<
From version < 43.11 >
edited by Xiaoling
on 2023/05/16 13:58
To version < 87.3 >
edited by Xiaoling
on 2024/01/03 10:44
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB LoRaWAN Sensor Node User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Content
... ... @@ -1,10 +1,15 @@
1 +
2 +
1 1  (% style="text-align:center" %)
2 -[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 5  
6 -**Table of Contents:**
7 7  
9 +
10 +
11 +**Table of Contents:**
12 +
8 8  {{toc/}}
9 9  
10 10  
... ... @@ -14,22 +14,22 @@
14 14  
15 15  = 1. Introduction =
16 16  
17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
18 18  
19 19  
20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
29 29  
30 -
31 31  == 1.2 ​Features ==
32 32  
37 +
33 33  * LoRaWAN 1.0.3 Class A
34 34  * Ultra-low power consumption
35 35  * Open-Source hardware/software
... ... @@ -88,7 +88,7 @@
88 88  == 1.5 Button & LEDs ==
89 89  
90 90  
91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
96 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
92 92  
93 93  
94 94  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -122,22 +122,27 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
130 +[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
129 129  
135 +=== 1.8.1 for LB version ===
130 130  
131 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132 132  
133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134 134  
140 +
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
143 +=== 1.8.2 for LS version ===
137 137  
138 -== Hole Option ==
145 +[[image:image-20231231203439-3.png||height="385" width="886"]]
139 139  
140 140  
148 +== 1.9 Hole Option ==
149 +
150 +
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
171 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
220 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,44 +215,44 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
228 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
233 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -*0x01: EU868
239 +0x01: EU868
230 230  
231 -*0x02: US915
241 +0x02: US915
232 232  
233 -*0x03: IN865
243 +0x03: IN865
234 234  
235 -*0x04: AU915
245 +0x04: AU915
236 236  
237 -*0x05: KZ865
247 +0x05: KZ865
238 238  
239 -*0x06: RU864
249 +0x06: RU864
240 240  
241 -*0x07: AS923
251 +0x07: AS923
242 242  
243 -*0x08: AS923-1
253 +0x08: AS923-1
244 244  
245 -*0x09: AS923-2
255 +0x09: AS923-2
246 246  
247 -*0x0a: AS923-3
257 +0x0a: AS923-3
248 248  
249 -*0x0b: CN470
259 +0x0b: CN470
250 250  
251 -*0x0c: EU433
261 +0x0c: EU433
252 252  
253 -*0x0d: KR920
263 +0x0d: KR920
254 254  
255 -*0x0e: MA869
265 +0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -276,19 +276,22 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
289 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
293 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
298 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
291 291  
300 +2. All modes share the same Payload Explanation from HERE.
301 +
302 +3. By default, the device will send an uplink message every 20 minutes.
303 +
304 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
294 294  
... ... @@ -295,22 +295,17 @@
295 295  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 296  
297 297  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2**
299 -|**Value**|Bat|(% style="width:191px" %)(((
300 -Temperature(DS18B20)
301 -(PC13)
311 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
312 +|Value|Bat|(% style="width:191px" %)(((
313 +Temperature(DS18B20)(PC13)
302 302  )))|(% style="width:78px" %)(((
303 -ADC
304 -(PA4)
315 +ADC(PA4)
305 305  )))|(% style="width:216px" %)(((
306 -Digital in(PB15) &
307 -Digital Interrupt(PA8)
317 +Digital in(PB15)&Digital Interrupt(PA8)
308 308  )))|(% style="width:308px" %)(((
309 -Temperature
310 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
319 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
311 311  )))|(% style="width:154px" %)(((
312 -Humidity
313 -(SHT20 or SHT31)
321 +Humidity(SHT20 or SHT31)
314 314  )))
315 315  
316 316  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -318,97 +318,90 @@
318 318  
319 319  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
320 320  
329 +
321 321  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
322 322  
323 -(% style="width:1011px" %)
324 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
325 -|**Value**|BAT|(% style="width:196px" %)(((
326 -Temperature(DS18B20)
327 -(PC13)
332 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
333 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
334 +|Value|BAT|(% style="width:196px" %)(((
335 +Temperature(DS18B20)(PC13)
328 328  )))|(% style="width:87px" %)(((
329 -ADC
330 -(PA4)
337 +ADC(PA4)
331 331  )))|(% style="width:189px" %)(((
332 -Digital in(PB15) &
333 -Digital Interrupt(PA8)
339 +Digital in(PB15) & Digital Interrupt(PA8)
334 334  )))|(% style="width:208px" %)(((
335 -Distance measure by:
336 -1) LIDAR-Lite V3HP
337 -Or
338 -2) Ultrasonic Sensor
