Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -30,6 +30,7 @@ 30 30 31 31 == 1.2 Features == 32 32 33 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 291 291 291 +2. All modes share the same Payload Explanation from HERE. 292 + 293 +3. By default, the device will send an uplink message every 20 minutes. 294 + 295 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,7 +295,7 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:35px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 299 299 |**Value**|Bat|(% style="width:191px" %)((( 300 300 Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( ... ... @@ -311,12 +311,14 @@ 311 311 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 312 312 313 313 318 + 314 314 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 315 315 321 + 316 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 317 317 318 318 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 319 -|(% style=" width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**325 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 320 320 |**Value**|BAT|(% style="width:196px" %)((( 321 321 Temperature(DS18B20)(PC13) 322 322 )))|(% style="width:87px" %)((( ... ... @@ -325,34 +325,35 @@ 325 325 Digital in(PB15) & Digital Interrupt(PA8) 326 326 )))|(% style="width:208px" %)((( 327 327 Distance measure by:1) LIDAR-Lite V3HP 328 -Or 2) Ultrasonic Sensor 334 +Or 335 +2) Ultrasonic Sensor 329 329 )))|(% style="width:117px" %)Reserved 330 330 331 331 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 332 332 340 + 333 333 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 334 334 335 335 [[image:image-20230512173758-5.png||height="563" width="712"]] 336 336 345 + 337 337 (% style="color:blue" %)**Connection to Ultrasonic Sensor:** 338 338 339 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 348 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 340 340 341 341 [[image:image-20230512173903-6.png||height="596" width="715"]] 342 342 352 + 343 343 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 344 344 345 -(% style="width: 1113px" %)346 -|**Size(bytes)**|**2**|(% style="width:1 83px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**355 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 356 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 347 347 |**Value**|BAT|(% style="width:183px" %)((( 348 -Temperature(DS18B20) 349 -(PC13) 358 +Temperature(DS18B20)(PC13) 350 350 )))|(% style="width:173px" %)((( 351 -Digital in(PB15) & 352 -Digital Interrupt(PA8) 360 +Digital in(PB15) & Digital Interrupt(PA8) 353 353 )))|(% style="width:84px" %)((( 354 -ADC 355 -(PA4) 362 +ADC(PA4) 356 356 )))|(% style="width:323px" %)((( 357 357 Distance measure by:1)TF-Mini plus LiDAR 358 358 Or ... ... @@ -361,15 +361,17 @@ 361 361 362 362 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 363 363 371 + 364 364 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 365 365 366 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 367 367 368 368 [[image:image-20230512180609-7.png||height="555" width="802"]] 369 369 378 + 370 370 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 371 371 372 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 373 373 374 374 [[image:image-20230513105207-4.png||height="469" width="802"]] 375 375 ... ... @@ -376,29 +376,25 @@ 376 376 377 377 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 378 378 388 + 379 379 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 380 380 381 -(% style="width: 1031px" %)382 -|=((( 391 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 392 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 383 383 **Size(bytes)** 384 -)))|=(% style="width: 68px;" %)**2**|=(% style="width:75px;" %)**2**|=**2**|=**1**|=(% style="width:304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width:53px;" %)1394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 385 385 |**Value**|(% style="width:68px" %)((( 386 -ADC1 387 -(PA4) 396 +ADC1(PA4) 388 388 )))|(% style="width:75px" %)((( 389 -ADC2 390 -(PA5) 398 +ADC2(PA5) 391 391 )))|((( 392 -ADC3 393 -(PA8) 400 +ADC3(PA8) 394 394 )))|((( 395 395 Digital Interrupt(PB15) 396 396 )))|(% style="width:304px" %)((( 397 -Temperature 398 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 404 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 399 399 )))|(% style="width:163px" %)((( 400 -Humidity 401 -(SHT20 or SHT31) 406 +Humidity(SHT20 or SHT31) 402 402 )))|(% style="width:53px" %)Bat 403 403 404 404 [[image:image-20230513110214-6.png]] ... ... @@ -409,20 +409,16 @@ 409 409 410 410 This mode has total 11 bytes. As shown below: 411 411 412 -(% style="width: 1017px" %)413 -|**Size(bytes)**|**2**|(% style="width:1 86px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**417 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 418 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 414 414 |**Value**|BAT|(% style="width:186px" %)((( 415 -Temperature1(DS18B20) 416 -(PC13) 420 +Temperature1(DS18B20)(PC13) 417 417 )))|(% style="width:82px" %)((( 418 -ADC 419 -(PA4) 422 +ADC(PA4) 420 420 )))|(% style="width:210px" %)((( 421 -Digital in(PB15) & 422 -Digital Interrupt(PA8) 424 +Digital in(PB15) & Digital Interrupt(PA8) 423 423 )))|(% style="width:191px" %)Temperature2(DS18B20) 424 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 425 -(PB8) 426 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 426 426 427 427 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 428 428 ... ... @@ -429,46 +429,50 @@ 429 429 [[image:image-20230513134006-1.png||height="559" width="736"]] 430 430 431 431 433 + 432 432 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 433 433 436 + 434 434 [[image:image-20230512164658-2.png||height="532" width="729"]] 435 435 436 436 Each HX711 need to be calibrated before used. User need to do below two steps: 437 437 438 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 439 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 440 440 1. ((( 441 441 Weight has 4 bytes, the unit is g. 445 + 446 + 447 + 442 442 ))) 443 443 444 444 For example: 445 445 446 -**AT+GETSENSORVALUE =0** 452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 447 447 448 448 Response: Weight is 401 g 449 449 450 450 Check the response of this command and adjust the value to match the real value for thing. 