<
From version < 43.15 >
edited by Xiaoling
on 2023/05/16 14:13
To version < 67.1 >
edited by Saxer Lin
on 2023/08/17 18:32
>
Change comment: Uploaded new attachment "image-20230817183218-2.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -30,6 +30,7 @@
30 30  
31 31  == 1.2 ​Features ==
32 32  
33 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -40,6 +40,7 @@
40 40  * Downlink to change configure
41 41  * 8500mAh Battery for long term use
42 42  
44 +
43 43  == 1.3 Specification ==
44 44  
45 45  
... ... @@ -77,6 +77,7 @@
77 77  * Sleep Mode: 5uA @ 3.3v
78 78  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
79 79  
82 +
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 82  
... ... @@ -104,6 +104,7 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
110 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
129 +[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -135,7 +135,7 @@
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== Hole Option ==
142 +== 1.9 Hole Option ==
139 139  
140 140  
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
165 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
214 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,44 +215,44 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
222 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -*0x01: EU868
233 +0x01: EU868
230 230  
231 -*0x02: US915
235 +0x02: US915
232 232  
233 -*0x03: IN865
237 +0x03: IN865
234 234  
235 -*0x04: AU915
239 +0x04: AU915
236 236  
237 -*0x05: KZ865
241 +0x05: KZ865
238 238  
239 -*0x06: RU864
243 +0x06: RU864
240 240  
241 -*0x07: AS923
245 +0x07: AS923
242 242  
243 -*0x08: AS923-1
247 +0x08: AS923-1
244 244  
245 -*0x09: AS923-2
249 +0x09: AS923-2
246 246  
247 -*0x0a: AS923-3
251 +0x0a: AS923-3
248 248  
249 -*0x0b: CN470
253 +0x0b: CN470
250 250  
251 -*0x0c: EU433
255 +0x0c: EU433
252 252  
253 -*0x0d: KR920
257 +0x0d: KR920
254 254  
255 -*0x0e: MA869
259 +0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -276,19 +276,22 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
283 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
287 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
292 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
291 291  
294 +2. All modes share the same Payload Explanation from HERE.
295 +
296 +3. By default, the device will send an uplink message every 20 minutes.
297 +
298 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -295,8 +295,8 @@
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:35px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
305 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
306 +|Value|Bat|(% style="width:191px" %)(((
300 300  Temperature(DS18B20)(PC13)
301 301  )))|(% style="width:78px" %)(((
302 302  ADC(PA4)
... ... @@ -313,97 +313,90 @@
313 313  
314 314  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
315 315  
323 +
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 318  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
320 -|**Value**|BAT|(% style="width:196px" %)(((
321 -Temperature(DS18B20)
322 -(PC13)
327 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
328 +|Value|BAT|(% style="width:196px" %)(((
329 +Temperature(DS18B20)(PC13)
323 323  )))|(% style="width:87px" %)(((
324 -ADC
325 -(PA4)
331 +ADC(PA4)
326 326  )))|(% style="width:189px" %)(((
327 -Digital in(PB15) &
328 -Digital Interrupt(PA8)
333 +Digital in(PB15) & Digital Interrupt(PA8)
329 329  )))|(% style="width:208px" %)(((
330 -Distance measure by:
331 -1) LIDAR-Lite V3HP
332 -Or
333 -2) Ultrasonic Sensor
335 +Distance measure by: 1) LIDAR-Lite V3HP
336 +Or 2) Ultrasonic Sensor
334 334  )))|(% style="width:117px" %)Reserved
335 335  
336 336  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
337 337  
338 -**Connection of LIDAR-Lite V3HP:**
339 339  
342 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
343 +
340 340  [[image:image-20230512173758-5.png||height="563" width="712"]]
341 341  
342 -**Connection to Ultrasonic Sensor:**
343 343  
344 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
347 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
345 345  
349 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
350 +
346 346  [[image:image-20230512173903-6.png||height="596" width="715"]]
347 347  
353 +
