Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -30,6 +30,7 @@ 30 30 31 31 == 1.2 Features == 32 32 33 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -135,7 +135,7 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 139 +== 1.9 Hole Option == 139 139 140 140 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.162 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 211 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -220,7 +220,7 @@ 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 291 291 291 +2. All modes share the same Payload Explanation from HERE. 292 + 293 +3. By default, the device will send an uplink message every 20 minutes. 294 + 295 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,7 +295,7 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style=" width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:35px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 299 299 |**Value**|Bat|(% style="width:191px" %)((( 300 300 Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( ... ... @@ -313,22 +313,19 @@ 313 313 314 314 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 315 315 320 + 316 316 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 317 317 318 -(% style="width: 1011px" %)319 -|**Size(bytes)**|**2**|(% style="width:1 96px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**323 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 324 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 320 320 |**Value**|BAT|(% style="width:196px" %)((( 321 -Temperature(DS18B20) 322 -(PC13) 326 +Temperature(DS18B20)(PC13) 323 323 )))|(% style="width:87px" %)((( 324 -ADC 325 -(PA4) 328 +ADC(PA4) 326 326 )))|(% style="width:189px" %)((( 327 -Digital in(PB15) & 328 -Digital Interrupt(PA8) 330 +Digital in(PB15) & Digital Interrupt(PA8) 329 329 )))|(% style="width:208px" %)((( 330 -Distance measure by: 331 -1) LIDAR-Lite V3HP 332 +Distance measure by:1) LIDAR-Lite V3HP 332 332 Or 333 333 2) Ultrasonic Sensor 334 334 )))|(% style="width:117px" %)Reserved ... ... @@ -335,29 +335,29 @@ 335 335 336 336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 337 337 338 -**Connection of LIDAR-Lite V3HP:** 339 339 340 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 341 + 340 340 [[image:image-20230512173758-5.png||height="563" width="712"]] 341 341 342 -**Connection to Ultrasonic Sensor:** 343 343 344 - NeedtomoveR1 and R2 resistorstogetlow power,otherwise there willbe240uA standby current.345 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 345 345 347 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 348 + 346 346 [[image:image-20230512173903-6.png||height="596" width="715"]] 347 347 351 + 348 348 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 349 349 350 -(% style="width: 1113px" %)351 -|**Size(bytes)**|**2**|(% style="width:1 83px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**354 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 355 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 352 352 |**Value**|BAT|(% style="width:183px" %)((( 353 -Temperature(DS18B20) 354 -(PC13) 357 +Temperature(DS18B20)(PC13) 355 355 )))|(% style="width:173px" %)((( 356 -Digital in(PB15) & 357 -Digital Interrupt(PA8) 359 +Digital in(PB15) & Digital Interrupt(PA8) 358 358 )))|(% style="width:84px" %)((( 359 -ADC 360 -(PA4) 361 +ADC(PA4) 361 361 )))|(% style="width:323px" %)((( 362 362 Distance measure by:1)TF-Mini plus LiDAR 363 363 Or ... ... @@ -366,15 +366,17 @@ 366 366 367 367 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 368 368 370 + 369 369 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 370 370 371 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 373 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 372 372 373 373 [[image:image-20230512180609-7.png||height="555" width="802"]] 374 374 377 + 375 375 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 376 376 377 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 380 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 378 378 379 379 [[image:image-20230513105207-4.png||height="469" width="802"]] 380 380 ... ... @@ -381,29 +381,25 @@ 381 381 382 382 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 383 383 387 + 384 384 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 385 385 386 -(% style="width: 1031px" %)387 -|=((( 390 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 391 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 388 388 **Size(bytes)** 389 -)))|=(% style="width: 68px;" %)**2**|=(% style="width:75px;" %)**2**|=**2**|=**1**|=(% style="width:304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width:53px;" %)1393 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 390 390 |**Value**|(% style="width:68px" %)((( 391 -ADC1 392 -(PA4) 395 +ADC1(PA4) 393 393 )))|(% style="width:75px" %)((( 394 -ADC2 395 -(PA5) 397 +ADC2(PA5) 396 396 )))|((( 397 -ADC3 398 -(PA8) 399 +ADC3(PA8) 399 399 )))|((( 400 400 Digital Interrupt(PB15) 401 401 )))|(% style="width:304px" %)((( 