<
From version < 43.17 >
edited by Xiaoling
on 2023/05/16 14:14
To version < 6.1 >
edited by Edwin Chen
on 2023/05/11 20:24
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,15 +16,18 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -122,22 +122,39 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
125 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
126 +|=(% style="width: 102px;background-color:#D9E2F3;color:#0070C0" %)Model|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)Photo|=(% style="width: 218px;background-color:#D9E2F3;color:#0070C0" %)Probe Info
127 +|(% style="width:102px" %)S31-LB|(% style="width:190px" %)[[image:S31.jpg]]|(% style="width:297px" %)(((
128 +1 x SHT31 Probe
126 126  
130 +Cable Length : 2 meters
127 127  
132 +
133 +)))
134 +|(% style="width:102px" %)S31B-LB|(% style="width:190px" %)[[image:S31B.jpg]]|(% style="width:297px" %)(((
135 +1 x SHT31 Probe
136 +
137 +Installed in device.
138 +)))
139 +
140 +(% style="display:none" %)
141 +
142 +
143 +
128 128  == 1.8 Mechanical ==
129 129  
130 130  
131 131  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132 132  
149 +
133 133  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134 134  
152 +
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 138  == Hole Option ==
139 139  
140 -
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -145,12 +145,12 @@
145 145  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
146 146  
147 147  
148 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
165 += 2. Configure S31x-LB to connect to LoRaWAN network =
149 149  
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
170 +The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -161,11 +161,11 @@
161 161  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
181 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
165 165  
166 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
183 +Each S31x-LB is shipped with a sticker with the default device EUI as below:
167 167  
168 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
185 +[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
169 169  
170 170  
171 171  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -192,10 +192,10 @@
192 192  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
193 193  
194 194  
195 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
212 +(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
196 196  
197 197  
198 -Press the button for 5 seconds to activate the SN50v3-LB.
215 +Press the button for 5 seconds to activate the S31x-LB.
199 199  
200 200  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
201 201  
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
227 +Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -219,9 +219,11 @@
219 219  
220 220  Example parse in TTNv3
221 221  
239 +[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224 224  
242 +(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
243 +
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
... ... @@ -273,347 +273,39 @@
273 273  Ex2: 0x0B49 = 2889mV
274 274  
275 275  
276 -=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
295 +=== 2.3.2  Sensor Data. FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
298 +Sensor Data is uplink via FPORT=2
280 280  
281 -For example:
282 -
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 -
285 -
286 -(% style="color:red" %) **Important Notice:**
287 -
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
291 -
292 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 -
294 -
295 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 -
297 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:35px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
300 -Temperature(DS18B20)(PC13)
301 -)))|(% style="width:78px" %)(((
302 -ADC(PA4)
303 -)))|(% style="width:216px" %)(((
304 -Digital in(PB15)&Digital Interrupt(PA8)
305 -)))|(% style="width:308px" %)(((
306 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
307 -)))|(% style="width:154px" %)(((
308 -Humidity(SHT20 or SHT31)
309 -)))
310 -
311 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
312 -
313 -
314 -==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 -
316 -This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 -
318 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 -|**Value**|BAT|(% style="width:196px" %)(((
321 -Temperature(DS18B20)(PC13)
322 -)))|(% style="width:87px" %)(((
323 -ADC(PA4)
324 -)))|(% style="width:189px" %)(((
