<
From version < 43.13 >
edited by Xiaoling
on 2023/05/16 14:06
To version < 39.2 >
edited by Saxer Lin
on 2023/05/13 13:42
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,5 +1,4 @@
1 -(% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
... ... @@ -16,15 +16,18 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 -
20 20  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
20 +
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
23 +
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 +
26 26  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
29 +
28 28  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 30  
... ... @@ -42,7 +42,6 @@
42 42  
43 43  == 1.3 Specification ==
44 44  
45 -
46 46  (% style="color:#037691" %)**Common DC Characteristics:**
47 47  
48 48  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,7 +79,6 @@
79 79  
80 80  == 1.4 Sleep mode and working mode ==
81 81  
82 -
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -137,7 +137,6 @@
137 137  
138 138  == Hole Option ==
139 139  
140 -
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -291,21 +291,31 @@
291 291  
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 -
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:35px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:120px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:90px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
300 -Temperature(DS18B20)(PC13)
301 -)))|(% style="width:78px" %)(((
302 -ADC(PA4)
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
298 +
299 +(PC13)
300 +)))|(((
301 +ADC
302 +
303 +(PA4)
303 303  )))|(% style="width:216px" %)(((
304 -Digital in(PB15)&Digital Interrupt(PA8)
305 -)))|(% style="width:308px" %)(((
306 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
307 -)))|(% style="width:154px" %)(((
308 -Humidity(SHT20 or SHT31)
305 +Digital in(PB15) &
306 +
307 +Digital Interrupt(PA8)
308 +
309 +
310 +)))|(% style="width:342px" %)(((
311 +Temperature
312 +
313 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
314 +)))|(% style="width:171px" %)(((
315 +Humidity
316 +
317 +(SHT20 or SHT31)
309 309  )))
310 310  
311 311  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -315,23 +315,25 @@
315 315  
316 316  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
317 317  
318 -(% style="width:1011px" %)
319 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
320 -|**Value**|BAT|(% style="width:196px" %)(((
327 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
328 +|**Value**|BAT|(((
321 321  Temperature(DS18B20)
330 +
322 322  (PC13)
323 -)))|(% style="width:87px" %)(((
332 +)))|(((
324 324  ADC
334 +
325 325  (PA4)
326 -)))|(% style="width:189px" %)(((
336 +)))|(((
327 327  Digital in(PB15) &
338 +
328 328  Digital Interrupt(PA8)
329 -)))|(% style="width:208px" %)(((
340 +)))|(((
330 330  Distance measure by:
331 331  1) LIDAR-Lite V3HP
332 332  Or
333 333  2) Ultrasonic Sensor
334 -)))|(% style="width:117px" %)Reserved
345 +)))|Reserved
335 335  
336 336  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
337 337  
... ... @@ -347,22 +347,24 @@
347 347  
348 348  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
349 349  
350 -(% style="width:1113px" %)
351 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
352 -|**Value**|BAT|(% style="width:183px" %)(((
361 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
362 +|**Value**|BAT|(((
353 353  Temperature(DS18B20)
364 +
354 354  (PC13)
355 -)))|(% style="width:173px" %)(((
366 +)))|(((
356 356  Digital in(PB15) &
368 +
357 357  Digital Interrupt(PA8)
358 -)))|(% style="width:84px" %)(((
370 +)))|(((
359 359  ADC
372 +
360 360  (PA4)
361 -)))|(% style="width:323px" %)(((
374 +)))|(((
362 362  Distance measure by:1)TF-Mini plus LiDAR
363 363  Or 
364 364  2) TF-Luna LiDAR
365 -)))|(% style="width:188px" %)Distance signal  strength
378 +)))|Distance signal  strength
366 366  
367 367  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
368 368  
... ... @@ -389,20 +389,25 @@
389 389  )))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
390 390  |**Value**|(% style="width:68px" %)(((
391 391  ADC1
405 +
392 392  (PA4)
393 393  )))|(% style="width:75px" %)(((
394 394  ADC2
409 +
395 395  (PA5)
396 396  )))|(((
397 397  ADC3
413 +
398 398  (PA8)
399 399  )))|(((
400 400  Digital Interrupt(PB15)
401 401  )))|(% style="width:304px" %)(((
402 402  Temperature
419 +
403 403  (SHT20 or SHT31 or BH1750 Illumination Sensor)
404 404  )))|(% style="width:163px" %)(((
405 405  Humidity
423 +
406 406  (SHT20 or SHT31)
407 407  )))|(% style="width:53px" %)Bat
408 408  
... ... @@ -421,9 +421,11 @@
421 421  (PC13)
422 422  )))|(% style="width:82px" %)(((
423 423  ADC
442 +
424 424  (PA4)
425 425  )))|(% style="width:210px" %)(((
426 426  Digital in(PB15) &
446 +
427 427  Digital Interrupt(PA8) 
428 428  )))|(% style="width:191px" %)Temperature2(DS18B20)
429 429  (PB9)|(% style="width:183px" %)Temperature3(DS18B20)
... ... @@ -454,20 +454,25 @@
454 454  
455 455  Check the response of this command and adjust the value to match the real value for thing.