348 348  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
349 349  
350 -(% style="width:1113px" %)
351 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
352 -|**Value**|BAT|(% style="width:183px" %)(((
353 -Temperature(DS18B20)
354 -(PC13)
356 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
357 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
358 +|Value|BAT|(% style="width:183px" %)(((
359 +Temperature(DS18B20)(PC13)
355 355  )))|(% style="width:173px" %)(((
356 -Digital in(PB15) &
357 -Digital Interrupt(PA8)
361 +Digital in(PB15) & Digital Interrupt(PA8)
358 358  )))|(% style="width:84px" %)(((
359 -ADC
360 -(PA4)
363 +ADC(PA4)
361 361  )))|(% style="width:323px" %)(((
362 362  Distance measure by:1)TF-Mini plus LiDAR
363 -Or 
364 -2) TF-Luna LiDAR
366 +Or 2) TF-Luna LiDAR
365 365  )))|(% style="width:188px" %)Distance signal  strength
366 366  
367 367  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
368 368  
371 +
369 369  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
370 370  
371 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
372 372  
373 373  [[image:image-20230512180609-7.png||height="555" width="802"]]
374 374  
378 +
375 375  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
376 376  
377 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
378 378  
379 -[[image:image-20230513105207-4.png||height="469" width="802"]]
383 +[[image:image-20230610170047-1.png||height="452" width="799"]]
380 380  
381 381  
382 382  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
383 383  
388 +
384 384  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
385 385  
386 -(% style="width:1031px" %)
387 -|=(((
391 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
388 388  **Size(bytes)**
389 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
390 -|**Value**|(% style="width:68px" %)(((
391 -ADC1
392 -(PA4)
394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
395 +|Value|(% style="width:68px" %)(((
396 +ADC1(PA4)
393 393  )))|(% style="width:75px" %)(((
394 -ADC2
395 -(PA5)
398 +ADC2(PA5)
396 396  )))|(((
397 -ADC3
398 -(PA8)
400 +ADC3(PA8)
399 399  )))|(((
400 400  Digital Interrupt(PB15)
401 401  )))|(% style="width:304px" %)(((
402 -Temperature
403 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
404 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
404 404  )))|(% style="width:163px" %)(((
405 -Humidity
406 -(SHT20 or SHT31)
406 +Humidity(SHT20 or SHT31)
407 407  )))|(% style="width:53px" %)Bat
408 408  
409 409  [[image:image-20230513110214-6.png]]
... ... @@ -414,59 +414,57 @@
414 414  
415 415  This mode has total 11 bytes. As shown below:
416 416  
417 -(% style="width:1017px" %)
418 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
419 -|**Value**|BAT|(% style="width:186px" %)(((
420 -Temperature1(DS18B20)
421 -(PC13)
417 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
419 +|Value|BAT|(% style="width:186px" %)(((
420 +Temperature1(DS18B20)(PC13)
422 422  )))|(% style="width:82px" %)(((
423 -ADC
424 -(PA4)
422 +ADC(PA4)
425 425  )))|(% style="width:210px" %)(((
426 -Digital in(PB15) &
427 -Digital Interrupt(PA8) 
424 +Digital in(PB15) & Digital Interrupt(PA8) 
428 428  )))|(% style="width:191px" %)Temperature2(DS18B20)
429 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
430 -(PB8)
426 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
431 431  
432 432  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433 433  
430 +
434 434  [[image:image-20230513134006-1.png||height="559" width="736"]]
435 435  
436 436  
437 437  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
438 438  
436 +
439 439  [[image:image-20230512164658-2.png||height="532" width="729"]]
440 440  
441 441  Each HX711 need to be calibrated before used. User need to do below two steps:
442 442  
443 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
444 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
445 445  1. (((
446 446  Weight has 4 bytes, the unit is g.
445 +
446 +
447 +
447 447  )))
448 448  
449 449  For example:
450 450  
451 -**AT+GETSENSORVALUE =0**
452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
452 452  
453 453  Response:  Weight is 401 g
454 454  
455 455  Check the response of this command and adjust the value to match the real value for thing.