341 +Distance measure by: 1) LIDAR-Lite V3HP
342 +Or 2) Ultrasonic Sensor
339 339  )))|(% style="width:117px" %)Reserved
340 340  
341 341  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
342 342  
343 -**Connection of LIDAR-Lite V3HP:**
344 344  
348 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
349 +
345 345  [[image:image-20230512173758-5.png||height="563" width="712"]]
346 346  
347 -**Connection to Ultrasonic Sensor:**
348 348  
349 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
353 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
350 350  
355 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
356 +
351 351  [[image:image-20230512173903-6.png||height="596" width="715"]]
352 352  
359 +
353 353  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
354 354  
355 -(% style="width:1113px" %)
356 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
357 -|**Value**|BAT|(% style="width:183px" %)(((
358 -Temperature(DS18B20)
359 -(PC13)
362 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
363 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
364 +|Value|BAT|(% style="width:183px" %)(((
365 +Temperature(DS18B20)(PC13)
360 360  )))|(% style="width:173px" %)(((
361 -Digital in(PB15) &
362 -Digital Interrupt(PA8)
367 +Digital in(PB15) & Digital Interrupt(PA8)
363 363  )))|(% style="width:84px" %)(((
364 -ADC
365 -(PA4)
369 +ADC(PA4)
366 366  )))|(% style="width:323px" %)(((
367 367  Distance measure by:1)TF-Mini plus LiDAR
368 -Or 
369 -2) TF-Luna LiDAR
372 +Or 2) TF-Luna LiDAR
370 370  )))|(% style="width:188px" %)Distance signal  strength
371 371  
372 372  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
373 373  
377 +
374 374  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
375 375  
376 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
380 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
377 377  
378 378  [[image:image-20230512180609-7.png||height="555" width="802"]]
379 379  
384 +
380 380  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
381 381  
382 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
387 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
383 383  
384 -[[image:image-20230513105207-4.png||height="469" width="802"]]
389 +[[image:image-20230610170047-1.png||height="452" width="799"]]
385 385  
386 386  
387 387  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
388 388  
394 +
389 389  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
390 390  
391 -(% style="width:1031px" %)
392 -|=(((
397 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
398 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
393 393  **Size(bytes)**
394 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
395 -|**Value**|(% style="width:68px" %)(((
396 -ADC1
397 -(PA4)
400 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
401 +|Value|(% style="width:68px" %)(((
402 +ADC1(PA4)
398 398  )))|(% style="width:75px" %)(((
399 -ADC2
400 -(PA5)
404 +ADC2(PA5)
401 401  )))|(((
402 -ADC3
403 -(PA8)
406 +ADC3(PA8)
404 404  )))|(((
405 405  Digital Interrupt(PB15)
406 406  )))|(% style="width:304px" %)(((
407 -Temperature
408 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
410 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
409 409  )))|(% style="width:163px" %)(((
410 -Humidity
411 -(SHT20 or SHT31)
412 +Humidity(SHT20 or SHT31)
412 412  )))|(% style="width:53px" %)Bat
413 413  
414 414  [[image:image-20230513110214-6.png]]
... ... @@ -419,59 +419,57 @@
419 419  
420 420  This mode has total 11 bytes. As shown below:
421 421  
422 -(% style="width:1017px" %)
423 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
424 -|**Value**|BAT|(% style="width:186px" %)(((
425 -Temperature1(DS18B20)
426 -(PC13)
423 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
424 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
425 +|Value|BAT|(% style="width:186px" %)(((
426 +Temperature1(DS18B20)(PC13)
427 427  )))|(% style="width:82px" %)(((
428 -ADC
429 -(PA4)
428 +ADC(PA4)
430 430  )))|(% style="width:210px" %)(((
431 -Digital in(PB15) &
432 -Digital Interrupt(PA8) 
430 +Digital in(PB15) & Digital Interrupt(PA8) 
433 433  )))|(% style="width:191px" %)Temperature2(DS18B20)
434 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
435 -(PB8)
432 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
436 436  
437 437  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
438 438  
436 +
439 439  [[image:image-20230513134006-1.png||height="559" width="736"]]
440 440  
441 441  
442 442  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
443 443  
442 +
444 444  [[image:image-20230512164658-2.png||height="532" width="729"]]
445 445  
446 446  Each HX711 need to be calibrated before used. User need to do below two steps:
447 447  
448 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
449 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
447 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
448 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
450 450  1. (((
451 451  Weight has 4 bytes, the unit is g.