402 -Temperature 403 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 403 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 404 404 )))|(% style="width:163px" %)((( 405 -Humidity 406 -(SHT20 or SHT31) 405 +Humidity(SHT20 or SHT31) 407 407 )))|(% style="width:53px" %)Bat 408 408 409 409 [[image:image-20230513110214-6.png]] ... ... @@ -414,66 +414,66 @@ 414 414 415 415 This mode has total 11 bytes. As shown below: 416 416 417 -(% style="width: 1017px" %)418 -|**Size(bytes)**|**2**|(% style="width:1 86px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**416 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 417 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 419 419 |**Value**|BAT|(% style="width:186px" %)((( 420 -Temperature1(DS18B20) 421 -(PC13) 419 +Temperature1(DS18B20)(PC13) 422 422 )))|(% style="width:82px" %)((( 423 -ADC 424 -(PA4) 421 +ADC(PA4) 425 425 )))|(% style="width:210px" %)((( 426 -Digital in(PB15) & 427 -Digital Interrupt(PA8) 423 +Digital in(PB15) & Digital Interrupt(PA8) 428 428 )))|(% style="width:191px" %)Temperature2(DS18B20) 429 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 430 -(PB8) 425 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 431 431 432 432 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 433 433 429 + 434 434 [[image:image-20230513134006-1.png||height="559" width="736"]] 435 435 436 436 437 437 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 438 438 435 + 439 439 [[image:image-20230512164658-2.png||height="532" width="729"]] 440 440 441 441 Each HX711 need to be calibrated before used. User need to do below two steps: 442 442 443 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 444 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 440 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 441 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 445 445 1. ((( 446 446 Weight has 4 bytes, the unit is g. 444 + 445 + 446 + 447 447 ))) 448 448 449 449 For example: 450 450 451 -**AT+GETSENSORVALUE =0** 451 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 452 452 453 453 Response: Weight is 401 g 454 454 455 455 Check the response of this command and adjust the value to match the real value for thing. 456 456 457 -(% style="width: 767px" %)458 -|=((( 457 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 458 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 459 459 **Size(bytes)** 460 -)))|=**2**|=(% style="width: 1 93px;" %)**2**|=(% style="width:85px;" %)**2**|=(% style="width:186px;" %)**1**|=(% style="width:100px;" %)**4**460 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 461 461 |**Value**|BAT|(% style="width:193px" %)((( 462 -Temperature(DS18B20) 463 -(PC13) 462 +Temperature(DS18B20)(PC13) 464 464 )))|(% style="width:85px" %)((( 465 -ADC 466 -(PA4) 464 +ADC(PA4) 467 467 )))|(% style="width:186px" %)((( 468 -Digital in(PB15) & 469 -Digital Interrupt(PA8) 466 +Digital in(PB15) & Digital Interrupt(PA8) 470 470 )))|(% style="width:100px" %)Weight 471 471 472 472 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 473 473 474 474 472 + 475 475 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 476 476 475 + 477 477 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 478 478 479 479 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -480,23 +480,19 @@ 480 480 481 481 [[image:image-20230512181814-9.png||height="543" width="697"]] 482 482 483 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 484 484 485 -(% style="width:961px" %) 486 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 487 -|**Value**|BAT|(% style="width:256px" %)((( 488 -Temperature(DS18B20) 483 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 489 489 490 -(PC13) 485 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 486 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 487 +|**Value**|BAT|(% style="width:256px" %)((( 488 +Temperature(DS18B20)(PC13) 491 491 )))|(% style="width:108px" %)((( 492 -ADC 493 -(PA4) 490 +ADC(PA4) 494 494 )))|(% style="width:126px" %)((( 495 -Digital in 496 -(PB15) 492 +Digital in(PB15) 497 497 )))|(% style="width:145px" %)((( 498 -Count 499 -(PA8) 494 +Count(PA8) 500 500 ))) 501 501 502 502 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] ... ... @@ -504,16 +504,16 @@ 504 504 505 505 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 506 506 507 -(% style="width:1108px" %) 508 -|=((( 502 + 503 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 504 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 509 509 **Size(bytes)** 510 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2506 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 511 511 |**Value**|BAT|(% style="width:188px" %)((( 512 512 Temperature(DS18B20) 513 513 (PC13) 514 514 )))|(% style="width:83px" %)((( 515 -ADC 516 -(PA5) 511 +ADC(PA5) 517 517 )))|(% style="width:184px" %)((( 518 518 Digital Interrupt1(PA8) 519 519 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -520,26 +520,25 @@ 520 520 521 521 [[image:image-20230513111203-7.png||height="324" width="975"]] 522 522 518 + 523 523 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 524 524 525 -(% style="width:922px" %) 526 -|=((( 521 + 522 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 523 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 527 527 **Size(bytes)** 528 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2525 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 529 529 |**Value**|BAT|(% style="width:207px" %)((( 530 530 Temperature(DS18B20) 531 531 (PC13) 532 532 )))|(% style="width:94px" %)((( 533 -ADC1 534 -(PA4) 530 +ADC1(PA4) 535 535 )))|(% style="width:198px" %)((( 536 536 Digital Interrupt(PB15) 537 537 )))|(% style="width:84px" %)((( 538 -ADC2 539 -(PA5) 534 +ADC2(PA5) 540 540 )))|(% style="width:82px" %)((( 541 -ADC3 542 -(PA8) 536 +ADC3(PA8) 543 543 ))) 544 544 545 545 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -547,50 +547,50 @@ 547 547 548 548 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 549 549 550 -(% style="width:1010px" %) 551 -|=((( 544 + 545 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 546 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 552 552 **Size(bytes)** 553 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4548 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 554 554 |**Value**|BAT|((( 555 -Temperature 1(DS18B20)556 -(PC13) 550 +Temperature 551 +(DS18B20)(PC13) 557 557 )))|((( 558 -Temperature2 (DS18B20)559 -(PB9) 553 +Temperature2 554 +(DS18B20)(PB9) 560 560 )))|((( 561 561 Digital Interrupt 562 562 (PB15) 563 563 )))|(% style="width:193px" %)((( 564 -Temperature3 (DS18B20)565 -(PB8) 559 +Temperature3 560 +(DS18B20)(PB8) 566 566 )))|(% style="width:78px" %)((( 567 -Count1 568 -(PA8) 562 +Count1(PA8) 569 569 )))|(% style="width:78px" %)((( 570 -Count2 571 -(PA4) 564 +Count2(PA4) 572 572 ))) 573 573 574 574 [[image:image-20230513111255-9.png||height="341" width="899"]] 575 575 576 -**The newly added AT command is issued correspondingly:** 569 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 577 577 578 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**571 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 579 579 580 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**573 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 581 581 582 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**575 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 583 583 584 -**AT+SETCNT=aa,bb** 585 585 578 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 579 + 586 586 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 587 587 588 588 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 589 589 590 590 591 - 592 592 === 2.3.3 Decode payload === 593 593 587 + 594 594 While using TTN V3 network, you can add the payload format to decode the payload. 595 595 596 596 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -597,13 +597,14 @@ 597 597 598 598 The payload decoder function for TTN V3 are here: 599 599 600 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 594 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 601 601 602 602 603 603 ==== 2.3.3.1 Battery Info ==== 604 604 605 -Check the battery voltage for SN50v3. 606 606 600 +Check the battery voltage for SN50v3-LB. 601 + 607 607 Ex1: 0x0B45 = 2885mV 608 608 609 609 Ex2: 0x0B49 = 2889mV ... ... @@ -611,16 +611,18 @@ 611 611 612 612 ==== 2.3.3.2 Temperature (DS18B20) ==== 613 613 609 + 614 614 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 615 615 616 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]612 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 617 617 618 -**Connection:** 614 +(% style="color:blue" %)**Connection:** 619 619 620 620 [[image:image-20230512180718-8.png||height="538" width="647"]] 621 621 622 -**Example**: 623 623 619 +(% style="color:blue" %)**Example**: 620 + 624 624 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 625 625 626 626 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -630,6 +630,7 @@ 630 630 631 631 ==== 2.3.3.3 Digital Input ==== 632 632 630 + 633 633 The digital input for pin PB15, 634 634 635 635 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -639,11 +639,14 @@ 639 639 ((( 640 640 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 641 641 642 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 640 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 641 + 642 + 643 643 ))) 644 644 645 645 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 646 646 647 + 647 647 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 648 648 649 649 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -650,17 +650,20 @@ 650 650 651 651 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 652 652 653 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 654 654 655 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 655 655 657 + 656 656 ==== 2.3.3.5 Digital Interrupt ==== 657 657 658 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 659 659 660 - (% style="color:blue"%)**~Interruptconnection method:**661 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 661 661 663 +(% style="color:blue" %)** Interrupt connection method:** 664 + 662 662 [[image:image-20230513105351-5.png||height="147" width="485"]] 663 663 667 + 664 664 (% style="color:blue" %)**Example to use with door sensor :** 665 665 666 666 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -667,22 +667,23 @@ 667 667 668 668 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 669 669 670 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.674 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 671 671 672 -(% style="color:blue" %)**~ Below is the installation example:** 673 673 674 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:677 +(% style="color:blue" %)**Below is the installation example:** 675 675 679 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 680 + 676 676 * ((( 677 -One pin to SN50 _v3's PA8 pin682 +One pin to SN50v3-LB's PA8 pin 678 678 ))) 679 679 * ((( 680 -The other pin to SN50 _v3's VDD pin685 +The other pin to SN50v3-LB's VDD pin 681 681 ))) 682 682 683 683 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 684 684 685 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 690 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 686 686 687 687 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 688 688 ... ... @@ -694,30 +694,33 @@ 694 694 695 695 The command is: 696 696 697 -(% style="color:blue" %)**AT+INTMOD1=1 702 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 698 698 699 699 Below shows some screen captures in TTN V3: 700 700 701 701 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 702 702 703 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 704 704 709 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 710 + 705 705 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 706 706 707 707 708 708 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 709 709 716 + 710 710 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 711 711 712 712 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 713 713 714 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.721 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 715 715 723 + 716 716 Below is the connection to SHT20/ SHT31. The connection is as below: 717 717 718 - 719 719 [[image:image-20230513103633-3.png||height="448" width="716"]] 720 720 728 + 721 721 The device will be able to get the I2C sensor data now and upload to IoT Server. 722 722 723 723 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -735,23 +735,26 @@ 735 735 736 736 ==== 2.3.3.7 Distance Reading ==== 737 737 738 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 739 739 747 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 740 740 749 + 741 741 ==== 2.3.3.8 Ultrasonic Sensor ==== 742 742 752 + 743 743 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 744 744 745 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.755 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 746 746 747 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 757 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 748 748 749 749 The picture below shows the connection: 750 750 751 751 [[image:image-20230512173903-6.png||height="596" width="715"]] 752 752 753 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 754 754 764 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 765 + 755 755 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 756 756 757 757 **Example:** ... ... @@ -759,16 +759,17 @@ 759 759 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 760 760 761 761 762 - 763 763 ==== 2.3.3.9 Battery Output - BAT pin ==== 764 764 765 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 766 766 776 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 767 767 778 + 768 768 ==== 2.3.3.10 +5V Output ==== 769 769 770 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 771 771 782 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 783 + 772 772 The 5V output time can be controlled by AT Command. 773 773 774 774 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -775,21 +775,23 @@ 775 775 776 776 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 777 777 778 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 790 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 779 779 780 780 781 - 782 782 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 783 783 795 + 784 784 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 785 785 786 786 [[image:image-20230512172447-4.png||height="416" width="712"]] 787 787 800 + 788 788 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 789 789 790 790 791 791 ==== 2.3.3.12 Working MOD ==== 792 792 806 + 793 793 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 794 794 795 795 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -806,8 +806,6 @@ 806 806 * 7: MOD8 807 807 * 8: MOD9 808 808 809 - 810 - 811 811 == 2.4 Payload Decoder file == 812 812 813 813 ... ... @@ -818,7 +818,6 @@ 818 818 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 819 819 820 820 821 - 822 822 == 2.5 Frequency Plans == 823 823 824 824 ... ... @@ -854,11 +854,12 @@ 854 854 == 3.3 Commands special design for SN50v3-LB == 855 855 856 856 857 -These commands only valid for S3 1x-LB, as below:868 +These commands only valid for SN50v3-LB, as below: 858 858 859 859 860 860 === 3.3.1 Set Transmit Interval Time === 861 861 873 + 862 862 Feature: Change LoRaWAN End Node Transmit Interval. 