456 456  
457 -(% style="width:767px" %)
458 -|=(((
458 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
459 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
459 459  **Size(bytes)**
460 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
461 -|**Value**|BAT|(% style="width:193px" %)(((
462 -Temperature(DS18B20)
463 -(PC13)
461 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
462 +|Value|BAT|(% style="width:193px" %)(((
463 +Temperature(DS18B20)(PC13)
464 464  )))|(% style="width:85px" %)(((
465 -ADC
466 -(PA4)
465 +ADC(PA4)
467 467  )))|(% style="width:186px" %)(((
468 -Digital in(PB15) &
469 -Digital Interrupt(PA8)
467 +Digital in(PB15) & Digital Interrupt(PA8)
470 470  )))|(% style="width:100px" %)Weight
471 471  
472 472  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -474,6 +474,7 @@
474 474  
475 475  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
476 476  
475 +
477 477  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
478 478  
479 479  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -480,23 +480,19 @@
480 480  
481 481  [[image:image-20230512181814-9.png||height="543" width="697"]]
482 482  
483 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
484 484  
485 -(% style="width:961px" %)
486 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
487 -|**Value**|BAT|(% style="width:256px" %)(((
488 -Temperature(DS18B20)
483 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
489 489  
490 -(PC13)
485 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
486 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
487 +|Value|BAT|(% style="width:256px" %)(((
488 +Temperature(DS18B20)(PC13)
491 491  )))|(% style="width:108px" %)(((
492 -ADC
493 -(PA4)
490 +ADC(PA4)
494 494  )))|(% style="width:126px" %)(((
495 -Digital in
496 -(PB15)
492 +Digital in(PB15)
497 497  )))|(% style="width:145px" %)(((
498 -Count
499 -(PA8)
494 +Count(PA8)
500 500  )))
501 501  
502 502  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -504,16 +504,16 @@
504 504  
505 505  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
506 506  
507 -(% style="width:1108px" %)
508 -|=(((
502 +
503 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
504 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
509 509  **Size(bytes)**
510 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
511 -|**Value**|BAT|(% style="width:188px" %)(((
506 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
507 +|Value|BAT|(% style="width:188px" %)(((
512 512  Temperature(DS18B20)
513 513  (PC13)
514 514  )))|(% style="width:83px" %)(((
515 -ADC
516 -(PA5)
511 +ADC(PA5)
517 517  )))|(% style="width:184px" %)(((
518 518  Digital Interrupt1(PA8)
519 519  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -520,26 +520,25 @@
520 520  
521 521  [[image:image-20230513111203-7.png||height="324" width="975"]]
522 522  
518 +
523 523  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524 524  
525 -(% style="width:922px" %)
526 -|=(((
521 +
522 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
523 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
527 527  **Size(bytes)**
528 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
529 -|**Value**|BAT|(% style="width:207px" %)(((
525 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
526 +|Value|BAT|(% style="width:207px" %)(((
530 530  Temperature(DS18B20)
531 531  (PC13)
532 532  )))|(% style="width:94px" %)(((
533 -ADC1
534 -(PA4)
530 +ADC1(PA4)
535 535  )))|(% style="width:198px" %)(((
536 536  Digital Interrupt(PB15)
537 537  )))|(% style="width:84px" %)(((
538 -ADC2
539 -(PA5)
534 +ADC2(PA5)
540 540  )))|(% style="width:82px" %)(((
541 -ADC3
542 -(PA8)
536 +ADC3(PA8)
543 543  )))
544 544  
545 545  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -547,50 +547,105 @@
547 547  
548 548  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
549 549  
550 -(% style="width:1010px" %)
551 -|=(((
544 +
545 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
546 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
552 552  **Size(bytes)**
553 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
554 -|**Value**|BAT|(((
555 -Temperature1(DS18B20)
556 -(PC13)
548 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
549 +|Value|BAT|(((
550 +Temperature
551 +(DS18B20)(PC13)
557 557  )))|(((
558 -Temperature2(DS18B20)
559 -(PB9)
553 +Temperature2
554 +(DS18B20)(PB9)
560 560  )))|(((
561 561  Digital Interrupt
562 562  (PB15)
563 563  )))|(% style="width:193px" %)(((
564 -Temperature3(DS18B20)
565 -(PB8)
559 +Temperature3
560 +(DS18B20)(PB8)
566 566  )))|(% style="width:78px" %)(((
567 -Count1
568 -(PA8)
562 +Count1(PA8)
569 569  )))|(% style="width:78px" %)(((
570 -Count2
571 -(PA4)
564 +Count2(PA4)
572 572  )))
573 573  
574 574  [[image:image-20230513111255-9.png||height="341" width="899"]]
575 575  
576 -**The newly added AT command is issued correspondingly:**
569 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
577 577  
578 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
571 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
579 579  
580 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
573 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
581 581  
582 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
575 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
583 583  
584 -**AT+SETCNT=aa,bb** 
585 585  
578 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
579 +
586 586  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
587 587  
588 588  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
589 589  
590 590  
585 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
591 591  
587 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
588 +
589 +
590 +===== 2.3.2.10.a  Uplink, PWM input capture =====
591 +
592 +[[image:image-20230817172209-2.png||height="439" width="683"]]
593 +
594 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %)
595 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2**
596 +|Value|Bat|(% style="width:191px" %)(((
597 +Temperature(DS18B20)(PC13)
598 +)))|(% style="width:78px" %)(((
599 +ADC(PA4)
600 +)))|(% style="width:135px" %)(((
601 +PWM_Setting
602 +
603 +&Digital Interrupt(PA8)
604 +)))|(% style="width:70px" %)(((
605 +Pulse period
606 +)))|(% style="width:89px" %)(((
607 +Duration of high level
608 +)))
609 +
610 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
611 +
612 +
613 +(% style="color:blue" %)**AT+PWMSET=AA(Default is 0)  ==> Corresponding downlink: 0B AA**
614 +
615 +When AA is 0, the unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. 