451 +
452 +
453 +
452 452  )))
453 453  
454 454  For example:
455 455  
456 -**AT+GETSENSORVALUE =0**
458 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
457 457  
458 458  Response:  Weight is 401 g
459 459  
460 460  Check the response of this command and adjust the value to match the real value for thing.
461 461  
462 -(% style="width:767px" %)
463 -|=(((
464 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
465 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
464 464  **Size(bytes)**
465 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
466 -|**Value**|BAT|(% style="width:193px" %)(((
467 -Temperature(DS18B20)
468 -(PC13)
467 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
468 +|Value|BAT|(% style="width:193px" %)(((
469 +Temperature(DS18B20)(PC13)
469 469  )))|(% style="width:85px" %)(((
470 -ADC
471 -(PA4)
471 +ADC(PA4)
472 472  )))|(% style="width:186px" %)(((
473 -Digital in(PB15) &
474 -Digital Interrupt(PA8)
473 +Digital in(PB15) & Digital Interrupt(PA8)
475 475  )))|(% style="width:100px" %)Weight
476 476  
477 477  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -479,6 +479,7 @@
479 479  
480 480  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
481 481  
481 +
482 482  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
483 483  
484 484  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -485,23 +485,19 @@
485 485  
486 486  [[image:image-20230512181814-9.png||height="543" width="697"]]
487 487  
488 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
489 489  
490 -(% style="width:961px" %)
491 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
492 -|**Value**|BAT|(% style="width:256px" %)(((
493 -Temperature(DS18B20)
489 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
494 494  
495 -(PC13)
491 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
492 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
493 +|Value|BAT|(% style="width:256px" %)(((
494 +Temperature(DS18B20)(PC13)
496 496  )))|(% style="width:108px" %)(((
497 -ADC
498 -(PA4)
496 +ADC(PA4)
499 499  )))|(% style="width:126px" %)(((
500 -Digital in
501 -(PB15)
498 +Digital in(PB15)
502 502  )))|(% style="width:145px" %)(((
503 -Count
504 -(PA8)
500 +Count(PA8)
505 505  )))
506 506  
507 507  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -509,16 +509,16 @@
509 509  
510 510  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
511 511  
512 -(% style="width:1108px" %)
513 -|=(((
508 +
509 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
510 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
514 514  **Size(bytes)**
515 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
516 -|**Value**|BAT|(% style="width:188px" %)(((
512 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
513 +|Value|BAT|(% style="width:188px" %)(((
517 517  Temperature(DS18B20)
518 518  (PC13)
519 519  )))|(% style="width:83px" %)(((
520 -ADC
521 -(PA5)
517 +ADC(PA5)
522 522  )))|(% style="width:184px" %)(((
523 523  Digital Interrupt1(PA8)
524 524  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -525,26 +525,25 @@
525 525  
526 526  [[image:image-20230513111203-7.png||height="324" width="975"]]
527 527  
524 +
528 528  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
529 529  
530 -(% style="width:922px" %)
531 -|=(((
527 +
528 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
529 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
532 532  **Size(bytes)**
533 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
534 -|**Value**|BAT|(% style="width:207px" %)(((
531 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
532 +|Value|BAT|(% style="width:207px" %)(((
535 535  Temperature(DS18B20)
536 536  (PC13)
537 537  )))|(% style="width:94px" %)(((
538 -ADC1
539 -(PA4)
536 +ADC1(PA4)
540 540  )))|(% style="width:198px" %)(((
541 541  Digital Interrupt(PB15)
542 542  )))|(% style="width:84px" %)(((
543 -ADC2
544 -(PA5)
540 +ADC2(PA5)
545 545  )))|(% style="width:82px" %)(((
546 -ADC3
547 -(PA8)
542 +ADC3(PA8)
548 548  )))
549 549  
550 550  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -552,50 +552,149 @@
552 552  
553 553  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
554 554  
555 -(% style="width:1010px" %)
556 -|=(((
550 +
551 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
552 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
557 557  **Size(bytes)**
558 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
559 -|**Value**|BAT|(((
560 -Temperature1(DS18B20)
561 -(PC13)
554 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
555 +|Value|BAT|(((
556 +Temperature
557 +(DS18B20)(PC13)
562 562  )))|(((
