Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB LoRaWAN Sensor Node User Manual 1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual - Content
-
... ... @@ -1,10 +1,15 @@ 1 + 2 + 1 1 (% style="text-align:center" %) 2 -[[image:image-202 30515135611-1.jpeg||height="589" width="589"]]4 +[[image:image-20240103095714-2.png]] 3 3 4 4 5 5 6 -**Table of Contents:** 7 7 9 + 10 + 11 +**Table of Contents:** 12 + 8 8 {{toc/}} 9 9 10 10 ... ... @@ -14,22 +14,22 @@ 14 14 15 15 = 1. Introduction = 16 16 17 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node == 18 18 19 19 20 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 21 21 22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphonedetection,building automation, andso on.27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 23 23 24 -(% style="color:blue" %)** SN50V3-LB **(%%)has a powerful48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors. 25 25 26 -(% style="color:blue" %)** SN50V3-LB**(%%) has abuilt-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining. 27 27 28 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 29 29 30 - 31 31 == 1.2 Features == 32 32 37 + 33 33 * LoRaWAN 1.0.3 Class A 34 34 * Ultra-low power consumption 35 35 * Open-Source hardware/software ... ... @@ -88,7 +88,7 @@ 88 88 == 1.5 Button & LEDs == 89 89 90 90 91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 96 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]] 92 92 93 93 94 94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -122,22 +122,27 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 513102034-2.png]]130 +[[image:image-20230610163213-1.png||height="404" width="699"]] 126 126 127 127 128 128 == 1.8 Mechanical == 129 129 135 +=== 1.8.1 for LB version === 130 130 131 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 132 132 133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 138 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 134 134 140 + 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 143 +=== 1.8.2 for LS version === 137 137 138 - == HoleOption ==145 +[[image:image-20231231203439-3.png||height="385" width="886"]] 139 139 140 140 148 +== 1.9 Hole Option == 149 + 150 + 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 142 142 143 143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.163 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.171 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 220 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -215,44 +215,44 @@ 215 215 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 216 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 217 217 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 218 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT228 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 219 219 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 233 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 227 227 (% style="color:#037691" %)**Frequency Band**: 228 228 229 - *0x01: EU868239 +0x01: EU868 230 230 231 - *0x02: US915241 +0x02: US915 232 232 233 - *0x03: IN865243 +0x03: IN865 234 234 235 - *0x04: AU915245 +0x04: AU915 236 236 237 - *0x05: KZ865247 +0x05: KZ865 238 238 239 - *0x06: RU864249 +0x06: RU864 240 240 241 - *0x07: AS923251 +0x07: AS923 242 242 243 - *0x08: AS923-1253 +0x08: AS923-1 244 244 245 - *0x09: AS923-2255 +0x09: AS923-2 246 246 247 - *0x0a: AS923-3257 +0x0a: AS923-3 248 248 249 - *0x0b: CN470259 +0x0b: CN470 250 250 251 - *0x0c: EU433261 +0x0c: EU433 252 252 253 - *0x0d: KR920263 +0x0d: KR920 254 254 255 - *0x0e: MA869265 +0x0e: MA869 256 256 257 257 258 258 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -276,19 +276,22 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 289 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 293 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 298 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 291 291 300 +2. All modes share the same Payload Explanation from HERE. 301 + 302 +3. By default, the device will send an uplink message every 20 minutes. 303 + 304 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 294 ... ... @@ -295,22 +295,17 @@ 295 295 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 296 296 297 297 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 -|(% style="width:50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="width:20px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:80px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:40px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:130px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:100px;background-color:#D9E2F3;color:#0070C0" %)**2** 299 -|**Value**|Bat|(% style="width:191px" %)((( 300 -Temperature(DS18B20) 301 -(PC13) 311 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 