<
From version < 43.1 >
edited by Saxer Lin
on 2023/05/16 11:28
To version < 49.1 >
edited by Saxer Lin
on 2023/06/10 16:32
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -16,23 +16,21 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 +
19 19  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
20 20  
21 -
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 -
25 25  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
26 26  
27 -
28 28  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
29 29  
30 -
31 31  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32 32  
33 33  
34 34  == 1.2 ​Features ==
35 35  
33 +
36 36  * LoRaWAN 1.0.3 Class A
37 37  * Ultra-low power consumption
38 38  * Open-Source hardware/software
... ... @@ -45,6 +45,7 @@
45 45  
46 46  == 1.3 Specification ==
47 47  
46 +
48 48  (% style="color:#037691" %)**Common DC Characteristics:**
49 49  
50 50  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -81,6 +81,7 @@
81 81  
82 82  == 1.4 Sleep mode and working mode ==
83 83  
83 +
84 84  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85 85  
86 86  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -123,7 +123,7 @@
123 123  == 1.7 Pin Definitions ==
124 124  
125 125  
126 -[[image:image-20230513102034-2.png]]
126 +[[image:image-20230610163213-1.png||height="404" width="699"]]
127 127  
128 128  
129 129  == 1.8 Mechanical ==
... ... @@ -136,8 +136,9 @@
136 136  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137 137  
138 138  
139 -== Hole Option ==
139 +== 1.9 Hole Option ==
140 140  
141 +
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
211 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,12 +215,12 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
... ... @@ -276,47 +276,39 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
291 291  
292 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
291 +2. All modes share the same Payload Explanation from HERE.
293 293  
294 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
293 +3. By default, the device will send an uplink message every 20 minutes.
295 295  
296 -(% style="width:1110px" %)
297 -|**Size(bytes)**|**2**|(% style="width:191px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**
298 -|**Value**|Bat|(% style="width:191px" %)(((
299 -Temperature(DS18B20)
300 300  
301 -(PC13)
302 -)))|(% style="width:78px" %)(((
303 -ADC
296 +==== 2.3.2.1  MOD~=1 (Default Mode) ====
304 304  
305 -(PA4)
306 -)))|(% style="width:216px" %)(((
307 -Digital in(PB15) &
308 308  
309 -Digital Interrupt(PA8)
299 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
310 310  
311 -
301 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
303 +|Value|Bat|(% style="width:191px" %)(((
304 +Temperature(DS18B20)(PC13)
305 +)))|(% style="width:78px" %)(((
306 +ADC(PA4)
307 +)))|(% style="width:216px" %)(((
308 +Digital in(PB15)&Digital Interrupt(PA8)
312 312  )))|(% style="width:308px" %)(((
313 -Temperature
314 -
315 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
310 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
316 316  )))|(% style="width:154px" %)(((
317 -Humidity
318 -
319 -(SHT20 or SHT31)
312 +Humidity(SHT20 or SHT31)
320 320  )))
321 321  
322 322  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -324,25 +324,19 @@
324 324  
325 325  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
326 326  
320 +
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 -(% style="width:1011px" %)
330 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
331 -|**Value**|BAT|(% style="width:196px" %)(((
332 -Temperature(DS18B20)
333 -
334 -(PC13)
323 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
324 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
325 +|Value|BAT|(% style="width:196px" %)(((
326 +Temperature(DS18B20)(PC13)
335 335  )))|(% style="width:87px" %)(((
336 -ADC
337 -
338 -(PA4)
328 +ADC(PA4)
339 339  )))|(% style="width:189px" %)(((
340 -Digital in(PB15) &
341 -
342 -Digital Interrupt(PA8)
330 +Digital in(PB15) & Digital Interrupt(PA8)
343 343  )))|(% style="width:208px" %)(((
344 -Distance measure by:
345 -1) LIDAR-Lite V3HP
332 +Distance measure by:1) LIDAR-Lite V3HP
346 346  Or
347 347  2) Ultrasonic Sensor
348 348  )))|(% style="width:117px" %)Reserved
... ... @@ -349,32 +349,29 @@
349 349  
350 350  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
351 351  
352 -**Connection of LIDAR-Lite V3HP:**
353 353  
340 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
341 +
354 354  [[image:image-20230512173758-5.png||height="563" width="712"]]
355 355  