563 -Temperature2(DS18B20)
564 -(PB9)
559 +Temperature2
560 +(DS18B20)(PB9)
565 565  )))|(((
566 566  Digital Interrupt
567 567  (PB15)
568 568  )))|(% style="width:193px" %)(((
569 -Temperature3(DS18B20)
570 -(PB8)
565 +Temperature3
566 +(DS18B20)(PB8)
571 571  )))|(% style="width:78px" %)(((
572 -Count1
573 -(PA8)
568 +Count1(PA8)
574 574  )))|(% style="width:78px" %)(((
575 -Count2
576 -(PA4)
570 +Count2(PA4)
577 577  )))
578 578  
579 579  [[image:image-20230513111255-9.png||height="341" width="899"]]
580 580  
581 -**The newly added AT command is issued correspondingly:**
575 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
582 582  
583 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
577 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
584 584  
585 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
579 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
586 586  
587 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
581 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
588 588  
589 -**AT+SETCNT=aa,bb** 
590 590  
584 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
585 +
591 591  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
592 592  
593 593  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
594 594  
595 595  
591 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
596 596  
593 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
594 +
595 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
596 +
597 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
598 +
599 +
600 +===== 2.3.2.10.a  Uplink, PWM input capture =====
601 +
602 +
603 +[[image:image-20230817172209-2.png||height="439" width="683"]]
604 +
605 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
606 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
607 +|Value|Bat|(% style="width:191px" %)(((
608 +Temperature(DS18B20)(PC13)
609 +)))|(% style="width:78px" %)(((
610 +ADC(PA4)
611 +)))|(% style="width:135px" %)(((
612 +PWM_Setting
613 +&Digital Interrupt(PA8)
614 +)))|(% style="width:70px" %)(((
615 +Pulse period
616 +)))|(% style="width:89px" %)(((
617 +Duration of high level
618 +)))
619 +
620 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
621 +
622 +
623 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
624 +
625 +**Frequency:**
626 +
627 +(% class="MsoNormal" %)
628 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
629 +
630 +(% class="MsoNormal" %)
631 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
632 +
633 +
634 +(% class="MsoNormal" %)
635 +**Duty cycle:**
636 +
637 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
638 +
639 +[[image:image-20230818092200-1.png||height="344" width="627"]]
640 +
641 +===== 2.3.2.10.b  Uplink, PWM output =====
642 +
643 +[[image:image-20230817172209-2.png||height="439" width="683"]]
644 +
645 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
646 +
647 +a is the time delay of the output, the unit is ms.
648 +
649 +b is the output frequency, the unit is HZ.
650 +
651 +c is the duty cycle of the output, the unit is %.
652 +
653 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
654 +
655 +aa is the time delay of the output, the unit is ms.
656 +
657 +bb is the output frequency, the unit is HZ.
658 +
659 +cc is the duty cycle of the output, the unit is %.
660 +
661 +
662 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
663 +
664 +The oscilloscope displays as follows:
665 +
666 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
667 +
668 +
669 +===== 2.3.2.10.c  Downlink, PWM output =====
670 +
671 +
672 +[[image:image-20230817173800-3.png||height="412" width="685"]]
673 +
674 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
675 +
676 + xx xx xx is the output frequency, the unit is HZ.
677 +
678 + yy is the duty cycle of the output, the unit is %.
679 +
680 + zz zz is the time delay of the output, the unit is ms.
681 +
682 +
683 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
684 +
685 +The oscilloscope displays as follows:
686 +
687 +[[image:image-20230817173858-5.png||height="694" width="921"]]
688 +
689 +
597 597  === 2.3.3  ​Decode payload ===
598 598  
692 +
599 599  While using TTN V3 network, you can add the payload format to decode the payload.
600 600  
601 601  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -602,13 +602,14 @@
602 602  
603 603  The payload decoder function for TTN V3 are here:
604 604  
605 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
699 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
606 606  
607 607  
608 608  ==== 2.3.3.1 Battery Info ====
609 609  
610 -Check the battery voltage for SN50v3.