312 +|Value|Bat|(% style="width:191px" %)((( 313 +Temperature(DS18B20)(PC13) 302 302 )))|(% style="width:78px" %)((( 303 -ADC 304 -(PA4) 315 +ADC(PA4) 305 305 )))|(% style="width:216px" %)((( 306 -Digital in(PB15) & 307 -Digital Interrupt(PA8) 317 +Digital in(PB15)&Digital Interrupt(PA8) 308 308 )))|(% style="width:308px" %)((( 309 -Temperature 310 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 319 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 311 311 )))|(% style="width:154px" %)((( 312 -Humidity 313 -(SHT20 or SHT31) 321 +Humidity(SHT20 or SHT31) 314 314 ))) 315 315 316 316 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] ... ... @@ -318,97 +318,90 @@ 318 318 319 319 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 320 320 329 + 321 321 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 322 322 323 -(% style="width:1011px" %) 324 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2** 325 -|**Value**|BAT|(% style="width:196px" %)((( 326 -Temperature(DS18B20) 327 -(PC13) 332 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 333 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 334 +|Value|BAT|(% style="width:196px" %)((( 335 +Temperature(DS18B20)(PC13) 328 328 )))|(% style="width:87px" %)((( 329 -ADC 330 -(PA4) 337 +ADC(PA4) 331 331 )))|(% style="width:189px" %)((( 332 -Digital in(PB15) & 333 -Digital Interrupt(PA8) 339 +Digital in(PB15) & Digital Interrupt(PA8) 334 334 )))|(% style="width:208px" %)((( 335 -Distance measure by: 336 -1) LIDAR-Lite V3HP 337 -Or 338 -2) Ultrasonic Sensor 341 +Distance measure by: 1) LIDAR-Lite V3HP 342 +Or 2) Ultrasonic Sensor 339 339 )))|(% style="width:117px" %)Reserved 340 340 341 341 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 342 342 343 -**Connection of LIDAR-Lite V3HP:** 344 344 348 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 349 + 345 345 [[image:image-20230512173758-5.png||height="563" width="712"]] 346 346 347 -**Connection to Ultrasonic Sensor:** 348 348 349 - NeedtomoveR1 and R2 resistorstogetlow power,otherwise there willbe240uA standby current.353 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 350 350 355 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 356 + 351 351 [[image:image-20230512173903-6.png||height="596" width="715"]] 352 352 359 + 353 353 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 354 354 355 -(% style="width:1113px" %) 356 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2** 357 -|**Value**|BAT|(% style="width:183px" %)((( 358 -Temperature(DS18B20) 359 -(PC13) 362 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 363 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 364 +|Value|BAT|(% style="width:183px" %)((( 365 +Temperature(DS18B20)(PC13) 360 360 )))|(% style="width:173px" %)((( 361 -Digital in(PB15) & 362 -Digital Interrupt(PA8) 367 +Digital in(PB15) & Digital Interrupt(PA8) 363 363 )))|(% style="width:84px" %)((( 364 -ADC 365 -(PA4) 369 +ADC(PA4) 366 366 )))|(% style="width:323px" %)((( 367 367 Distance measure by:1)TF-Mini plus LiDAR 368 -Or 369 -2) TF-Luna LiDAR 372 +Or 2) TF-Luna LiDAR 370 370 )))|(% style="width:188px" %)Distance signal strength 371 371 372 372 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 373 373 377 + 374 374 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 375 375 376 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 380 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 377 377 378 378 [[image:image-20230512180609-7.png||height="555" width="802"]] 379 379 384 + 380 380 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 381 381 382 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 387 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 383 383 384 -[[image:image-20230 513105207-4.png||height="469" width="802"]]389 +[[image:image-20230610170047-1.png||height="452" width="799"]] 385 385 386 386 387 387 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 388 388 394 + 389 389 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 390 390 391 -(% style="width: 1031px" %)392 -|=((( 397 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 398 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 393 393 **Size(bytes)** 394 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1 395 -|**Value**|(% style="width:68px" %)((( 396 -ADC1 397 -(PA4) 400 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 401 +|Value|(% style="width:68px" %)((( 402 +ADC1(PA4) 398 398 )))|(% style="width:75px" %)((( 399 -ADC2 400 -(PA5) 404 +ADC2(PA5) 401 401 )))|((( 402 -ADC3 403 -(PA8) 406 +ADC3(PA8) 404 404 )))|((( 405 405 Digital Interrupt(PB15) 406 406 )))|(% style="width:304px" %)((( 407 -Temperature 408 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 410 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 409 409 )))|(% style="width:163px" %)((( 410 -Humidity 411 -(SHT20 or SHT31) 412 +Humidity(SHT20 or SHT31) 412 412 )))|(% style="width:53px" %)Bat 413 413 414 414 [[image:image-20230513110214-6.png]] ... ... @@ -419,59 +419,57 @@ 419 419 420 420 This mode has total 11 bytes. As shown below: 421 421 422 -(% style="width:1017px" %) 423 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 424 -|**Value**|BAT|(% style="width:186px" %)((( 425 -Temperature1(DS18B20) 426 -(PC13) 423 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 424 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 425 +|Value|BAT|(% style="width:186px" %)((( 426 +Temperature1(DS18B20)(PC13) 427 427 )))|(% style="width:82px" %)((( 428 -ADC 429 -(PA4) 428 +ADC(PA4) 430 430 )))|(% style="width:210px" %)((( 431 -Digital in(PB15) & 432 -Digital Interrupt(PA8) 430 +Digital in(PB15) & Digital Interrupt(PA8) 433 433 )))|(% style="width:191px" %)Temperature2(DS18B20) 434 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 435 -(PB8) 432 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 436 436 437 437 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 438 438 436 + 439 439 [[image:image-20230513134006-1.png||height="559" width="736"]] 440 440 441 441 442 442 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 443 443 442 + 444 444 [[image:image-20230512164658-2.png||height="532" width="729"]] 445 445 446 446 Each HX711 need to be calibrated before used. User need to do below two steps: 447 447 448 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 449 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 447 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 448 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 450 450 1. ((( 451 451 Weight has 4 bytes, the unit is g. 451 + 452 + 453 + 452 452 ))) 453 453 454 454 For example: 455 455 456 -**AT+GETSENSORVALUE =0** 458 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 457 457 458 458 Response: Weight is 401 g 459 459 460 460 Check the response of this command and adjust the value to match the real value for thing. 461 461 462 -(% style="width: 767px" %)463 -|=((( 464 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 465 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 464 464 **Size(bytes)** 465 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4** 466 -|**Value**|BAT|(% style="width:193px" %)((( 467 -Temperature(DS18B20) 468 -(PC13) 467 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 468 +|Value|BAT|(% style="width:193px" %)((( 469 +Temperature(DS18B20)(PC13) 469 469 )))|(% style="width:85px" %)((( 470 -ADC 471 -(PA4) 471 +ADC(PA4) 472 472 )))|(% style="width:186px" %)((( 473 -Digital in(PB15) & 474 -Digital Interrupt(PA8) 473 +Digital in(PB15) & Digital Interrupt(PA8) 475 475 )))|(% style="width:100px" %)Weight 476 476 477 477 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] ... ... @@ -479,6 +479,7 @@ 479 479 480 480 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 481 481 481 + 482 482 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 483 483 484 484 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -485,23 +485,19 @@ 485 485 486 486 [[image:image-20230512181814-9.png||height="543" width="697"]] 487 487 488 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 489 489 490 -(% style="width:961px" %) 491 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 492 -|**Value**|BAT|(% style="width:256px" %)((( 493 -Temperature(DS18B20) 489 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 494 494 495 -(PC13) 491 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 492 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 493 +|Value|BAT|(% style="width:256px" %)((( 494 +Temperature(DS18B20)(PC13) 496 496 )))|(% style="width:108px" %)((( 497 -ADC 498 -(PA4) 496 +ADC(PA4) 499 499 )))|(% style="width:126px" %)((( 500 -Digital in 501 -(PB15) 498 +Digital in(PB15) 502 502 )))|(% style="width:145px" %)((( 503 -Count 504 -(PA8) 500 +Count(PA8) 505 505 ))) 506 506 507 507 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] ... ... @@ -509,16 +509,16 @@ 509 509 510 510 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 511 511 512 -(% style="width:1108px" %) 513 -|=((( 508 + 509 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 510 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 514 514 **Size(bytes)** 515 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2516 -| **Value**|BAT|(% style="width:188px" %)(((512 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 513 +|Value|BAT|(% style="width:188px" %)((( 517 517 Temperature(DS18B20) 518 518 (PC13) 519 519 )))|(% style="width:83px" %)((( 520 -ADC 521 -(PA5) 517 +ADC(PA5) 522 522 )))|(% style="width:184px" %)((( 523 523 Digital Interrupt1(PA8) 524 524 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -525,26 +525,25 @@ 525 525 526 526 [[image:image-20230513111203-7.png||height="324" width="975"]] 527 527 524 + 528 528 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 529 529 530 -(% style="width:922px" %) 531 -|=((( 527 + 528 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 529 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 532 532 **Size(bytes)** 533 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2534 -| **Value**|BAT|(% style="width:207px" %)(((531 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 532 +|Value|BAT|(% style="width:207px" %)((( 535 535 Temperature(DS18B20) 536 536 (PC13) 537 537 )))|(% style="width:94px" %)((( 538 -ADC1 539 -(PA4) 536 +ADC1(PA4) 540 540 )))|(% style="width:198px" %)((( 541 541 Digital Interrupt(PB15) 542 542 )))|(% style="width:84px" %)((( 543 -ADC2 544 -(PA5) 540 +ADC2(PA5) 545 545 )))|(% style="width:82px" %)((( 546 -ADC3 547 -(PA8) 542 +ADC3(PA8) 548 548 ))) 549 549 550 550 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -552,50 +552,149 @@ 552 552 553 553 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 554 554 555 -(% style="width:1010px" %) 556 -|=((( 550 + 551 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 552 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 557 557 **Size(bytes)** 558 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4559 -| **Value**|BAT|(((560 -Temperature 1(DS18B20)561 -(PC13) 554 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 555 +|Value|BAT|((( 556 +Temperature 557 +(DS18B20)(PC13) 562 562 )))|((( 563 -Temperature2 (DS18B20)564 -(PB9) 559 +Temperature2 560 +(DS18B20)(PB9) 565 565 )))|((( 566 566 Digital Interrupt 567 567 (PB15) 568 568 )))|(% style="width:193px" %)((( 569 -Temperature3 (DS18B20)570 -(PB8) 565 +Temperature3 566 +(DS18B20)(PB8) 571 571 )))|(% style="width:78px" %)((( 572 -Count1 573 -(PA8) 568 +Count1(PA8) 574 574 )))|(% style="width:78px" %)((( 575 -Count2 576 -(PA4) 570 +Count2(PA4) 577 577 ))) 578 578 579 579 [[image:image-20230513111255-9.png||height="341" width="899"]] 580 580 581 -**The newly added AT command is issued correspondingly:** 575 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 582 582 583 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**577 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 584 584 585 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**579 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 586 586 587 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**581 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 588 588 589 -**AT+SETCNT=aa,bb** 590 590 584 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 585 + 591 591 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 592 592 593 593 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 594 594 595 595 591 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 596 596 593 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 594 + 595 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 596 + 597 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 598 + 599 + 600 +===== 2.3.2.10.a Uplink, PWM input capture ===== 601 + 602 + 603 +[[image:image-20230817172209-2.png||height="439" width="683"]] 604 + 605 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 606 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 607 +|Value|Bat|(% style="width:191px" %)((( 608 +Temperature(DS18B20)(PC13) 609 +)))|(% style="width:78px" %)((( 610 +ADC(PA4) 611 +)))|(% style="width:135px" %)((( 612 +PWM_Setting 613 +&Digital Interrupt(PA8) 614 +)))|(% style="width:70px" %)((( 615 +Pulse period 616 +)))|(% style="width:89px" %)((( 617 +Duration of high level 618 +))) 619 + 620 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 621 + 622 + 623 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 624 + 625 +**Frequency:** 626 + 627 +(% class="MsoNormal" %) 628 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 629 + 630 +(% class="MsoNormal" %) 631 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 632 + 633 + 634 +(% class="MsoNormal" %) 635 +**Duty cycle:** 636 + 637 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 638 + 639 +[[image:image-20230818092200-1.png||height="344" width="627"]] 640 + 641 +===== 2.3.2.10.b Uplink, PWM output ===== 642 + 643 +[[image:image-20230817172209-2.png||height="439" width="683"]] 644 + 645 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 646 + 647 +a is the time delay of the output, the unit is ms. 648 + 649 +b is the output frequency, the unit is HZ. 650 + 651 +c is the duty cycle of the output, the unit is %. 652 + 653 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 654 + 655 +aa is the time delay of the output, the unit is ms. 656 + 657 +bb is the output frequency, the unit is HZ. 658 + 659 +cc is the duty cycle of the output, the unit is %. 