356 -**Connection to Ultrasonic Sensor:**
357 357  
358 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
345 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
359 359  
347 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
348 +
360 360  [[image:image-20230512173903-6.png||height="596" width="715"]]
361 361  
351 +
362 362  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
363 363  
364 -(% style="width:1113px" %)
365 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
366 -|**Value**|BAT|(% style="width:183px" %)(((
367 -Temperature(DS18B20)
368 -
369 -(PC13)
354 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
355 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
356 +|Value|BAT|(% style="width:183px" %)(((
357 +Temperature(DS18B20)(PC13)
370 370  )))|(% style="width:173px" %)(((
371 -Digital in(PB15) &
372 -
373 -Digital Interrupt(PA8)
359 +Digital in(PB15) & Digital Interrupt(PA8)
374 374  )))|(% style="width:84px" %)(((
375 -ADC
376 -
377 -(PA4)
361 +ADC(PA4)
378 378  )))|(% style="width:323px" %)(((
379 379  Distance measure by:1)TF-Mini plus LiDAR
380 380  Or 
... ... @@ -383,15 +383,17 @@
383 383  
384 384  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
385 385  
370 +
386 386  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
387 387  
388 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
373 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
389 389  
390 390  [[image:image-20230512180609-7.png||height="555" width="802"]]
391 391  
377 +
392 392  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
393 393  
394 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
380 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
395 395  
396 396  [[image:image-20230513105207-4.png||height="469" width="802"]]
397 397  
... ... @@ -398,34 +398,25 @@
398 398  
399 399  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
400 400  
387 +
401 401  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
402 402  
403 -(% style="width:1031px" %)
404 -|=(((
390 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
391 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
405 405  **Size(bytes)**
406 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
407 -|**Value**|(% style="width:68px" %)(((
408 -ADC1
409 -
410 -(PA4)
393 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
394 +|Value|(% style="width:68px" %)(((
395 +ADC1(PA4)
411 411  )))|(% style="width:75px" %)(((
412 -ADC2
413 -
414 -(PA5)
397 +ADC2(PA5)
415 415  )))|(((
416 -ADC3
417 -
418 -(PA8)
399 +ADC3(PA8)
419 419  )))|(((
420 420  Digital Interrupt(PB15)
421 421  )))|(% style="width:304px" %)(((
422 -Temperature
423 -
424 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
403 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
425 425  )))|(% style="width:163px" %)(((
426 -Humidity
427 -
428 -(SHT20 or SHT31)
405 +Humidity(SHT20 or SHT31)
429 429  )))|(% style="width:53px" %)Bat
430 430  
431 431  [[image:image-20230513110214-6.png]]
... ... @@ -436,73 +436,66 @@
436 436  
437 437  This mode has total 11 bytes. As shown below:
438 438  
439 -(% style="width:1017px" %)
440 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
441 -|**Value**|BAT|(% style="width:186px" %)(((
442 -Temperature1(DS18B20)
443 -(PC13)
416 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
417 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
418 +|Value|BAT|(% style="width:186px" %)(((
419 +Temperature1(DS18B20)(PC13)
444 444  )))|(% style="width:82px" %)(((
445 -ADC
446 -
447 -(PA4)
421 +ADC(PA4)
448 448  )))|(% style="width:210px" %)(((
449 -Digital in(PB15) &
450 -
451 -Digital Interrupt(PA8) 
423 +Digital in(PB15) & Digital Interrupt(PA8) 
452 452  )))|(% style="width:191px" %)Temperature2(DS18B20)
453 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
454 -(PB8)
425 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
455 455  
456 456  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
457 457  
429 +
458 458  [[image:image-20230513134006-1.png||height="559" width="736"]]
459 459  
460 460  
461 461  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
462 462  
435 +
463 463  [[image:image-20230512164658-2.png||height="532" width="729"]]
464 464  
465 465  Each HX711 need to be calibrated before used. User need to do below two steps:
466 466  
467 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
468 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
440 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
441 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
469 469  1. (((
470 470  Weight has 4 bytes, the unit is g.