325 -Digital in(PB15) & Digital Interrupt(PA8)
326 -)))|(% style="width:208px" %)(((
327 -Distance measure by:1) LIDAR-Lite V3HP
328 -Or 2) Ultrasonic Sensor
329 -)))|(% style="width:117px" %)Reserved
330 -
331 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
332 -
333 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
334 -
335 -[[image:image-20230512173758-5.png||height="563" width="712"]]
336 -
337 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
338 -
339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
340 -
341 -[[image:image-20230512173903-6.png||height="596" width="715"]]
342 -
343 -For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
344 -
345 -(% style="width:1113px" %)
346 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
347 -|**Value**|BAT|(% style="width:183px" %)(((
348 -Temperature(DS18B20)
349 -(PC13)
350 -)))|(% style="width:173px" %)(((
351 -Digital in(PB15) &
352 -Digital Interrupt(PA8)
353 -)))|(% style="width:84px" %)(((
354 -ADC
355 -(PA4)
356 -)))|(% style="width:323px" %)(((
357 -Distance measure by:1)TF-Mini plus LiDAR
358 -Or 
359 -2) TF-Luna LiDAR
360 -)))|(% style="width:188px" %)Distance signal  strength
361 -
362 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
363 -
364 -**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
365 -
366 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
367 -
368 -[[image:image-20230512180609-7.png||height="555" width="802"]]
369 -
370 -**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
371 -
372 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
373 -
374 -[[image:image-20230513105207-4.png||height="469" width="802"]]
375 -
376 -
377 -==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
378 -
379 -This mode has total 12 bytes. Include 3 x ADC + 1x I2C
380 -
381 -(% style="width:1031px" %)
382 -|=(((
300 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
301 +|=(% style="width: 90px;background-color:#D9E2F3" %)(((
383 383  **Size(bytes)**
384 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
385 -|**Value**|(% style="width:68px" %)(((
386 -ADC1
387 -(PA4)
388 -)))|(% style="width:75px" %)(((
389 -ADC2
390 -(PA5)
391 -)))|(((
392 -ADC3
393 -(PA8)
394 -)))|(((
395 -Digital Interrupt(PB15)
396 -)))|(% style="width:304px" %)(((
397 -Temperature
398 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
399 -)))|(% style="width:163px" %)(((
400 -Humidity
401 -(SHT20 or SHT31)
402 -)))|(% style="width:53px" %)Bat
403 -
404 -[[image:image-20230513110214-6.png]]
405 -
406 -
407 -==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
408 -
409 -
410 -This mode has total 11 bytes. As shown below:
411 -
412 -(% style="width:1017px" %)
413 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
414 -|**Value**|BAT|(% style="width:186px" %)(((
415 -Temperature1(DS18B20)
416 -(PC13)
417 -)))|(% style="width:82px" %)(((
418 -ADC
419 -(PA4)
420 -)))|(% style="width:210px" %)(((
421 -Digital in(PB15) &
422 -Digital Interrupt(PA8) 
423 -)))|(% style="width:191px" %)Temperature2(DS18B20)
424 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
425 -(PB8)
426 -
427 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
428 -
429 -[[image:image-20230513134006-1.png||height="559" width="736"]]
430 -
431 -
432 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
433 -
434 -[[image:image-20230512164658-2.png||height="532" width="729"]]
435 -
436 -Each HX711 need to be calibrated before used. User need to do below two steps:
437 -
438 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
439 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
440 -1. (((
441 -Weight has 4 bytes, the unit is g.
303 +)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
304 +|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
305 +[[Battery>>||anchor="HBattery:"]]
306 +)))|(% style="width:130px" %)(((
307 +[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
308 +)))|(% style="width:91px" %)(((
309 +[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
310 +)))|(% style="width:103px" %)(((
311 +[[Temperature>>||anchor="HTemperature:"]]
312 +)))|(% style="width:80px" %)(((
313 +[[Humidity>>||anchor="HHumidity:"]]
442 442  )))
443 443  
444 -For example:
316 +==== (% style="color:#4472c4" %)**Battery**(%%) ====
445 445  
446 -**AT+GETSENSORVALUE =0**
318 +Sensor Battery Level.
447 447  
448 -Response:  Weight is 401 g
449 -
450 -Check the response of this command and adjust the value to match the real value for thing.
