<
From version < 43.15 >
edited by Xiaoling
on 2023/05/16 14:13
To version < 42.1 >
edited by Saxer Lin
on 2023/05/16 11:27
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -16,15 +16,18 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
21 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
27 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
30 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -137,7 +137,6 @@
137 137  
138 138  == Hole Option ==
139 139  
140 -
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -291,21 +291,32 @@
291 291  
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 -
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:35px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
296 +(% style="width:1110px" %)
297 +|**Size(bytes)**|**2**|(% style="width:191px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**
299 299  |**Value**|Bat|(% style="width:191px" %)(((
300 -Temperature(DS18B20)(PC13)
299 +Temperature(DS18B20)
300 +
301 +(PC13)
301 301  )))|(% style="width:78px" %)(((
302 -ADC(PA4)
303 +ADC
304 +
305 +(PA4)
303 303  )))|(% style="width:216px" %)(((
304 -Digital in(PB15)&Digital Interrupt(PA8)
307 +Digital in(PB15) &
308 +
309 +Digital Interrupt(PA8)
310 +
311 +
305 305  )))|(% style="width:308px" %)(((
306 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
313 +Temperature
314 +
315 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
307 307  )))|(% style="width:154px" %)(((
308 -Humidity(SHT20 or SHT31)
317 +Humidity
318 +
319 +(SHT20 or SHT31)
309 309  )))
310 310  
311 311  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -315,16 +315,19 @@
315 315  
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
319 -|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:110px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:140px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**
329 +(% style="width:1011px" %)
330 +|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
320 320  |**Value**|BAT|(% style="width:196px" %)(((
321 321  Temperature(DS18B20)
333 +
322 322  (PC13)
323 323  )))|(% style="width:87px" %)(((
324 324  ADC
337 +
325 325  (PA4)
326 326  )))|(% style="width:189px" %)(((
327 327  Digital in(PB15) &
341 +
328 328  Digital Interrupt(PA8)
329 329  )))|(% style="width:208px" %)(((
330 330  Distance measure by:
... ... @@ -351,12 +351,15 @@
351 351  |**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
352 352  |**Value**|BAT|(% style="width:183px" %)(((
353 353  Temperature(DS18B20)
368 +
354 354  (PC13)
355 355  )))|(% style="width:173px" %)(((
356 356  Digital in(PB15) &
372 +
357 357  Digital Interrupt(PA8)
358 358  )))|(% style="width:84px" %)(((
359 359  ADC
376 +
360 360  (PA4)
361 361  )))|(% style="width:323px" %)(((
362 362  Distance measure by:1)TF-Mini plus LiDAR
... ... @@ -389,20 +389,25 @@
389 389  )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
390 390  |**Value**|(% style="width:68px" %)(((
391 391  ADC1
409 +
392 392  (PA4)
393 393  )))|(% style="width:75px" %)(((
394 394  ADC2
413 +
395 395  (PA5)
396 396  )))|(((
397 397  ADC3
417 +
398 398  (PA8)
399 399  )))|(((
400 400  Digital Interrupt(PB15)
401 401  )))|(% style="width:304px" %)(((
402 402  Temperature
423 +
403 403  (SHT20 or SHT31 or BH1750 Illumination Sensor)
404 404  )))|(% style="width:163px" %)(((
405 405  Humidity
427 +
406 406  (SHT20 or SHT31)
407 407  )))|(% style="width:53px" %)Bat
408 408  
... ... @@ -421,9 +421,11 @@
421 421  (PC13)
422 422  )))|(% style="width:82px" %)(((
423 423  ADC
446 +
424 424  (PA4)
425 425  )))|(% style="width:210px" %)(((
426 426  Digital in(PB15) &
450 +
427 427  Digital Interrupt(PA8) 
428 428  )))|(% style="width:191px" %)Temperature2(DS18B20)
429 429  (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
... ... @@ -460,12 +460,17 @@
460 460  )))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
461 461  |**Value**|BAT|(% style="width:193px" %)(((
462 462  Temperature(DS18B20)
487 +
463 463  (PC13)
489 +
490 +
464 464  )))|(% style="width:85px" %)(((
465 465  ADC
493 +
466 466  (PA4)
467 467  )))|(% style="width:186px" %)(((
468 468  Digital in(PB15) &
497 +
469 469  Digital Interrupt(PA8)
470 470  )))|(% style="width:100px" %)Weight
471 471  
... ... @@ -490,12 +490,15 @@
490 490  (PC13)
491 491  )))|(% style="width:108px" %)(((
492 492  ADC
522 +
493 493  (PA4)
494 494  )))|(% style="width:126px" %)(((
495 495  Digital in
526 +
496 496  (PB15)
497 497  )))|(% style="width:145px" %)(((
498 498  Count
530 +
499 499  (PA8)
500 500  )))
501 501  
... ... @@ -510,9 +510,11 @@
510 510  )))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
511 511  |**Value**|BAT|(% style="width:188px" %)(((
512 512  Temperature(DS18B20)
545 +
513 513  (PC13)
514 514  )))|(% style="width:83px" %)(((
515 515  ADC
549 +
516 516  (PA5)
517 517  )))|(% style="width:184px" %)(((
518 518  Digital Interrupt1(PA8)
... ... @@ -528,17 +528,21 @@
528 528  )))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
529 529  |**Value**|BAT|(% style="width:207px" %)(((