611 611  
705 +Check the battery voltage for SN50v3-LB.
706 +
612 612  Ex1: 0x0B45 = 2885mV
613 613  
614 614  Ex2: 0x0B49 = 2889mV
... ... @@ -616,16 +616,18 @@
616 616  
617 617  ==== 2.3.3.2  Temperature (DS18B20) ====
618 618  
714 +
619 619  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
620 620  
621 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
717 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
622 622  
623 -**Connection:**
719 +(% style="color:blue" %)**Connection:**
624 624  
625 625  [[image:image-20230512180718-8.png||height="538" width="647"]]
626 626  
627 -**Example**:
628 628  
724 +(% style="color:blue" %)**Example**:
725 +
629 629  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
630 630  
631 631  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -635,6 +635,7 @@
635 635  
636 636  ==== 2.3.3.3 Digital Input ====
637 637  
735 +
638 638  The digital input for pin PB15,
639 639  
640 640  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -644,28 +644,38 @@
644 644  (((
645 645  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
646 646  
647 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V.
745 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
746 +
747 +
648 648  )))
649 649  
650 650  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
651 651  
652 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
653 653  
654 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
753 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
655 655  
755 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
756 +
656 656  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
657 657  
658 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
659 659  
760 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
660 660  
762 +
763 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
764 +
765 +[[image:image-20230811113449-1.png||height="370" width="608"]]
766 +
661 661  ==== 2.3.3.5 Digital Interrupt ====
662 662  
663 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
664 664  
665 -(% style="color:blue" %)**~ Interrupt connection method:**
770 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
666 666  
772 +(% style="color:blue" %)** Interrupt connection method:**
773 +
667 667  [[image:image-20230513105351-5.png||height="147" width="485"]]
668 668  
776 +
669 669  (% style="color:blue" %)**Example to use with door sensor :**
670 670  
671 671  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
... ... @@ -672,22 +672,23 @@
672 672  
673 673  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
674 674  
675 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
783 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
676 676  
677 -(% style="color:blue" %)**~ Below is the installation example:**
678 678  
679 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
786 +(% style="color:blue" %)**Below is the installation example:**
680 680  
788 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
789 +
681 681  * (((
682 -One pin to SN50_v3's PA8 pin
791 +One pin to SN50v3-LB's PA8 pin
683 683  )))
684 684  * (((
685 -The other pin to SN50_v3's VDD pin
794 +The other pin to SN50v3-LB's VDD pin
686 686  )))
687 687  
688 688  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
689 689  
690 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
799 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
691 691  
692 692  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
693 693  
... ... @@ -699,29 +699,32 @@
699 699  
700 700  The command is:
701 701  
702 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
811 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
703 703  
704 704  Below shows some screen captures in TTN V3:
705 705  
706 706  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
707 707  
708 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
709 709  
818 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
819 +
710 710  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
711 711  
712 712  
713 713  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
714 714  
825 +
715 715  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
716 716  
717 717  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
718 718  
719 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
830 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
720 720  
832 +
721 721  Below is the connection to SHT20/ SHT31. The connection is as below:
722 722  
835 +[[image:image-20230610170152-2.png||height="501" width="846"]]
723 723  
724 -[[image:image-20230513103633-3.png||height="448" width="716"]]
725 725  
726 726  The device will be able to get the I2C sensor data now and upload to IoT Server.
727 727  
... ... @@ -740,23 +740,26 @@
740 740  
741 741  ==== 2.3.3.7  ​Distance Reading ====
742 742  
743 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
744 744  
856 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
745 745  
858 +
746 746  ==== 2.3.3.8 Ultrasonic Sensor ====
747 747  
861 +
748 748  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
749 749  
750 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
864 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
751 751  
752 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
866 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
753 753  
754 754  The picture below shows the connection:
755 755  
756 756  [[image:image-20230512173903-6.png||height="596" width="715"]]
757 757  
758 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
759 759  
873 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
874 +
760 760  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
761 761  
762 762  **Example:**
... ... @@ -764,16 +764,17 @@
764 764  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
765 765  
766 766  
767 -
768 768  ==== 2.3.3.9  Battery Output - BAT pin ====
769 769  
770 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
771 771  
885 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
772 772  
887 +
773 773  ==== 2.3.3.10  +5V Output ====
774 774  
775 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
776 776  
891 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
892 +
777 777  The 5V output time can be controlled by AT Command.