451 -
452 -(% style="width:767px" %)
453 -|=(((
454 -**Size(bytes)**
455 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
456 -|**Value**|BAT|(% style="width:193px" %)(((
457 -Temperature(DS18B20)
458 -(PC13)
459 -)))|(% style="width:85px" %)(((
460 -ADC
461 -(PA4)
462 -)))|(% style="width:186px" %)(((
463 -Digital in(PB15) &
464 -Digital Interrupt(PA8)
465 -)))|(% style="width:100px" %)Weight
466 -
467 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
468 -
469 -
470 -==== 2.3.2.6  MOD~=6 (Counting Mode) ====
471 -
472 -In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
473 -
474 -Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
475 -
476 -[[image:image-20230512181814-9.png||height="543" width="697"]]
477 -
478 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
479 -
480 -(% style="width:961px" %)
481 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
482 -|**Value**|BAT|(% style="width:256px" %)(((
483 -Temperature(DS18B20)
484 -
485 -(PC13)
486 -)))|(% style="width:108px" %)(((
487 -ADC
488 -(PA4)
489 -)))|(% style="width:126px" %)(((
490 -Digital in
491 -(PB15)
492 -)))|(% style="width:145px" %)(((
493 -Count
494 -(PA8)
495 -)))
496 -
497 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
498 -
499 -
500 -==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
501 -
502 -(% style="width:1108px" %)
503 -|=(((
504 -**Size(bytes)**
505 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
506 -|**Value**|BAT|(% style="width:188px" %)(((
507 -Temperature(DS18B20)
508 -(PC13)
509 -)))|(% style="width:83px" %)(((
510 -ADC
511 -(PA5)
512 -)))|(% style="width:184px" %)(((
513 -Digital Interrupt1(PA8)
514 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
515 -
516 -[[image:image-20230513111203-7.png||height="324" width="975"]]
517 -
518 -==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
519 -
520 -(% style="width:922px" %)
521 -|=(((
522 -**Size(bytes)**
523 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
524 -|**Value**|BAT|(% style="width:207px" %)(((
525 -Temperature(DS18B20)
526 -(PC13)
527 -)))|(% style="width:94px" %)(((
528 -ADC1
529 -(PA4)
530 -)))|(% style="width:198px" %)(((
531 -Digital Interrupt(PB15)
532 -)))|(% style="width:84px" %)(((
533 -ADC2
534 -(PA5)
535 -)))|(% style="width:82px" %)(((
536 -ADC3
537 -(PA8)
538 -)))
539 -
540 -[[image:image-20230513111231-8.png||height="335" width="900"]]
541 -
542 -
543 -==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
544 -
545 -(% style="width:1010px" %)
546 -|=(((
547 -**Size(bytes)**
548 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
549 -|**Value**|BAT|(((
550 -Temperature1(DS18B20)
551 -(PC13)
552 -)))|(((
553 -Temperature2(DS18B20)
554 -(PB9)
555 -)))|(((
556 -Digital Interrupt
557 -(PB15)
558 -)))|(% style="width:193px" %)(((
559 -Temperature3(DS18B20)
560 -(PB8)
561 -)))|(% style="width:78px" %)(((
562 -Count1
563 -(PA8)
564 -)))|(% style="width:78px" %)(((
565 -Count2
566 -(PA4)
567 -)))
568 -
569 -[[image:image-20230513111255-9.png||height="341" width="899"]]
570 -
571 -**The newly added AT command is issued correspondingly:**
572 -
573 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
574 -
575 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
576 -
577 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
578 -
579 -**AT+SETCNT=aa,bb** 
580 -
581 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
582 -
583 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
584 -
585 -
586 -
587 -=== 2.3.3  ​Decode payload ===
588 -
589 -While using TTN V3 network, you can add the payload format to decode the payload.
590 -
591 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
592 -
593 -The payload decoder function for TTN V3 are here:
594 -
595 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
596 -
597 -
598 -==== 2.3.3.1 Battery Info ====
599 -
600 -Check the battery voltage for SN50v3.