660 + 661 + 662 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 663 + 664 +The oscilloscope displays as follows: 665 + 666 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 667 + 668 + 669 +===== 2.3.2.10.c Downlink, PWM output ===== 670 + 671 + 672 +[[image:image-20230817173800-3.png||height="412" width="685"]] 673 + 674 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 675 + 676 + xx xx xx is the output frequency, the unit is HZ. 677 + 678 + yy is the duty cycle of the output, the unit is %. 679 + 680 + zz zz is the time delay of the output, the unit is ms. 681 + 682 + 683 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 684 + 685 +The oscilloscope displays as follows: 686 + 687 +[[image:image-20230817173858-5.png||height="694" width="921"]] 688 + 689 + 597 597 === 2.3.3 Decode payload === 598 598 692 + 599 599 While using TTN V3 network, you can add the payload format to decode the payload. 600 600 601 601 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -602,13 +602,14 @@ 602 602 603 603 The payload decoder function for TTN V3 are here: 604 604 605 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 699 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 606 606 607 607 608 608 ==== 2.3.3.1 Battery Info ==== 609 609 610 -Check the battery voltage for SN50v3. 611 611 705 +Check the battery voltage for SN50v3-LB. 706 + 612 612 Ex1: 0x0B45 = 2885mV 613 613 614 614 Ex2: 0x0B49 = 2889mV ... ... @@ -616,16 +616,18 @@ 616 616 617 617 ==== 2.3.3.2 Temperature (DS18B20) ==== 618 618 714 + 619 619 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 620 620 621 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]717 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 622 622 623 -**Connection:** 719 +(% style="color:blue" %)**Connection:** 624 624 625 625 [[image:image-20230512180718-8.png||height="538" width="647"]] 626 626 627 -**Example**: 628 628 724 +(% style="color:blue" %)**Example**: 725 + 629 629 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 630 630 631 631 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -635,6 +635,7 @@ 635 635 636 636 ==== 2.3.3.3 Digital Input ==== 637 637 735 + 638 638 The digital input for pin PB15, 639 639 640 640 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -644,28 +644,38 @@ 644 644 ((( 645 645 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 646 646 647 -(% style="color:red" %)**Note:**The maximum voltage input supports 3.6V. 745 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 746 + 747 + 648 648 ))) 649 649 650 650 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 651 651 652 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 653 653 654 - Whenthemeasuredoutput voltage of thesensorisnot withinthe rangeof0Vand1.1V,theoutputvoltageterminal of theensor shall be divided The example in the following figure istoreduce the output voltage of the sensorby three timesIf it is necessary toreduce moretimes,calculate according to the formula in the figure and connect the corresponding resistance in series.753 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 655 655 755 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 756 + 656 656 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 657 657 658 -(% style="color:red" %)**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 659 659 760 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 660 660 762 + 763 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 764 + 765 +[[image:image-20230811113449-1.png||height="370" width="608"]] 766 + 661 661 ==== 2.3.3.5 Digital Interrupt ==== 662 662 663 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 664 664 665 - (% style="color:blue"%)**~Interruptconnection method:**770 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 666 666 772 +(% style="color:blue" %)** Interrupt connection method:** 773 + 667 667 [[image:image-20230513105351-5.png||height="147" width="485"]] 668 668 776 + 669 669 (% style="color:blue" %)**Example to use with door sensor :** 670 670 671 671 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. ... ... @@ -672,22 +672,23 @@ 672 672 673 673 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 674 674 675 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.783 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 676 676 677 -(% style="color:blue" %)**~ Below is the installation example:** 678 678 679 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:786 +(% style="color:blue" %)**Below is the installation example:** 680 680 788 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 789 + 681 681 * ((( 682 -One pin to SN50 _v3's PA8 pin791 +One pin to SN50v3-LB's PA8 pin 683 683 ))) 684 684 * ((( 685 -The other pin to SN50 _v3's VDD pin794 +The other pin to SN50v3-LB's VDD pin 686 686 ))) 687 687 688 688 