778 778  
779 779  (% style="color:blue" %)**AT+5VT=1000**
... ... @@ -780,21 +780,54 @@
780 780  
781 781  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
782 782  
783 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
899 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
784 784  
785 785  
786 -
787 787  ==== 2.3.3.11  BH1750 Illumination Sensor ====
788 788  
904 +
789 789  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
790 790  
791 791  [[image:image-20230512172447-4.png||height="416" width="712"]]
792 792  
909 +
793 793  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
794 794  
795 795  
796 -==== 2.3.3.12  Working MOD ====
913 +==== 2.3.3.12  PWM MOD ====
797 797  
915 +
916 +* (((
917 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
918 +)))
919 +* (((
920 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
921 +)))
922 +
923 + [[image:image-20230817183249-3.png||height="320" width="417"]]
924 +
925 +* (((
926 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
927 +)))
928 +* (((
929 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
930 +)))
931 +* (((
932 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
933 +
934 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
935 +
936 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
937 +
938 +b) If the output duration is more than 30 seconds, better to use external power source. 
939 +
940 +
941 +
942 +)))
943 +
944 +==== 2.3.3.13  Working MOD ====
945 +
946 +
798 798  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
799 799  
800 800  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -810,9 +810,8 @@
810 810  * 6: MOD7
811 811  * 7: MOD8
812 812  * 8: MOD9
962 +* 9: MOD10
813 813  
814 -
815 -
816 816  == 2.4 Payload Decoder file ==
817 817  
818 818  
... ... @@ -823,7 +823,6 @@
823 823  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
824 824  
825 825  
826 -
827 827  == 2.5 Frequency Plans ==
828 828  
829 829  
... ... @@ -859,17 +859,18 @@
859 859  == 3.3 Commands special design for SN50v3-LB ==
860 860  
861 861  
862 -These commands only valid for S31x-LB, as below:
1009 +These commands only valid for SN50v3-LB, as below:
863 863  
864 864  
865 865  === 3.3.1 Set Transmit Interval Time ===
866 866  
1014 +
867 867  Feature: Change LoRaWAN End Node Transmit Interval.
868 868  
869 869  (% style="color:blue" %)**AT Command: AT+TDC**
870 870  
871 871  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
872 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1020 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
873 873  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
874 874  30000
875 875  OK
... ... @@ -889,25 +889,25 @@
889 889  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
890 890  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
891 891  
892 -
893 -
894 894  === 3.3.2 Get Device Status ===
895 895  
1042 +
896 896  Send a LoRaWAN downlink to ask the device to send its status.
897 897  
898 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1045 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
899 899  
900 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
1047 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
901 901  
902 902  
903 903  === 3.3.3 Set Interrupt Mode ===
904 904  
1052 +
905 905  Feature, Set Interrupt mode for GPIO_EXIT.
906 906  
907 907  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
908 908  
909 909  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
910 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1058 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
911 911  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
912 912  0
913 913  OK
... ... @@ -922,7 +922,6 @@
922 922  )))|(% style="width:157px" %)OK
923 923  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
924 924  Set Transmit Interval
925 -
926 926  trigger by rising edge.
927 927  )))|(% style="width:157px" %)OK
928 928  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -938,10 +938,9 @@
938 938  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
939 939  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
940 940  
941 -
942 -
943 943  === 3.3.4 Set Power Output Duration ===
944 944  
1090 +
945 945  Control the output duration 5V . Before each sampling, device will
946 946  
947 947  ~1. first enable the power output to external sensor,
... ... @@ -953,7 +953,7 @@
953 953  (% style="color:blue" %)**AT Command: AT+5VT**
954 954  
955 955  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
956 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1102 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
957 957  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
958 958  500(default)
959 959  OK
... ... @@ -971,16 +971,15 @@
971 971  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
972 972  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
973 973  
974 -
975 -
976 976  === 3.3.5 Set Weighing parameters ===
977 977  
1122 +
978 978  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
979 979  
980 980  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
981 981  
982 982  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
983 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1128 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
984 984  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
985 985  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
986 986  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -997,10 +997,9 @@
997 997  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
998 998  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
999 999  
1000 -
1001 -
1002 1002  === 3.3.6 Set Digital pulse count value ===
1003 1003  
1147 +
1004 1004  Feature: Set the pulse count value.