601 -
602 602  Ex1: 0x0B45 = 2885mV
603 603  
604 604  Ex2: 0x0B49 = 2889mV
605 605  
606 606  
607 -==== 2.3.3.2  Temperature (DS18B20) ====
608 608  
609 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
326 +==== (% style="color:#4472c4" %)**Temperature**(%%) ====
610 610  
611 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
612 -
613 -**Connection:**
614 -
615 -[[image:image-20230512180718-8.png||height="538" width="647"]]
616 -
617 617  **Example**:
618 618  
619 619  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -623,211 +623,195 @@
623 623  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
624 624  
625 625  
626 -==== 2.3.3.3 Digital Input ====
337 +==== (% style="color:#4472c4" %)**Humidity**(%%) ====
627 627  
628 -The digital input for pin PB15,
629 629  
630 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
631 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
340 +Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
632 632  
633 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
634 -(((
635 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
636 636  
637 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
638 -)))
343 +==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
639 639  
640 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
641 641  
642 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
346 +**Example:**
643 643  
644 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
348 +If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
645 645  
646 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
350 +If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
647 647  
648 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
352 +If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
649 649  
354 +If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settings. see [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
650 650  
651 -==== 2.3.3.5 Digital Interrupt ====
652 652  
653 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
357 +== 2.4 Payload Decoder file ==
654 654  
655 -(% style="color:blue" %)**~ Interrupt connection method:**
656 656  
657 -[[image:image-20230513105351-5.png||height="147" width="485"]]
360 +In TTN, use can add a custom payload so it shows friendly reading
658 658  
659 -(% style="color:blue" %)**Example to use with door sensor :**
362 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
660 660  
661 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
364 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
662 662  
663 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
664 664  
665 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
367 +== 2.5 Datalog Feature ==
666 666  
667 -(% style="color:blue" %)**~ Below is the installation example:**
668 668  
669 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
370 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
670 670  
671 -* (((
672 -One pin to SN50_v3's PA8 pin
673 -)))
674 -* (((
675 -The other pin to SN50_v3's VDD pin
676 -)))
677 677  
678 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
373 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
679 679  
680 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
681 681  
682 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
376 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
683 683  
684 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
378 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
379 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
685 685  
686 -The above photos shows the two parts of the magnetic switch fitted to a door.
381 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
687 687  
688 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
383 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
689 689  
690 -The command is:
385 +=== 2.5.2 Unix TimeStamp ===
691 691  
692 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
693 693  
694 -Below shows some screen captures in TTN V3:
388 +S31x-LB uses Unix TimeStamp format based on
695 695  
696 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
390 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
697 697  
698 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
392 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
699 699  
700 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
394 +Below is the converter example
701 701  
396 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
702 702  
703 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
398 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 Jan ~-~- 29 Friday 03:03:25
704 704  
705 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
706 706  
707 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
401 +=== 2.5.3 Set Device Time ===
708 708  
709 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
710 710  
711 -Below is the connection to SHT20/ SHT31. The connection is as below:
404 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
712 712  
406 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
713 713  
714 -[[image:image-20230513103633-3.png||height="448" width="716"]]
408 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
715 715  
716 -The device will be able to get the I2C sensor data now and upload to IoT Server.
717 717  
718 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
411 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
719 719  
720 -Convert the read byte to decimal and divide it by ten.
721 721  
722 -**Example:**
414 +The Datalog uplinks will use below payload format.
723 723  
724 -Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
416 +**Retrieval data payload:**
725 725  
726 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
418 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
419 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
420 +**Size(bytes)**
421 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
422 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
423 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
424 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
727 727  
728 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
426 +**Poll message flag & Ext:**
729 729  
428 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
730 730  
731 -==== 2.3.3.7  ​Distance Reading ====
430 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
732 732  
733 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
432 +**Poll Message Flag**: 1: This message is a poll message reply.
734 734  
434 +* Poll Message Flag is set to 1.
735 735  
736 -==== 2.3.3.8 Ultrasonic Sensor ====
436 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
737 737  
738 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
438 +For example, in US915 band, the max payload for different DR is:
739 739  
740 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
440 +**a) DR0:** max is 11 bytes so one entry of data
741 741  
742 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
442 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
743 743  
744 -The picture below shows the connection:
444 +**c) DR2:** total payload includes 11 entries of data
745 745  
746 -[[image:image-20230512173903-6.png||height="596" width="715"]]
446 +**d) DR3: **total payload includes 22 entries of data.