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 689 689 690 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 799 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 691 691 692 692 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 693 693 ... ... @@ -699,29 +699,32 @@ 699 699 700 700 The command is: 701 701 702 -(% style="color:blue" %)**AT+INTMOD1=1 811 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 703 703 704 704 Below shows some screen captures in TTN V3: 705 705 706 706 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 707 707 708 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 709 709 818 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 819 + 710 710 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 711 711 712 712 713 713 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 714 714 825 + 715 715 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 716 716 717 717 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 718 718 719 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.830 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 720 720 832 + 721 721 Below is the connection to SHT20/ SHT31. The connection is as below: 722 722 835 +[[image:image-20230610170152-2.png||height="501" width="846"]] 723 723 724 -[[image:image-20230513103633-3.png||height="448" width="716"]] 725 725 726 726 The device will be able to get the I2C sensor data now and upload to IoT Server. 727 727 ... ... @@ -740,23 +740,26 @@ 740 740 741 741 ==== 2.3.3.7 Distance Reading ==== 742 742 743 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 744 744 856 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 745 745 858 + 746 746 ==== 2.3.3.8 Ultrasonic Sensor ==== 747 747 861 + 748 748 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 749 749 750 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.864 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 751 751 752 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 866 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 753 753 754 754 The picture below shows the connection: 755 755 756 756 [[image:image-20230512173903-6.png||height="596" width="715"]] 757 757 758 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 759 759 873 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 874 + 760 760 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 761 761 762 762 **Example:** ... ... @@ -764,16 +764,17 @@ 764 764 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 765 765 766 766 767 - 768 768 ==== 2.3.3.9 Battery Output - BAT pin ==== 769 769 770 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 771 771 885 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 772 772 887 + 773 773 ==== 2.3.3.10 +5V Output ==== 774 774 775 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 776 776 891 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 892 + 777 777 The 5V output time can be controlled by AT Command. 778 778 779 779 (% style="color:blue" %)**AT+5VT=1000** ... ... @@ -780,21 +780,54 @@ 780 780 781 781 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 782 782 783 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 899 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 784 784 785 785 786 - 787 787 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 788 788 904 + 789 789 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 790 790 791 791 [[image:image-20230512172447-4.png||height="416" width="712"]] 792 792 909 + 793 793 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 794 794 795 795 796 -==== 2.3.3.12 W orkingMOD ====913 +==== 2.3.3.12 PWM MOD ==== 797 797 915 + 916 +* ((( 917 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 918 +))) 919 +* ((( 920 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 921 +))) 922 + 923 + [[image:image-20230817183249-3.png||height="320" width="417"]] 924 + 925 +* ((( 926 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 927 +))) 928 +* ((( 929 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 930 +))) 931 +* ((( 932 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 933 + 934 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 935 + 936 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 937 + 938 +b) If the output duration is more than 30 seconds, better to use external power source. 939 + 940 + 941 + 942 +))) 943 + 944 +==== 2.3.3.13 Working MOD ==== 945 + 946 + 798 798 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 799 799 800 800 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -810,9 +810,8 @@ 810 810 * 6: MOD7 811 811 * 7: MOD8 812 812 * 8: MOD9 962 +* 9: MOD10 813 813 814 - 815 - 816 816 == 2.4 Payload Decoder file == 817 817 818 818 ... ... @@ -823,7 +823,6 @@ 823 823 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 824 824 825 825 826 - 827 827 == 2.5 Frequency Plans == 828 828 829 829 ... ... @@ -859,17 +859,18 @@ 859 859 == 3.3 Commands special design for SN50v3-LB == 860 860 861 861 862 -These commands only valid for S3 1x-LB, as below:1009 +These commands only valid for SN50v3-LB, as below: 863 863 864 864 865 865 === 3.3.1 Set Transmit Interval Time === 866 866 1014 + 867 867 Feature: Change LoRaWAN End Node Transmit Interval. 