922 +* (((
923 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
924 +)))
925 +* (((
926 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
927 +)))
928 +
929 + [[image:image-20230817183249-3.png||height="320" width="417"]]
930 +
931 +* (((
932 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
933 +)))
934 +* (((
935 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
936 +)))
937 +* (((
938 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
939 +
940 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
941 +
942 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
943 +
944 +b) If the output duration is more than 30 seconds, better to use external power source. 
945 +)))
946 +
947 +
948 +==== 2.3.3.13  Working MOD ====
949 +
950 +
788 788  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
789 789  
790 790  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -800,9 +800,8 @@
800 800  * 6: MOD7
801 801  * 7: MOD8
802 802  * 8: MOD9
966 +* 9: MOD10
803 803  
804 -
805 -
806 806  == 2.4 Payload Decoder file ==
807 807  
808 808  
... ... @@ -813,21 +813,20 @@
813 813  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
814 814  
815 815  
816 -
817 817  == 2.5 Frequency Plans ==
818 818  
819 819  
820 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
981 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
821 821  
822 822  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
823 823  
824 824  
825 -= 3. Configure SN50v3-LB =
986 += 3. Configure SN50v3-LB/LS =
826 826  
827 827  == 3.1 Configure Methods ==
828 828  
829 829  
830 -SN50v3-LB supports below configure method:
991 +SN50v3-LB/LS supports below configure method:
831 831  
832 832  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
833 833  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -846,20 +846,21 @@
846 846  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
847 847  
848 848  
849 -== 3.3 Commands special design for SN50v3-LB ==
1010 +== 3.3 Commands special design for SN50v3-LB/LS ==
850 850  
851 851  
852 -These commands only valid for S31x-LB, as below:
1013 +These commands only valid for SN50v3-LB/LS, as below:
853 853  
854 854  
855 855  === 3.3.1 Set Transmit Interval Time ===
856 856  
1018 +
857 857  Feature: Change LoRaWAN End Node Transmit Interval.
858 858  
859 859  (% style="color:blue" %)**AT Command: AT+TDC**
860 860  
861 861  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
862 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1024 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
863 863  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
864 864  30000
865 865  OK
... ... @@ -879,25 +879,25 @@
879 879  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
880 880  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
881 881  
882 -
883 -
884 884  === 3.3.2 Get Device Status ===
885 885  
1046 +
886 886  Send a LoRaWAN downlink to ask the device to send its status.
887 887  
888 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1049 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
889 889  
890 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
1051 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
891 891  
892 892  
893 893  === 3.3.3 Set Interrupt Mode ===
894 894  
1056 +
895 895  Feature, Set Interrupt mode for GPIO_EXIT.
896 896  
897 897  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
898 898  
899 899  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
900 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1062 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
901 901  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
902 902  0
903 903  OK
... ... @@ -912,7 +912,6 @@
912 912  )))|(% style="width:157px" %)OK
913 913  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
914 914  Set Transmit Interval
915 -
916 916  trigger by rising edge.
917 917  )))|(% style="width:157px" %)OK
918 918  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -928,10 +928,9 @@
928 928  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
929 929  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
930 930  
931 -
932 -
933 933  === 3.3.4 Set Power Output Duration ===
934 934  
1094 +
935 935  Control the output duration 5V . Before each sampling, device will
936 936  
937 937  ~1. first enable the power output to external sensor,
... ... @@ -943,7 +943,7 @@
943 943  (% style="color:blue" %)**AT Command: AT+5VT**
944 944  
945 945  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
946 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1106 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
947 947  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
948 948  500(default)
949 949  OK
... ... @@ -961,16 +961,15 @@
961 961  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
962 962  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
963 963  
964 -
965 -
966 966  === 3.3.5 Set Weighing parameters ===
967 967  
1126 +
968 968  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
969 969  
970 970  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
971 971  
972 972  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
973 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1132 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
974 974  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
975 975  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
976 976  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -987,10 +987,9 @@
987 987  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
988 988  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
989 989  
990 -
991 -
992 992  === 3.3.6 Set Digital pulse count value ===
993 993  
1151 +
994 994  Feature: Set the pulse count value.
995 995  
996 996  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -998,7 +998,7 @@
998 998  (% style="color:blue" %)**AT Command: AT+SETCNT**
999 999  
1000 1000  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1001 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1159 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1002 1002  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1003 1003  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1004 1004  
... ... @@ -1011,16 +1011,15 @@
1011 1011  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1012 1012  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1013 1013  
1014 -
1015 -
1016 1016  === 3.3.7 Set Workmode ===
1017 1017  
1174 +
1018 1018  Feature: Switch working mode.