747 747  
748 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
448 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
749 749  
750 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
751 751  
752 752  **Example:**
753 753  
754 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
453 +If S31x-LB has below data inside Flash:
755 755  
455 +[[image:1682646494051-944.png]]
756 756  
457 +If user sends below downlink command: 3160065F9760066DA705
757 757  
758 -==== 2.3.3.9  Battery Output - BAT pin ====
459 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
759 759  
760 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
461 + Stop time: 60066DA7= time 21/1/19 05:27:03
761 761  
762 762  
763 -==== 2.3.3.1 +5V Output ====
464 +**S31x-LB will uplink this payload.**
764 764  
765 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling
466 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
766 766  
767 -The 5V output time can be controlled by AT Command.
468 +(((
469 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
470 +)))
768 768  
769 -(% style="color:blue" %)**AT+5VT=1000**
472 +(((
473 +Where the first 11 bytes is for the first entry:
474 +)))
770 770  
771 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
476 +(((
477 +7FFF089801464160065F97
478 +)))
772 772  
773 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
480 +(((
481 +**Ext sensor data**=0x7FFF/100=327.67
482 +)))
774 774  
484 +(((
485 +**Temp**=0x088E/100=22.00
486 +)))
775 775  
488 +(((
489 +**Hum**=0x014B/10=32.6
490 +)))
776 776  
777 -==== 2.3.3.11  BH1750 Illumination Sensor ====
492 +(((
493 +**poll message flag & Ext**=0x41,means reply data,Ext=1
494 +)))
778 778  
779 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
496 +(((
497 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
498 +)))
780 780  
781 -[[image:image-20230512172447-4.png||height="416" width="712"]]
782 782  
783 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
501 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
784 784  
503 +== 2.6 Temperature Alarm Feature ==
785 785  
786 -==== 2.3.3.12  Working MOD ====
787 787  
788 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
506 +S31x-LB work flow with Alarm feature.
789 789  
790 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
791 791  
792 -Case 7^^th^^ Byte >> 2 & 0x1f:
509 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
793 793  
794 -* 0: MOD1
795 -* 1: MOD2
796 -* 2: MOD3
797 -* 3: MOD4
798 -* 4: MOD5
799 -* 5: MOD6
800 -* 6: MOD7
801 -* 7: MOD8
802 -* 8: MOD9
803 803  
512 +== 2.7 Frequency Plans ==
804 804  
805 805  
806 -== 2.4 Payload Decoder file ==
515 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
807 807  
808 -
809 -In TTN, use can add a custom payload so it shows friendly reading
810 -
811 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
812 -
813 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
814 -
815 -
816 -
817 -== 2.5 Frequency Plans ==
818 -
819 -
820 -The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
821 -
822 822  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
823 823  
824 824  
825 -= 3. Configure SN50v3-LB =
520 += 3. Configure S31x-LB =
826 826  
827 827  == 3.1 Configure Methods ==
828 828  
829 829  
830 -SN50v3-LB supports below configure method:
525 +S31x-LB supports below configure method:
831 831  
832 832  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
833 833  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -846,7 +846,7 @@
846 846  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
847 847  
848 848  
849 -== 3.3 Commands special design for SN50v3-LB ==
544 +== 3.3 Commands special design for S31x-LB ==
850 850  
851 851  
852 852  These commands only valid for S31x-LB, as below:
... ... @@ -854,6 +854,7 @@
854 854  
855 855  === 3.3.1 Set Transmit Interval Time ===
856 856  
552 +
857 857  Feature: Change LoRaWAN End Node Transmit Interval.
858 858  
859 859  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -879,169 +879,122 @@
879 879  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
880 880  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
881 881  
882 -
883 -
884 884  === 3.3.2 Get Device Status ===
885 885  
886 -Send a LoRaWAN downlink to ask the device to send its status.
887 887  
581 +Send a LoRaWAN downlink to ask device send Alarm settings.
582 +
888 888  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
889 889  
890 890  Sensor will upload Device Status via FPORT=5. See payload section for detail.