616 +
617 +When AA is 1, the unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. 
618 +
619 +
620 +===== 2.3.2.10.b  Downlink, PWM output =====
621 +
622 +[[image:image-20230817173800-3.png||height="412" width="685"]]
623 +
624 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
625 +
626 + xx xx xx is the output frequency, the unit is HZ.
627 +
628 + yy is the duty cycle of the output, the unit is %.
629 +
630 + zz zz is the time delay of the output, the unit is ms.
631 +
632 +
633 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
634 +
635 +The oscilloscope displays as follows:
636 +
637 +[[image:image-20230817173858-5.png||height="694" width="921"]]
638 +
639 +
592 592  === 2.3.3  ​Decode payload ===
593 593  
642 +
594 594  While using TTN V3 network, you can add the payload format to decode the payload.
595 595  
596 596  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -597,13 +597,14 @@
597 597  
598 598  The payload decoder function for TTN V3 are here:
599 599  
600 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
649 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
601 601  
602 602  
603 603  ==== 2.3.3.1 Battery Info ====
604 604  
605 -Check the battery voltage for SN50v3.
606 606  
655 +Check the battery voltage for SN50v3-LB.
656 +
607 607  Ex1: 0x0B45 = 2885mV
608 608  
609 609  Ex2: 0x0B49 = 2889mV
... ... @@ -611,16 +611,18 @@
611 611  
612 612  ==== 2.3.3.2  Temperature (DS18B20) ====
613 613  
664 +
614 614  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
615 615  
616 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
667 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
617 617  
618 -**Connection:**
669 +(% style="color:blue" %)**Connection:**
619 619  
620 620  [[image:image-20230512180718-8.png||height="538" width="647"]]
621 621  
622 -**Example**:
623 623  
674 +(% style="color:blue" %)**Example**:
675 +
624 624  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
625 625  
626 626  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -630,6 +630,7 @@
630 630  
631 631  ==== 2.3.3.3 Digital Input ====
632 632  
685 +
633 633  The digital input for pin PB15,
634 634  
635 635  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -639,28 +639,38 @@
639 639  (((
640 640  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
641 641  
642 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
695 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
696 +
697 +
643 643  )))
644 644  
645 645  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
646 646  
647 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
648 648  
649 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
703 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
650 650  
705 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
706 +
651 651  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
652 652  
653 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
654 654  
710 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
655 655  
712 +
713 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
714 +
715 +[[image:image-20230811113449-1.png||height="370" width="608"]]
716 +
656 656  ==== 2.3.3.5 Digital Interrupt ====
657 657  
658 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
659 659  
660 -(% style="color:blue" %)**~ Interrupt connection method:**
720 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
661 661  
722 +(% style="color:blue" %)** Interrupt connection method:**
723 +
662 662  [[image:image-20230513105351-5.png||height="147" width="485"]]
663 663  
726 +
664 664  (% style="color:blue" %)**Example to use with door sensor :**
665 665  
666 666  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -667,22 +667,23 @@
667 667  
668 668  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
669 669  
670 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
733 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
671 671  
672 -(% style="color:blue" %)**~ Below is the installation example:**
673 673  
674 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
736 +(% style="color:blue" %)**Below is the installation example:**
675 675  
738 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
739 +
676 676  * (((
677 -One pin to SN50_v3's PA8 pin
741 +One pin to SN50v3-LB's PA8 pin
678 678  )))
679 679  * (((
680 -The other pin to SN50_v3's VDD pin
744 +The other pin to SN50v3-LB's VDD pin
681 681  )))
682 682  
683 683  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
684 684  
685 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
749 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
686 686  
687 687  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
688 688  
... ... @@ -694,29 +694,32 @@
694 694  
695 695  The command is:
696 696  
697 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
761 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
698 698  
699 699  Below shows some screen captures in TTN V3:
700 700  
701 701  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
702 702  
703 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
704 704  
768 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
769 +
705 705  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
706 706  
707 707  
708 708  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
709 709  
775 +
710 710  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
711 711  
712 712  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
713 713  
714 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
780 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
715 715  
782 +
716 716  Below is the connection to SHT20/ SHT31. The connection is as below:
717 717  
785 +[[image:image-20230610170152-2.png||height="501" width="846"]]
718 718  
719 -[[image:image-20230513103633-3.png||height="448" width="716"]]
720 720  
721 721  The device will be able to get the I2C sensor data now and upload to IoT Server.