868 868 869 869 (% style="color:blue" %)**AT Command: AT+TDC** 870 870 871 871 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 872 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 1020 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 873 873 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 874 874 30000 875 875 OK ... ... @@ -889,25 +889,25 @@ 889 889 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 890 890 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 891 891 892 - 893 - 894 894 === 3.3.2 Get Device Status === 895 895 1042 + 896 896 Send a LoRaWAN downlink to ask the device to send its status. 897 897 898 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 011045 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 899 899 900 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 1047 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 901 901 902 902 903 903 === 3.3.3 Set Interrupt Mode === 904 904 1052 + 905 905 Feature, Set Interrupt mode for GPIO_EXIT. 906 906 907 907 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 908 908 909 909 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 910 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1058 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 911 911 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 912 912 0 913 913 OK ... ... @@ -922,7 +922,6 @@ 922 922 )))|(% style="width:157px" %)OK 923 923 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 924 924 Set Transmit Interval 925 - 926 926 trigger by rising edge. 927 927 )))|(% style="width:157px" %)OK 928 928 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -938,10 +938,9 @@ 938 938 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 939 939 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 940 940 941 - 942 - 943 943 === 3.3.4 Set Power Output Duration === 944 944 1090 + 945 945 Control the output duration 5V . Before each sampling, device will 946 946 947 947 ~1. first enable the power output to external sensor, ... ... @@ -953,7 +953,7 @@ 953 953 (% style="color:blue" %)**AT Command: AT+5VT** 954 954 955 955 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 956 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1102 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 957 957 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 958 958 500(default) 959 959 OK ... ... @@ -971,16 +971,15 @@ 971 971 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 972 972 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 973 973 974 - 975 - 976 976 === 3.3.5 Set Weighing parameters === 977 977 1122 + 978 978 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 979 979 980 980 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 981 981 982 982 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 983 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1128 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 984 984 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 985 985 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 986 986 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -997,10 +997,9 @@ 997 997 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 998 998 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 999 999 1000 - 1001 - 1002 1002 === 3.3.6 Set Digital pulse count value === 1003 1003 1147 + 1004 1004 Feature: Set the pulse count value. 1005 1005 1006 1006 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1008,7 +1008,7 @@ 1008 1008 (% style="color:blue" %)**AT Command: AT+SETCNT** 1009 1009 1010 1010 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1011 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1155 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1012 1012 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1013 1013 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1014 1014 ... ... @@ -1021,16 +1021,15 @@ 1021 1021 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1022 1022 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1023 1023 1024 - 1025 - 1026 1026 === 3.3.7 Set Workmode === 1027 1027 1170 + 1028 1028 Feature: Switch working mode. 1029 1029 1030 1030 (% style="color:blue" %)**AT Command: AT+MOD** 1031 1031 1032 1032 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1033 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1176 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1034 