891 891  
892 892  
893 -=== 3.3.3 Set Interrupt Mode ===
588 +=== 3.3.3 Set Temperature Alarm Threshold ===
894 894  
895 -Feature, Set Interrupt mode for GPIO_EXIT.
590 +* (% style="color:blue" %)**AT Command:**
896 896  
897 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
592 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
898 898  
899 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
900 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
901 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
902 -0
903 -OK
904 -the mode is 0 =Disable Interrupt
905 -)))
906 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
907 -Set Transmit Interval
908 -0. (Disable Interrupt),
909 -~1. (Trigger by rising and falling edge)
910 -2. (Trigger by falling edge)
911 -3. (Trigger by rising edge)
912 -)))|(% style="width:157px" %)OK
913 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
914 -Set Transmit Interval
594 +* When min=0, and max≠0, Alarm higher than max
595 +* When min≠0, and max=0, Alarm lower than min
596 +* When min≠0 and max≠0, Alarm higher than max or lower than min
915 915  
916 -trigger by rising edge.
917 -)))|(% style="width:157px" %)OK
918 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
598 +Example:
919 919  
920 -(% style="color:blue" %)**Downlink Command: 0x06**
600 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
921 921  
922 -Format: Command Code (0x06) followed by 3 bytes.
602 +* (% style="color:blue" %)**Downlink Payload:**
923 923  
924 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
604 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
925 925  
926 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
927 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
928 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
929 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
606 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
930 930  
931 931  
609 +=== 3.3.4 Set Humidity Alarm Threshold ===
932 932  
933 -=== 3.3.4 Set Power Output Duration ===
611 +* (% style="color:blue" %)**AT Command:**
934 934  
935 -Control the output duration 5V . Before each sampling, device will
613 +(% style="color:#037691" %)**AT+SHHUM=min,max**
936 936  
937 -~1. first enable the power output to external sensor,
615 +* When min=0, and max≠0, Alarm higher than max
616 +* When min≠0, and max=0, Alarm lower than min
617 +* When min≠0 and max≠0, Alarm higher than max or lower than min
938 938  
939 -2. keep it on as per duration, read sensor value and construct uplink payload
619 +Example:
940 940  
941 -3. final, close the power output.
621 + AT+SHHUM=70, ~/~/ Alarm when humidity lower than 70%.
942 942  
943 -(% style="color:blue" %)**AT Command: AT+5VT**
623 +* (% style="color:blue" %)**Downlink Payload:**
944 944  
945 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
946 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
947 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
948 -500(default)
949 -OK
950 -)))
951 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
952 -Close after a delay of 1000 milliseconds.
953 -)))|(% style="width:157px" %)OK
625 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
954 954  
955 -(% style="color:blue" %)**Downlink Command: 0x07**
627 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
956 956  
957 -Format: Command Code (0x07) followed by 2 bytes.
958 958  
959 -The first and second bytes are the time to turn on.
630 +=== 3.3.5 Set Alarm Interval ===
960 960  
961 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
962 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
632 +The shortest time of two Alarm packet. (unit: min)
963 963  
634 +* (% style="color:blue" %)**AT Command:**
964 964  
636 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
965 965  
966 -=== 3.3.5 Set Weighing parameters ===
638 +* (% style="color:blue" %)**Downlink Payload:**
967 967  
968 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
640 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
969 969  
970 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
971 971  
972 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
973 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
974 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
975 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
976 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
643 +=== 3.3.6 Get Alarm settings ===
977 977  
978 -(% style="color:blue" %)**Downlink Command: 0x08**
979 979  
980 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
646 +Send a LoRaWAN downlink to ask device send Alarm settings.
981 981  
982 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
648 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
983 983  
984 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
650 +**Example:**
985 985  
986 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
987 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
988 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
652 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
989 989  
990 990  
655 +**Explain:**
991 991  
992 -=== 3.3.6 Set Digital pulse count value ===
657 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
993 993  
994 -Feature: Set the pulse count value.