456 456  
457 -(% style="width:767px" %)
477 +(% style="width:982px" %)
458 458  |=(((
459 459  **Size(bytes)**
460 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
461 -|**Value**|BAT|(% style="width:193px" %)(((
480 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
481 +|**Value**|BAT|(% style="width:282px" %)(((
462 462  Temperature(DS18B20)
483 +
463 463  (PC13)
464 -)))|(% style="width:85px" %)(((
485 +
486 +
487 +)))|(% style="width:119px" %)(((
465 465  ADC
489 +
466 466  (PA4)
467 -)))|(% style="width:186px" %)(((
491 +)))|(% style="width:279px" %)(((
468 468  Digital in(PB15) &
493 +
469 469  Digital Interrupt(PA8)
470 -)))|(% style="width:100px" %)Weight
495 +)))|(% style="width:106px" %)Weight
471 471  
472 472  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
473 473  
... ... @@ -490,12 +490,15 @@
490 490  (PC13)
491 491  )))|(% style="width:108px" %)(((
492 492  ADC
518 +
493 493  (PA4)
494 494  )))|(% style="width:126px" %)(((
495 495  Digital in
522 +
496 496  (PB15)
497 497  )))|(% style="width:145px" %)(((
498 498  Count
526 +
499 499  (PA8)
500 500  )))
501 501  
... ... @@ -504,41 +504,46 @@
504 504  
505 505  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
506 506  
507 -(% style="width:1108px" %)
508 508  |=(((
509 509  **Size(bytes)**
510 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
511 -|**Value**|BAT|(% style="width:188px" %)(((
537 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
538 +|**Value**|BAT|(((
512 512  Temperature(DS18B20)
540 +
513 513  (PC13)
514 -)))|(% style="width:83px" %)(((
542 +)))|(((
515 515  ADC
544 +
516 516  (PA5)
517 -)))|(% style="width:184px" %)(((
546 +)))|(((
518 518  Digital Interrupt1(PA8)
519 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
548 +)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved
520 520  
521 521  [[image:image-20230513111203-7.png||height="324" width="975"]]
522 522  
523 523  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524 524  
525 -(% style="width:922px" %)
554 +(% style="width:917px" %)
526 526  |=(((
527 527  **Size(bytes)**
528 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
557 +)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 79px;" %)2
529 529  |**Value**|BAT|(% style="width:207px" %)(((
530 530  Temperature(DS18B20)
560 +
531 531  (PC13)
532 532  )))|(% style="width:94px" %)(((
533 533  ADC1
564 +
534 534  (PA4)
535 535  )))|(% style="width:198px" %)(((
536 536  Digital Interrupt(PB15)
537 537  )))|(% style="width:84px" %)(((
538 538  ADC2
570 +
539 539  (PA5)
540 -)))|(% style="width:82px" %)(((
572 +)))|(% style="width:79px" %)(((
541 541  ADC3
574 +
542 542  (PA8)
543 543  )))
544 544  
... ... @@ -553,21 +553,27 @@
553 553  )))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
554 554  |**Value**|BAT|(((
555 555  Temperature1(DS18B20)
589 +
556 556  (PC13)
557 557  )))|(((
558 558  Temperature2(DS18B20)
593 +
559 559  (PB9)
560 560  )))|(((
561 561  Digital Interrupt
597 +
562 562  (PB15)
563 563  )))|(% style="width:193px" %)(((
564 564  Temperature3(DS18B20)
601 +
565 565  (PB8)
566 566  )))|(% style="width:78px" %)(((
567 567  Count1
605 +
568 568  (PA8)
569 569  )))|(% style="width:78px" %)(((
570 570  Count2
609 +
571 571  (PA4)
572 572  )))
573 573  
... ... @@ -611,7 +611,7 @@
611 611  
612 612  ==== 2.3.3.2  Temperature (DS18B20) ====
613 613  
614 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
653 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
615 615  
616 616  More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
617 617  
... ... @@ -639,7 +639,7 @@
639 639  (((
640 640  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
641 641  
642 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
681 +**Note:**The maximum voltage input supports 3.6V.