722 722  
... ... @@ -735,23 +735,26 @@
735 735  
736 736  ==== 2.3.3.7  ​Distance Reading ====
737 737  
738 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
739 739  
806 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
740 740  
808 +
741 741  ==== 2.3.3.8 Ultrasonic Sensor ====
742 742  
811 +
743 743  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
744 744  
745 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
814 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
746 746  
747 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
816 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
748 748  
749 749  The picture below shows the connection:
750 750  
751 751  [[image:image-20230512173903-6.png||height="596" width="715"]]
752 752  
753 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
754 754  
823 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
824 +
755 755  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
756 756  
757 757  **Example:**
... ... @@ -759,16 +759,17 @@
759 759  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
760 760  
761 761  
762 -
763 763  ==== 2.3.3.9  Battery Output - BAT pin ====
764 764  
765 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
766 766  
835 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
767 767  
837 +
768 768  ==== 2.3.3.10  +5V Output ====
769 769  
770 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
771 771  
841 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
842 +
772 772  The 5V output time can be controlled by AT Command.
773 773  
774 774  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -775,21 +775,26 @@
775 775  
776 776  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
777 777  
778 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
849 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
779 779  
780 780  
781 -
782 782  ==== 2.3.3.11  BH1750 Illumination Sensor ====
783 783  
854 +
784 784  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
785 785  
786 786  [[image:image-20230512172447-4.png||height="416" width="712"]]
787 787  
859 +
788 788  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
789 789  
790 790  
791 -==== 2.3.3.12  Working MOD ====
863 +==== 2.3.3.12  PWM MOD ====
792 792  
865 +
866 +==== 2.3.3.13  Working MOD ====
867 +
868 +
793 793  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
794 794  
795 795  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -805,9 +805,9 @@
805 805  * 6: MOD7
806 806  * 7: MOD8
807 807  * 8: MOD9
884 +* 9: MOD10
808 808  
809 809  
810 -
811 811  == 2.4 Payload Decoder file ==
812 812  
813 813  
... ... @@ -818,7 +818,6 @@
818 818  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
819 819  
820 820  
821 -
822 822  == 2.5 Frequency Plans ==
823 823  
824 824  
... ... @@ -838,6 +838,7 @@
838 838  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
839 839  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
840 840  
916 +
841 841  == 3.2 General Commands ==
842 842  
843 843  
... ... @@ -854,17 +854,18 @@
854 854  == 3.3 Commands special design for SN50v3-LB ==
855 855  
856 856  
857 -These commands only valid for S31x-LB, as below:
933 +These commands only valid for SN50v3-LB, as below:
858 858  
859 859  
860 860  === 3.3.1 Set Transmit Interval Time ===
861 861  
938 +
862 862  Feature: Change LoRaWAN End Node Transmit Interval.
863 863  
864 864  (% style="color:blue" %)**AT Command: AT+TDC**
865 865  
866 866  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
867 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
944 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
868 868  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
869 869  30000
870 870  OK
... ... @@ -885,24 +885,25 @@
885 885  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
886 886  
887 887  
888 -
889 889  === 3.3.2 Get Device Status ===
890 890  
967 +
891 891  Send a LoRaWAN downlink to ask the device to send its status.