659 +=== 3.3.7 Set Interrupt Mode ===
995 995  
996 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
997 997  
998 -(% style="color:blue" %)**AT Command: AT+SETCNT**
662 +Feature, Set Interrupt mode for GPIO_EXIT.
999 999  
1000 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1001 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1002 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1003 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
664 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1004 1004  
1005 -(% style="color:blue" %)**Downlink Command: 0x09**
1006 -
1007 -Format: Command Code (0x09) followed by 5 bytes.
1008 -
1009 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1010 -
1011 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1012 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1013 -
1014 -
1015 -
1016 -=== 3.3.7 Set Workmode ===
1017 -
1018 -Feature: Switch working mode.
1019 -
1020 -(% style="color:blue" %)**AT Command: AT+MOD**
1021 -
1022 1022  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1023 1023  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1024 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
668 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
669 +0
1025 1025  OK
671 +the mode is 0 =Disable Interrupt
1026 1026  )))
1027 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1028 -OK
1029 -Attention:Take effect after ATZ
1030 -)))
673 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
674 +Set Transmit Interval
675 +0. (Disable Interrupt),
676 +~1. (Trigger by rising and falling edge)
677 +2. (Trigger by falling edge)
678 +3. (Trigger by rising edge)
679 +)))|(% style="width:157px" %)OK
1031 1031  
1032 -(% style="color:blue" %)**Downlink Command: 0x0A**
681 +(% style="color:blue" %)**Downlink Command: 0x06**
1033 1033  
1034 -Format: Command Code (0x0A) followed by 1 bytes.
683 +Format: Command Code (0x06) followed by 3 bytes.
1035 1035  
1036 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1037 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
685 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1038 1038  
687 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
688 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1039 1039  
1040 -
1041 1041  = 4. Battery & Power Consumption =
1042 1042  
1043 1043  
1044 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
693 +S31x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1045 1045  
1046 1046  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1047 1047  
... ... @@ -1050,7 +1050,7 @@
1050 1050  
1051 1051  
1052 1052  (% class="wikigeneratedid" %)
1053 -User can change firmware SN50v3-LB to:
702 +User can change firmware S31x-LB to:
1054 1054  
1055 1055  * Change Frequency band/ region.
1056 1056  * Update with new features.
... ... @@ -1066,45 +1066,47 @@
1066 1066  
1067 1067  = 6. FAQ =
1068 1068  
1069 -== 6.1 Where can i find source code of SN50v3-LB? ==
1070 1070  
1071 -* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1072 -* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1073 1073  
1074 1074  = 7. Order Info =
1075 1075  
1076 1076  
1077 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
723 +Part Number: (% style="color:blue" %)**S31-LB-XX  / S31B-LB-XX**
1078 1078  
1079 1079  (% style="color:red" %)**XX**(%%): The default frequency band
1080 1080  
1081 1081  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
728 +
1082 1082  * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
730 +
1083 1083  * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
732 +
1084 1084  * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
734 +
1085 1085  * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
736 +
1086 1086  * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
738 +
1087 1087  * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
740 +
1088 1088  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1089 1089  
1090 -(% style="color:red" %)**YY: ** (%%)Hole Option
743 += =
1091 1091  
1092 -* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1093 -* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1094 -* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1095 -* (% style="color:red" %)**NH**(%%): No Hole
1096 -
1097 1097  = 8. ​Packing Info =
1098 1098  
1099 1099  (% style="color:#037691" %)**Package Includes**:
1100 1100  
1101 -* SN50v3-LB LoRaWAN Generic Node
749 +* S31x-LB LoRaWAN Temperature & Humidity Sensor
1102 1102  
1103 1103  (% style="color:#037691" %)**Dimension and weight**:
1104 1104  
1105 1105  * Device Size: cm
754 +
1106 1106  * Device Weight: g
756 +
1107 1107  * Package Size / pcs : cm
758 +
1108 1108  * Weight / pcs : g
1109 1109  
1110 1110  = 9. Support =
... ... @@ -1111,5 +1111,4 @@
1111 1111  
1112 1112  
1113 1113  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1114 -
1115 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
765 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230511203450-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -679.1 KB
Content
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0