863 863 864 864 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -884,25 +884,25 @@ 884 884 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 885 885 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 886 886 887 - 888 - 889 889 === 3.3.2 Get Device Status === 890 890 901 + 891 891 Send a LoRaWAN downlink to ask the device to send its status. 892 892 893 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01904 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 894 894 895 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 906 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 896 896 897 897 898 898 === 3.3.3 Set Interrupt Mode === 899 899 911 + 900 900 Feature, Set Interrupt mode for GPIO_EXIT. 901 901 902 902 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 903 903 904 904 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 905 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**917 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 906 906 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 907 907 0 908 908 OK ... ... @@ -917,7 +917,6 @@ 917 917 )))|(% style="width:157px" %)OK 918 918 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 919 919 Set Transmit Interval 920 - 921 921 trigger by rising edge. 922 922 )))|(% style="width:157px" %)OK 923 923 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -933,10 +933,9 @@ 933 933 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 934 934 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 935 935 936 - 937 - 938 938 === 3.3.4 Set Power Output Duration === 939 939 949 + 940 940 Control the output duration 5V . Before each sampling, device will 941 941 942 942 ~1. first enable the power output to external sensor, ... ... @@ -948,7 +948,7 @@ 948 948 (% style="color:blue" %)**AT Command: AT+5VT** 949 949 950 950 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 951 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**961 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 952 952 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 953 953 500(default) 954 954 OK ... ... @@ -966,10 +966,9 @@ 966 966 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 967 967 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 968 968 969 - 970 - 971 971 === 3.3.5 Set Weighing parameters === 972 972 981 + 973 973 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 974 974 975 975 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -992,10 +992,9 @@ 992 992 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 993 993 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 994 994 995 - 996 - 997 997 === 3.3.6 Set Digital pulse count value === 998 998 1006 + 999 999 Feature: Set the pulse count value. 1000 1000 1001 1001 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1016,10 +1016,9 @@ 1016 1016 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1017 1017 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1018 1018 1019 - 1020 - 1021 1021 === 3.3.7 Set Workmode === 1022 1022 1029 + 1023 1023 Feature: Switch working mode. 1024 1024 1025 1025 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1041,8 +1041,6 @@ 1041 1041 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1042 1042 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1043 1043 1044 - 1045 - 1046 1046 = 4. Battery & Power Consumption = 1047 1047 1048 1048 ... ... @@ -1055,17 +1055,16 @@ 1055 1055 1056 1056 1057 1057 (% class="wikigeneratedid" %) 1058 -User can change firmware SN50v3-LB to: 1063 +**User can change firmware SN50v3-LB to:** 1059 1059 1060 1060 * Change Frequency band/ region. 1061 1061 * Update with new features. 1062 1062 * Fix bugs. 1063 1063 1064 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1069 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1065 1065 1071 +**Methods to Update Firmware:** 1066 1066 1067 -Methods to Update Firmware: 1068 - 1069 1069 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1070 1070 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1071 1071 ... ... @@ -1073,6 +1073,7 @@ 1073 1073 1074 1074 == 6.1 Where can i find source code of SN50v3-LB? == 1075 1075 1080 + 1076 1076 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1077 1077 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1078 1078 ... ... @@ -1101,6 +1101,7 @@ 1101 1101 1102 1102 = 8. Packing Info = 1103 1103 1109 + 1104 1104 (% style="color:#037691" %)**Package Includes**: 1105 1105 1106 1106 * SN50v3-LB LoRaWAN Generic Node