451 451 452 -(% style="width: 767px" %)453 -|=((( 458 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 459 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 454 454 **Size(bytes)** 455 -)))|=**2**|=(% style="width: 1 93px;" %)**2**|=(% style="width:85px;" %)**2**|=(% style="width:186px;" %)**1**|=(% style="width:100px;" %)**4**461 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 456 456 |**Value**|BAT|(% style="width:193px" %)((( 457 -Temperature(DS18B20) 458 -(PC13) 463 +Temperature(DS18B20)(PC13) 459 459 )))|(% style="width:85px" %)((( 460 -ADC 461 -(PA4) 465 +ADC(PA4) 462 462 )))|(% style="width:186px" %)((( 463 -Digital in(PB15) & 464 -Digital Interrupt(PA8) 467 +Digital in(PB15) & Digital Interrupt(PA8) 465 465 )))|(% style="width:100px" %)Weight 466 466 467 467 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 468 468 469 469 473 + 470 470 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 471 471 476 + 472 472 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 473 473 474 474 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -475,40 +475,37 @@ 475 475 476 476 [[image:image-20230512181814-9.png||height="543" width="697"]] 477 477 478 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 479 479 480 -(% style="width:961px" %) 481 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 482 -|**Value**|BAT|(% style="width:256px" %)((( 483 -Temperature(DS18B20) 484 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 484 484 485 -(PC13) 486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 488 +|**Value**|BAT|(% style="width:256px" %)((( 489 +Temperature(DS18B20)(PC13) 486 486 )))|(% style="width:108px" %)((( 487 -ADC 488 -(PA4) 491 +ADC(PA4) 489 489 )))|(% style="width:126px" %)((( 490 -Digital in 491 -(PB15) 493 +Digital in(PB15) 492 492 )))|(% style="width:145px" %)((( 493 -Count 494 -(PA8) 495 +Count(PA8) 495 495 ))) 496 496 497 497 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 498 498 499 499 501 + 500 500 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 501 501 502 -(% style="width:1108px" %) 503 -|=((( 504 + 505 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 506 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 504 504 **Size(bytes)** 505 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2508 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 506 506 |**Value**|BAT|(% style="width:188px" %)((( 507 507 Temperature(DS18B20) 508 508 (PC13) 509 509 )))|(% style="width:83px" %)((( 510 -ADC 511 -(PA5) 513 +ADC(PA5) 512 512 )))|(% style="width:184px" %)((( 513 513 Digital Interrupt1(PA8) 514 514 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -515,26 +515,25 @@ 515 515 516 516 [[image:image-20230513111203-7.png||height="324" width="975"]] 517 517 520 + 518 518 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 519 519 520 -(% style="width:922px" %) 521 -|=((( 523 + 524 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 525 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 522 522 **Size(bytes)** 523 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2527 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 524 524 |**Value**|BAT|(% style="width:207px" %)((( 525 525 Temperature(DS18B20) 526 526 (PC13) 527 527 )))|(% style="width:94px" %)((( 528 -ADC1 529 -(PA4) 532 +ADC1(PA4) 530 530 )))|(% style="width:198px" %)((( 531 531 Digital Interrupt(PB15) 532 532 )))|(% style="width:84px" %)((( 533 -ADC2 534 -(PA5) 536 +ADC2(PA5) 535 535 )))|(% style="width:82px" %)((( 536 -ADC3 537 -(PA8) 538 +ADC3(PA8) 538 538 ))) 539 539 540 540 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -542,50 +542,50 @@ 542 542 543 543 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 544 544 545 -(% style="width:1010px" %) 546 -|=((( 546 + 547 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 548 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 547 547 **Size(bytes)** 548 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4550 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 549 549 |**Value**|BAT|((( 550 -Temperature 1(DS18B20)551 -(PC13) 552 +Temperature 553 +(DS18B20)(PC13) 552 552 )))|((( 553 -Temperature2 (DS18B20)554 -(PB9) 555 +Temperature2 556 +(DS18B20)(PB9) 555 555 )))|((( 556 556 Digital Interrupt 557 557 (PB15) 558 558 )))|(% style="width:193px" %)((( 559 -Temperature3 (DS18B20)560 -(PB8) 561 +Temperature3 562 +(DS18B20)(PB8) 561 561 )))|(% style="width:78px" %)((( 562 -Count1 563 -(PA8) 564 +Count1(PA8) 564 564 )))|(% style="width:78px" %)((( 565 -Count2 566 -(PA4) 566 +Count2(PA4) 567 567 ))) 568 568 569 569 [[image:image-20230513111255-9.png||height="341" width="899"]] 570 570 571 -**The newly added AT command is issued correspondingly:** 571 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 572 572 573 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**573 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 574 574 575 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**575 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 576 576 577 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**577 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 578 578 579 -**AT+SETCNT=aa,bb** 580 580 580 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 581 + 581 581 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 582 582 583 583 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 584 584 585 585 586 - 587 587 === 2.3.3 Decode payload === 588 588 589 + 589 589 While using TTN V3 network, you can add the payload format to decode the payload. 