1005 1005  
1006 1006  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1008,7 +1008,7 @@
1008 1008  (% style="color:blue" %)**AT Command: AT+SETCNT**
1009 1009  
1010 1010  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1011 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1155 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1012 1012  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1013 1013  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1014 1014  
... ... @@ -1021,16 +1021,15 @@
1021 1021  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1022 1022  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1023 1023  
1024 -
1025 -
1026 1026  === 3.3.7 Set Workmode ===
1027 1027  
1170 +
1028 1028  Feature: Switch working mode.
1029 1029  
1030 1030  (% style="color:blue" %)**AT Command: AT+MOD**
1031 1031  
1032 1032  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1033 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1176 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1034 1034  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1035 1035  OK
1036 1036  )))
... ... @@ -1046,11 +1046,101 @@
1046 1046  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1047 1047  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1048 1048  
1192 +(% id="H3.3.8PWMsetting" %)
1193 +=== 3.3.8 PWM setting ===
1049 1049  
1050 1050  
1051 -= 4. Battery & Power Consumption =
1196 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1052 1052  
1198 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1053 1053  
1200 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1201 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1203 +0(default)
1204 +
1205 +OK
1206 +)))
1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1208 +OK
1209 +
1210 +)))
1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1212 +
1213 +(% style="color:blue" %)**Downlink Command: 0x0C**
1214 +
1215 +Format: Command Code (0x0C) followed by 1 bytes.
1216 +
1217 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219 +
1220 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1221 +
1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1223 +
1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 +0,0,0(default)
1228 +
1229 +OK
1230 +)))
1231 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1232 +OK
1233 +
1234 +)))
1235 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1237 +
1238 +
1239 +)))|(% style="width:137px" %)(((
1240 +OK
1241 +)))
1242 +
1243 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 +AT+PWMOUT=a,b,c
1247 +
1248 +
1249 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1250 +Set PWM output time, output frequency and output duty cycle.
1251 +
1252 +(((
1253 +
1254 +)))
1255 +
1256 +(((
1257 +
1258 +)))
1259 +)))|(% style="width:242px" %)(((
1260 +a: Output time (unit: seconds)
1261 +
1262 +The value ranges from 0 to 65535.
1263 +
1264 +When a=65535, PWM will always output.
1265 +)))
1266 +|(% style="width:242px" %)(((
1267 +b: Output frequency (unit: HZ)
1268 +)))
1269 +|(% style="width:242px" %)(((
1270 +c: Output duty cycle (unit: %)
1271 +
1272 +The value ranges from 0 to 100.
1273 +)))
1274 +
1275 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1276 +
1277 +Format: Command Code (0x0B01) followed by 6 bytes.
1278 +
1279 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1280 +
1281 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1282 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1283 +
1284 += 4. Battery & Power Cons =
1285 +
1286 +
1054 1054  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1055 1055  
1056 1056  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1060,27 +1060,43 @@
1060 1060  
1061 1061  
1062 1062  (% class="wikigeneratedid" %)
1063 -User can change firmware SN50v3-LB to:
1296 +**User can change firmware SN50v3-LB to:**
1064 1064  
1065 1065  * Change Frequency band/ region.
1066 1066  * Update with new features.
1067 1067  * Fix bugs.
1068 1068  
1069 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1302 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1070 1070  
1304 +**Methods to Update Firmware:**
1071 1071  
1072 -Methods to Update Firmware:
1306 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1307 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1073 1073  
1074 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1075 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1076 -
1077 1077  = 6. FAQ =
1078 1078  
1079 1079  == 6.1 Where can i find source code of SN50v3-LB? ==
1080 1080  
1313 +
1081 1081  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1082 1082  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1083 1083  
1317 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1318 +
1319 +
1320 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1321 +
1322 +
1323 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1324 +
1325 +
1326 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1327 +
1328 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1329 +
1330 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1331 +
1332 +
1084 1084  = 7. Order Info =
1085 1085  
1086 1086  
... ... @@ -1106,6 +1106,7 @@
1106 1106  
1107 1107  = 8. ​Packing Info =
1108 1108  
1358 +
1109 1109  (% style="color:#037691" %)**Package Includes**:
1110 1110  
1111 1111  * SN50v3-LB LoRaWAN Generic Node
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0