530 530  Temperature(DS18B20)
565 +
531 531  (PC13)
532 532  )))|(% style="width:94px" %)(((
533 533  ADC1
569 +
534 534  (PA4)
535 535  )))|(% style="width:198px" %)(((
536 536  Digital Interrupt(PB15)
537 537  )))|(% style="width:84px" %)(((
538 538  ADC2
575 +
539 539  (PA5)
540 540  )))|(% style="width:82px" %)(((
541 541  ADC3
579 +
542 542  (PA8)
543 543  )))
544 544  
... ... @@ -553,21 +553,27 @@
553 553  )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
554 554  |**Value**|BAT|(((
555 555  Temperature1(DS18B20)
594 +
556 556  (PC13)
557 557  )))|(((
558 558  Temperature2(DS18B20)
598 +
559 559  (PB9)
560 560  )))|(((
561 561  Digital Interrupt
602 +
562 562  (PB15)
563 563  )))|(% style="width:193px" %)(((
564 564  Temperature3(DS18B20)
606 +
565 565  (PB8)
566 566  )))|(% style="width:78px" %)(((
567 567  Count1
610 +
568 568  (PA8)
569 569  )))|(% style="width:78px" %)(((
570 570  Count2
614 +
571 571  (PA4)
572 572  )))
573 573  
... ... @@ -639,7 +639,7 @@
639 639  (((
640 640  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
641 641  
642 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
686 +**Note:**The maximum voltage input supports 3.6V.
643 643  )))
644 644  
645 645  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
... ... @@ -650,18 +650,17 @@
650 650  
651 651  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
652 652  
653 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
697 +**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
654 654  
655 -
656 656  ==== 2.3.3.5 Digital Interrupt ====
657 657  
658 658  Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
659 659  
660 -(% style="color:blue" %)**~ Interrupt connection method:**
703 +**~ Interrupt connection method:**
661 661  
662 662  [[image:image-20230513105351-5.png||height="147" width="485"]]
663 663  
664 -(% style="color:blue" %)**Example to use with door sensor :**
707 +**Example to use with door sensor :**
665 665  
666 666  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
667 667  
... ... @@ -669,7 +669,7 @@
669 669  
670 670  When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
671 671  
672 -(% style="color:blue" %)**~ Below is the installation example:**
715 +**~ Below is the installation example:**
673 673  
674 674  Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
675 675  
... ... @@ -694,7 +694,7 @@
694 694  
695 695  The command is:
696 696  
697 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
740 +**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
698 698  
699 699  Below shows some screen captures in TTN V3:
700 700  
... ... @@ -771,7 +771,7 @@
771 771  
772 772  The 5V output time can be controlled by AT Command.
773 773  
774 -(% style="color:blue" %)**AT+5VT=1000**
817 +**AT+5VT=1000**
775 775  
776 776  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
777 777  
... ... @@ -806,8 +806,6 @@
806 806  * 7: MOD8
807 807  * 8: MOD9
808 808  
809 -
810 -
811 811  == 2.4 Payload Decoder file ==
812 812  
813 813  
... ... @@ -885,7 +885,6 @@
885 885  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
886 886  
887 887  
888 -
889 889  === 3.3.2 Get Device Status ===
890 890  
891 891  Send a LoRaWAN downlink to ask the device to send its status.
... ... @@ -934,7 +934,6 @@
934 934  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
935 935  
936 936  
937 -
938 938  === 3.3.4 Set Power Output Duration ===
939 939  
940 940  Control the output duration 5V . Before each sampling, device will
... ... @@ -951,6 +951,7 @@
951 951  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
952 952  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
953 953  500(default)
993 +
954 954  OK
955 955  )))
956 956  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -967,7 +967,6 @@
967 967  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
968 968  
969 969  
970 -
971 971  === 3.3.5 Set Weighing parameters ===
972 972  
973 973  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
... ... @@ -993,7 +993,6 @@
993 993  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
994 994  
995 995  
996 -
997 997  === 3.3.6 Set Digital pulse count value ===
998 998  
999 999  Feature: Set the pulse count value.
... ... @@ -1017,7 +1017,6 @@
1017 1017  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1018 1018  
1019 1019  
1020 -
1021 1021  === 3.3.7 Set Workmode ===
1022 1022  
1023 1023  Feature: Switch working mode.
... ... @@ -1031,6 +1031,7 @@
1031 1031  )))
1032 1032  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1033 1033  OK
1071 +
1034 1034  Attention:Take effect after ATZ
1035 1035  )))
1036 1036  
... ... @@ -1042,7 +1042,6 @@
1042 1042  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1043 1043  
1044 1044  
1045 -
1046 1046  = 4. Battery & Power Consumption =
1047 1047  
1048 1048  
... ... @@ -1116,5 +1116,4 @@
1116 1116  
1117 1117  
1118 1118  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1119 -
1120 1120  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0