643 643  )))
644 644  
645 645  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
... ... @@ -650,18 +650,17 @@
650 650  
651 651  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
652 652  
653 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
692 +**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
654 654  
655 -
656 656  ==== 2.3.3.5 Digital Interrupt ====
657 657  
658 658  Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
659 659  
660 -(% style="color:blue" %)**~ Interrupt connection method:**
698 +**~ Interrupt connection method:**
661 661  
662 662  [[image:image-20230513105351-5.png||height="147" width="485"]]
663 663  
664 -(% style="color:blue" %)**Example to use with door sensor :**
702 +**Example to use with door sensor :**
665 665  
666 666  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
667 667  
... ... @@ -669,7 +669,7 @@
669 669  
670 670  When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
671 671  
672 -(% style="color:blue" %)**~ Below is the installation example:**
710 +**~ Below is the installation example:**
673 673  
674 674  Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
675 675  
... ... @@ -694,7 +694,7 @@
694 694  
695 695  The command is:
696 696  
697 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
735 +**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
698 698  
699 699  Below shows some screen captures in TTN V3:
700 700  
... ... @@ -709,14 +709,14 @@
709 709  
710 710  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
711 711  
712 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
750 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
713 713  
714 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
752 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
715 715  
716 716  Below is the connection to SHT20/ SHT31. The connection is as below:
717 717  
718 718  
719 -[[image:image-20230513103633-3.png||height="448" width="716"]]
757 +[[image:image-20230513103633-3.png||height="636" width="1017"]]
720 720  
721 721  The device will be able to get the I2C sensor data now and upload to IoT Server.
722 722  
... ... @@ -771,7 +771,7 @@
771 771  
772 772  The 5V output time can be controlled by AT Command.
773 773  
774 -(% style="color:blue" %)**AT+5VT=1000**
812 +**AT+5VT=1000**
775 775  
776 776  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
777 777  
... ... @@ -783,9 +783,9 @@
783 783  
784 784  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
785 785  
786 -[[image:image-20230512172447-4.png||height="416" width="712"]]
824 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
787 787  
788 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
826 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
789 789  
790 790  
791 791  ==== 2.3.3.12  Working MOD ====
... ... @@ -806,8 +806,6 @@
806 806  * 7: MOD8
807 807  * 8: MOD9
808 808  
809 -
810 -
811 811  == 2.4 Payload Decoder file ==
812 812  
813 813  
... ... @@ -815,7 +815,7 @@
815 815  
816 816  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
817 817  
818 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
854 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
819 819  
820 820  
821 821  
... ... @@ -859,6 +859,7 @@
859 859  
860 860  === 3.3.1 Set Transmit Interval Time ===
861 861  
898 +
862 862  Feature: Change LoRaWAN End Node Transmit Interval.
863 863  
864 864  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -884,11 +884,9 @@
884 884  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
885 885  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
886 886  
887 -
888 -
889 889  === 3.3.2 Get Device Status ===
890 890  
891 -Send a LoRaWAN downlink to ask the device to send its status.
926 +Send a LoRaWAN downlink to ask device send Alarm settings.
892 892  
893 893  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
894 894  
... ... @@ -897,6 +897,7 @@
897 897  
898 898  === 3.3.3 Set Interrupt Mode ===
899 899  
935 +
900 900  Feature, Set Interrupt mode for GPIO_EXIT.
901 901  
902 902  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
... ... @@ -933,8 +933,6 @@
933 933  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
934 934  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
935 935  
936 -
937 -
938 938  === 3.3.4 Set Power Output Duration ===
939 939  
940 940  Control the output duration 5V . Before each sampling, device will
... ... @@ -951,6 +951,7 @@
951 951  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
952 952  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
953 953  500(default)
988 +
954 954  OK
955 955  )))
956 956  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -963,11 +963,9 @@
963 963  
964 964  The first and second bytes are the time to turn on.
965 965  
966 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
967 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1001 +* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1002 +* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
968 968  
969 -
970 -
971 971  === 3.3.5 Set Weighing parameters ===
972 972  
973 973  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
... ... @@ -982,6 +982,7 @@
982 982  
983 983  (% style="color:blue" %)**Downlink Command: 0x08**
984 984  
1018 +
985 985  Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
986 986  
987 987  Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
... ... @@ -992,8 +992,6 @@
992 992  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
993 993  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
994 994  
995 -
996 -
997 997  === 3.3.6 Set Digital pulse count value ===
998 998  
999 999  Feature: Set the pulse count value.
... ... @@ -1009,6 +1009,7 @@
1009 1009  
1010 1010  (% style="color:blue" %)**Downlink Command: 0x09**
1011 1011  
1044 +
1012 1012  Format: Command Code (0x09) followed by 5 bytes.
1013 1013  
1014 1014  The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
... ... @@ -1016,8 +1016,6 @@
1016 1016  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1017 1017  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1018 1018  
1019 -
1020 -
1021 1021  === 3.3.7 Set Workmode ===
1022 1022  
1023 1023  Feature: Switch working mode.
... ... @@ -1031,18 +1031,18 @@
1031 1031  )))
1032 1032  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1033 1033  OK
1065 +
1034 1034  Attention:Take effect after ATZ
1035 1035  )))
1036 1036  
1037 1037  (% style="color:blue" %)**Downlink Command: 0x0A**
1038 1038  
1071 +
1039 1039  Format: Command Code (0x0A) followed by 1 bytes.
1040 1040  
1041 1041  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1042 1042  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1043 1043  
1044 -
1045 -
1046 1046  = 4. Battery & Power Consumption =
1047 1047  
1048 1048  
... ... @@ -1116,5 +1116,4 @@
1116 1116  
1117 1117  
1118 1118  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1119 -
1120 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
1150 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0