590 590 591 591 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -592,13 +592,14 @@ 592 592 593 593 The payload decoder function for TTN V3 are here: 594 594 595 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 596 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 596 596 597 597 598 598 ==== 2.3.3.1 Battery Info ==== 599 599 600 -Check the battery voltage for SN50v3. 601 601 602 +Check the battery voltage for SN50v3-LB. 603 + 602 602 Ex1: 0x0B45 = 2885mV 603 603 604 604 Ex2: 0x0B49 = 2889mV ... ... @@ -606,16 +606,18 @@ 606 606 607 607 ==== 2.3.3.2 Temperature (DS18B20) ==== 608 608 611 + 609 609 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 610 610 611 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]614 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 612 612 613 -**Connection:** 616 +(% style="color:blue" %)**Connection:** 614 614 615 615 [[image:image-20230512180718-8.png||height="538" width="647"]] 616 616 617 -**Example**: 618 618 621 +(% style="color:blue" %)**Example**: 622 + 619 619 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 620 620 621 621 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -625,6 +625,7 @@ 625 625 626 626 ==== 2.3.3.3 Digital Input ==== 627 627 632 + 628 628 The digital input for pin PB15, 629 629 630 630 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -634,11 +634,14 @@ 634 634 ((( 635 635 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 636 636 637 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 642 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 643 + 644 + 638 638 ))) 639 639 640 640 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 641 641 649 + 642 642 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 643 643 644 644 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -645,17 +645,20 @@ 645 645 646 646 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 647 647 648 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 649 649 657 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 650 650 659 + 651 651 ==== 2.3.3.5 Digital Interrupt ==== 652 652 653 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 654 654 655 - (% style="color:blue"%)**~Interruptconnection method:**663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 656 656 665 +(% style="color:blue" %)** Interrupt connection method:** 666 + 657 657 [[image:image-20230513105351-5.png||height="147" width="485"]] 658 658 669 + 659 659 (% style="color:blue" %)**Example to use with door sensor :** 660 660 661 661 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -662,22 +662,23 @@ 662 662 663 663 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 664 664 665 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 666 666 667 -(% style="color:blue" %)**~ Below is the installation example:** 668 668 669 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:679 +(% style="color:blue" %)**Below is the installation example:** 670 670 681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 682 + 671 671 * ((( 672 -One pin to SN50 _v3's PA8 pin684 +One pin to SN50v3-LB's PA8 pin 673 673 ))) 674 674 * ((( 675 -The other pin to SN50 _v3's VDD pin687 +The other pin to SN50v3-LB's VDD pin 676 676 ))) 677 677 678 678 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 679 679 680 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 692 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 681 681 682 682 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 683 683 ... ... @@ -689,12 +689,13 @@ 689 689 690 690 The command is: 691 691 692 -(% style="color:blue" %)**AT+INTMOD1=1 704 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 693 693 694 694 Below shows some screen captures in TTN V3: 695 695 696 696 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 697 697 710 + 698 698 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 699 699 700 700 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -702,15 +702,16 @@ 702 702 703 703 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 704 704 718 + 705 705 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 706 706 707 707 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 708 708 709 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.723 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 710 710 725 + 711 711 Below is the connection to SHT20/ SHT31. The connection is as below: 712 712 713 - 714 714 [[image:image-20230513103633-3.png||height="448" width="716"]] 715 715 716 716 The device will be able to get the I2C sensor data now and upload to IoT Server. ... ... @@ -730,23 +730,26 @@ 730 730 731 731 ==== 2.3.3.7 Distance Reading ==== 732 732 733 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 734 734 748 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 735 