892 892  
893 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
970 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
894 894  
895 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
972 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
896 896  
897 897  
898 898  === 3.3.3 Set Interrupt Mode ===
899 899  
977 +
900 900  Feature, Set Interrupt mode for GPIO_EXIT.
901 901  
902 902  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
903 903  
904 904  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
905 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
983 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
906 906  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
907 907  0
908 908  OK
... ... @@ -917,7 +917,6 @@
917 917  )))|(% style="width:157px" %)OK
918 918  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
919 919  Set Transmit Interval
920 -
921 921  trigger by rising edge.
922 922  )))|(% style="width:157px" %)OK
923 923  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -934,9 +934,9 @@
934 934  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
935 935  
936 936  
937 -
938 938  === 3.3.4 Set Power Output Duration ===
939 939  
1016 +
940 940  Control the output duration 5V . Before each sampling, device will
941 941  
942 942  ~1. first enable the power output to external sensor,
... ... @@ -948,7 +948,7 @@
948 948  (% style="color:blue" %)**AT Command: AT+5VT**
949 949  
950 950  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
951 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1028 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
952 952  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
953 953  500(default)
954 954  OK
... ... @@ -967,15 +967,15 @@
967 967  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
968 968  
969 969  
970 -
971 971  === 3.3.5 Set Weighing parameters ===
972 972  
1049 +
973 973  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
974 974  
975 975  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
976 976  
977 977  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
978 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1055 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
979 979  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
980 980  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
981 981  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -993,9 +993,9 @@
993 993  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
994 994  
995 995  
996 -
997 997  === 3.3.6 Set Digital pulse count value ===
998 998  
1075 +
999 999  Feature: Set the pulse count value.
1000 1000  
1001 1001  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1003,7 +1003,7 @@
1003 1003  (% style="color:blue" %)**AT Command: AT+SETCNT**
1004 1004  
1005 1005  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1006 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1083 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1007 1007  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1008 1008  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1009 1009  
... ... @@ -1017,15 +1017,15 @@
1017 1017  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1018 1018  
1019 1019  
1020 -
1021 1021  === 3.3.7 Set Workmode ===
1022 1022  
1099 +
1023 1023  Feature: Switch working mode.
1024 1024  
1025 1025  (% style="color:blue" %)**AT Command: AT+MOD**
1026 1026  
1027 1027  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1028 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1105 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1029 1029  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1030 1030  OK
1031 1031  )))
... ... @@ -1042,7 +1042,6 @@
1042 1042  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1043 1043  
1044 1044  
1045 -
1046 1046  = 4. Battery & Power Consumption =
1047 1047  
1048 1048  
... ... @@ -1055,27 +1055,45 @@
1055 1055  
1056 1056  
1057 1057  (% class="wikigeneratedid" %)
1058 -User can change firmware SN50v3-LB to:
1134 +**User can change firmware SN50v3-LB to:**
1059 1059  
1060 1060  * Change Frequency band/ region.
1061 1061  * Update with new features.
1062 1062  * Fix bugs.
1063 1063  
1064 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1140 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1065 1065  
1142 +**Methods to Update Firmware:**
1066 1066  
1067 -Methods to Update Firmware:
1144 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1145 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1068 1068  
1069 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1070 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1071 1071  
1072 1072  = 6. FAQ =
1073 1073  
1074 1074  == 6.1 Where can i find source code of SN50v3-LB? ==
1075 1075  
1152 +
1076 1076  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1077 1077  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1078 1078  
1156 +
1157 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1158 +
1159 +
1160 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1161 +
1162 +
1163 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1164 +
1165 +
1166 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1167 +
1168 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1169 +
1170 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1171 +
1172 +
1079 1079  = 7. Order Info =
1080 1080  
1081 1081  
... ... @@ -1099,8 +1099,10 @@
1099 1099  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1100 1100  * (% style="color:red" %)**NH**(%%): No Hole
1101 1101  
1196 +
1102 1102  = 8. ​Packing Info =
1103 1103  
1199 +
1104 1104  (% style="color:#037691" %)**Package Includes**:
1105 1105  
1106 1106  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1112,6 +1112,7 @@
1112 1112  * Package Size / pcs : cm
1113 1113  * Weight / pcs : g
1114 1114  
1211 +
1115 1115  = 9. Support =
1116 1116  
1117 1117  
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0