1019 1019  
1020 1020  (% style="color:blue" %)**AT Command: AT+MOD**
1021 1021  
1022 1022  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1023 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1180 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1024 1024  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1025 1025  OK
1026 1026  )))
... ... @@ -1036,13 +1036,103 @@
1036 1036  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1037 1037  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1038 1038  
1196 +(% id="H3.3.8PWMsetting" %)
1197 +=== 3.3.8 PWM setting ===
1039 1039  
1040 1040  
1041 -= 4. Battery & Power Consumption =
1200 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1042 1042  
1202 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1043 1043  
1044 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1204 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1205 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 223px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1206 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1207 +0(default)
1045 1045  
1209 +OK
1210 +)))
1211 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1212 +OK
1213 +
1214 +)))
1215 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1216 +
1217 +(% style="color:blue" %)**Downlink Command: 0x0C**
1218 +
1219 +Format: Command Code (0x0C) followed by 1 bytes.
1220 +
1221 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1222 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1223 +
1224 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1225 +
1226 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1227 +
1228 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1229 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1230 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1231 +0,0,0(default)
1232 +
1233 +OK
1234 +)))
1235 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1236 +OK
1237 +
1238 +)))
1239 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1240 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1241 +
1242 +
1243 +)))|(% style="width:137px" %)(((
1244 +OK
1245 +)))
1246 +
1247 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1248 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1249 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1250 +AT+PWMOUT=a,b,c
1251 +
1252 +
1253 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1254 +Set PWM output time, output frequency and output duty cycle.
1255 +
1256 +(((
1257 +
1258 +)))
1259 +
1260 +(((
1261 +
1262 +)))
1263 +)))|(% style="width:242px" %)(((
1264 +a: Output time (unit: seconds)
1265 +
1266 +The value ranges from 0 to 65535.
1267 +
1268 +When a=65535, PWM will always output.
1269 +)))
1270 +|(% style="width:242px" %)(((
1271 +b: Output frequency (unit: HZ)
1272 +)))
1273 +|(% style="width:242px" %)(((
1274 +c: Output duty cycle (unit: %)
1275 +
1276 +The value ranges from 0 to 100.
1277 +)))
1278 +
1279 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1280 +
1281 +Format: Command Code (0x0B01) followed by 6 bytes.
1282 +
1283 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1284 +
1285 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1286 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1287 +
1288 += 4. Battery & Power Cons =
1289 +
1290 +
1291 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1292 +
1046 1046  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1047 1047  
1048 1048  
... ... @@ -1050,31 +1050,47 @@
1050 1050  
1051 1051  
1052 1052  (% class="wikigeneratedid" %)
1053 -User can change firmware SN50v3-LB to:
1300 +**User can change firmware SN50v3-LB/LS to:**
1054 1054  
1055 1055  * Change Frequency band/ region.
1056 1056  * Update with new features.
1057 1057  * Fix bugs.
1058 1058  
1059 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1306 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1060 1060  
1308 +**Methods to Update Firmware:**
1061 1061  
1062 -Methods to Update Firmware:
1310 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1311 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1063 1063  
1064 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1065 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1066 -
1067 1067  = 6. FAQ =
1068 1068  
1069 -== 6.1 Where can i find source code of SN50v3-LB? ==
1315 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1070 1070  
1317 +
1071 1071  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1072 1072  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1073 1073  
1321 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1322 +
1323 +
1324 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1325 +
1326 +
1327 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1328 +
1329 +
1330 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1331 +
1332 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1333 +
1334 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1335 +
1336 +
1074 1074  = 7. Order Info =
1075 1075  
1076 1076  
1077 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1340 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1078 1078  
1079 1079  (% style="color:red" %)**XX**(%%): The default frequency band
1080 1080  
... ... @@ -1096,9 +1096,10 @@
1096 1096  
1097 1097  = 8. ​Packing Info =
1098 1098  
1362 +
1099 1099  (% style="color:#037691" %)**Package Includes**:
1100 1100  
1101 -* SN50v3-LB LoRaWAN Generic Node
1365 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1102 1102  
1103 1103  (% style="color:#037691" %)**Dimension and weight**:
1104 1104  
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0