735 750 + 736 736 ==== 2.3.3.8 Ultrasonic Sensor ==== 737 737 753 + 738 738 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 739 739 740 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.756 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 741 741 742 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 758 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 743 743 744 744 The picture below shows the connection: 745 745 746 746 [[image:image-20230512173903-6.png||height="596" width="715"]] 747 747 748 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 749 749 765 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 766 + 750 750 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 751 751 752 752 **Example:** ... ... @@ -754,16 +754,17 @@ 754 754 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 755 755 756 756 757 - 758 758 ==== 2.3.3.9 Battery Output - BAT pin ==== 759 759 776 + 760 760 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 761 761 762 762 763 763 ==== 2.3.3.10 +5V Output ==== 764 764 765 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 766 766 783 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 784 + 767 767 The 5V output time can be controlled by AT Command. 768 768 769 769 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -773,18 +773,20 @@ 773 773 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 774 774 775 775 776 - 777 777 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 778 778 796 + 779 779 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 780 780 781 781 [[image:image-20230512172447-4.png||height="416" width="712"]] 782 782 801 + 783 783 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 784 784 785 785 786 786 ==== 2.3.3.12 Working MOD ==== 787 787 807 + 788 788 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 789 789 790 790 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -801,8 +801,6 @@ 801 801 * 7: MOD8 802 802 * 8: MOD9 803 803 804 - 805 - 806 806 == 2.4 Payload Decoder file == 807 807 808 808 ... ... @@ -813,7 +813,6 @@ 813 813 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 814 814 815 815 816 - 817 817 == 2.5 Frequency Plans == 818 818 819 819 ... ... @@ -849,11 +849,12 @@ 849 849 == 3.3 Commands special design for SN50v3-LB == 850 850 851 851 852 -These commands only valid for S3 1x-LB, as below:869 +These commands only valid for SN50v3-LB, as below: 853 853 854 854 855 855 === 3.3.1 Set Transmit Interval Time === 856 856 874 + 857 857 Feature: Change LoRaWAN End Node Transmit Interval. 858 858 859 859 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -879,10 +879,9 @@ 879 879 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 880 880 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 881 881 882 - 883 - 884 884 === 3.3.2 Get Device Status === 885 885 902 + 886 886 Send a LoRaWAN downlink to ask the device to send its status. 887 887 888 888 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 ... ... @@ -892,6 +892,7 @@ 892 892 893 893 === 3.3.3 Set Interrupt Mode === 894 894 912 + 895 895 Feature, Set Interrupt mode for GPIO_EXIT. 896 896 897 897 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -912,7 +912,6 @@ 912 912 )))|(% style="width:157px" %)OK 913 913 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 914 914 Set Transmit Interval 915 - 916 916 trigger by rising edge. 917 917 )))|(% style="width:157px" %)OK 918 918 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -928,10 +928,9 @@ 928 928 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 929 929 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 930 930 931 - 932 - 933 933 === 3.3.4 Set Power Output Duration === 934 934 950 + 935 935 Control the output duration 5V . Before each sampling, device will 936 936 937 937 ~1. first enable the power output to external sensor, ... ... @@ -961,10 +961,9 @@ 961 961 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 962 962 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 963 963 964 - 965 - 966 966 === 3.3.5 Set Weighing parameters === 967 967 982 + 968 968 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 969 969 970 970 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -987,10 +987,9 @@ 987 987 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 988 988 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 989 989 990 - 991 - 992 992 === 3.3.6 Set Digital pulse count value === 993 993 1007 + 994 994 Feature: Set the pulse count value. 995 995 996 996 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1011,10 +1011,9 @@ 1011 1011 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1012 1012 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1013 1013 1014 - 1015 - 1016 1016 === 3.3.7 Set Workmode === 1017 1017 1030 + 1018 1018 Feature: Switch working mode. 1019 1019 1020 1020 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1036,8 +1036,6 @@ 1036 1036 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1037 1037 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1038 1038 1039 - 1040 - 1041 1041 = 4. Battery & Power Consumption = 1042 1042 1043 1043 ... ... @@ -1068,6 +1068,7 @@ 1068 1068 1069 1069 == 6.1 Where can i find source code of SN50v3-LB? == 1070 1070 1082 + 1071 1071 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1072 1072 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1073 1073 ... ... @@ -1096,6 +1096,7 @@ 1096 1096 1097 1097 = 8. Packing Info = 1098 1098 1111 + 1099 1099 (% style="color:#037691" %)**Package Includes**: 1100 1100 1101 1101 * SN50v3-LB LoRaWAN Generic Node