1034 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1035 1035 OK 1036 1036 ))) ... ... @@ -1046,11 +1046,101 @@ 1046 1046 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1047 1047 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1048 1048 1192 +(% id="H3.3.8PWMsetting" %) 1193 +=== 3.3.8 PWM setting === 1049 1049 1050 1050 1051 -= 4. Battery&PowerConsumption=1196 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1052 1052 1198 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1053 1053 1200 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1201 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1202 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1203 +0(default) 1204 + 1205 +OK 1206 +))) 1207 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1208 +OK 1209 + 1210 +))) 1211 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1212 + 1213 +(% style="color:blue" %)**Downlink Command: 0x0C** 1214 + 1215 +Format: Command Code (0x0C) followed by 1 bytes. 1216 + 1217 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1218 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1219 + 1220 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1221 + 1222 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1223 + 1224 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1225 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1226 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1227 +0,0,0(default) 1228 + 1229 +OK 1230 +))) 1231 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1232 +OK 1233 + 1234 +))) 1235 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1236 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1237 + 1238 + 1239 +)))|(% style="width:137px" %)((( 1240 +OK 1241 +))) 1242 + 1243 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1244 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1245 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1246 +AT+PWMOUT=a,b,c 1247 + 1248 + 1249 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1250 +Set PWM output time, output frequency and output duty cycle. 1251 + 1252 +((( 1253 + 1254 +))) 1255 + 1256 +((( 1257 + 1258 +))) 1259 +)))|(% style="width:242px" %)((( 1260 +a: Output time (unit: seconds) 1261 + 1262 +The value ranges from 0 to 65535. 1263 + 1264 +When a=65535, PWM will always output. 1265 +))) 1266 +|(% style="width:242px" %)((( 1267 +b: Output frequency (unit: HZ) 1268 +))) 1269 +|(% style="width:242px" %)((( 1270 +c: Output duty cycle (unit: %) 1271 + 1272 +The value ranges from 0 to 100. 1273 +))) 1274 + 1275 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1276 + 1277 +Format: Command Code (0x0B01) followed by 6 bytes. 1278 + 1279 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1280 + 1281 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1282 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1283 + 1284 += 4. Battery & Power Cons = 1285 + 1286 + 1054 1054 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1055 1055 1056 1056 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -1060,27 +1060,43 @@ 1060 1060 1061 1061 1062 1062 (% class="wikigeneratedid" %) 1063 -User can change firmware SN50v3-LB to: 1296 +**User can change firmware SN50v3-LB to:** 1064 1064 1065 1065 * Change Frequency band/ region. 1066 1066 * Update with new features. 1067 1067 * Fix bugs. 1068 1068 1069 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1302 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1070 1070 1304 +**Methods to Update Firmware:** 1071 1071 1072 -Methods to Update Firmware: 1306 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1307 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1073 1073 1074 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1075 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1076 - 1077 1077 = 6. FAQ = 1078 1078 1079 1079 == 6.1 Where can i find source code of SN50v3-LB? == 1080 1080 1313 + 1081 1081 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1082 1082 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1083 1083 1317 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1318 + 1319 + 1320 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1321 + 1322 + 1323 +== 6.3 How to put several sensors to a SN50v3-LB? == 1324 + 1325 + 1326 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1327 + 1328 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1329 + 1330 +[[image:image-20230810121434-1.png||height="242" width="656"]] 1331 + 1332 + 1084 1084 = 7. Order Info = 1085 1085 1086 1086 ... ... @@ -1106,6 +1106,7 @@ 1106 1106 1107 1107 = 8. Packing Info = 1108 1108 1358 + 1109 1109 (% style="color:#037691" %)**Package Includes**: 1110 1110 1111 1111 * SN50v3-LB LoRaWAN Generic Node
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +230.1 KB - Content