444 +
445 +
446 +
471 471  )))
472 472  
473 473  For example:
474 474  
475 -**AT+GETSENSORVALUE =0**
451 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
476 476  
477 477  Response:  Weight is 401 g
478 478  
479 479  Check the response of this command and adjust the value to match the real value for thing.
480 480  
481 -(% style="width:767px" %)
482 -|=(((
457 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
458 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
483 483  **Size(bytes)**
484 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
485 -|**Value**|BAT|(% style="width:193px" %)(((
486 -Temperature(DS18B20)
487 -
488 -(PC13)
489 -
490 -
460 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
461 +|Value|BAT|(% style="width:193px" %)(((
462 +Temperature(DS18B20)(PC13)
491 491  )))|(% style="width:85px" %)(((
492 -ADC
493 -
494 -(PA4)
464 +ADC(PA4)
495 495  )))|(% style="width:186px" %)(((
496 -Digital in(PB15) &
497 -
498 -Digital Interrupt(PA8)
466 +Digital in(PB15) & Digital Interrupt(PA8)
499 499  )))|(% style="width:100px" %)Weight
500 500  
501 501  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
502 502  
503 503  
472 +
504 504  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
505 505  
475 +
506 506  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
507 507  
508 508  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -509,26 +509,19 @@
509 509  
510 510  [[image:image-20230512181814-9.png||height="543" width="697"]]
511 511  
512 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
513 513  
514 -(% style="width:961px" %)
515 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
516 -|**Value**|BAT|(% style="width:256px" %)(((
517 -Temperature(DS18B20)
483 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
518 518  
519 -(PC13)
485 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
486 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
487 +|Value|BAT|(% style="width:256px" %)(((
488 +Temperature(DS18B20)(PC13)
520 520  )))|(% style="width:108px" %)(((
521 -ADC
522 -
523 -(PA4)
490 +ADC(PA4)
524 524  )))|(% style="width:126px" %)(((
525 -Digital in
526 -
527 -(PB15)
492 +Digital in(PB15)
528 528  )))|(% style="width:145px" %)(((
529 -Count
530 -
531 -(PA8)
494 +Count(PA8)
532 532  )))
533 533  
534 534  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -536,18 +536,16 @@
536 536  
537 537  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
538 538  
539 -(% style="width:1108px" %)
540 -|=(((
502 +
503 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
504 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
541 541  **Size(bytes)**
542 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
543 -|**Value**|BAT|(% style="width:188px" %)(((
506 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
507 +|Value|BAT|(% style="width:188px" %)(((
544 544  Temperature(DS18B20)
545 -
546 546  (PC13)
547 547  )))|(% style="width:83px" %)(((
548 -ADC
549 -
550 -(PA5)
511 +ADC(PA5)
551 551  )))|(% style="width:184px" %)(((
552 552  Digital Interrupt1(PA8)
553 553  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -554,30 +554,25 @@
554 554  
555 555  [[image:image-20230513111203-7.png||height="324" width="975"]]
556 556  
518 +
557 557  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
558 558  
559 -(% style="width:922px" %)
560 -|=(((
521 +
522 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
523 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
561 561  **Size(bytes)**
562 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
563 -|**Value**|BAT|(% style="width:207px" %)(((
525 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
526 +|Value|BAT|(% style="width:207px" %)(((
564 564  Temperature(DS18B20)
565 -
566 566  (PC13)
567 567  )))|(% style="width:94px" %)(((
568 -ADC1
569 -
570 -(PA4)
530 +ADC1(PA4)
571 571  )))|(% style="width:198px" %)(((
572 572  Digital Interrupt(PB15)
573 573  )))|(% style="width:84px" %)(((
574 -ADC2
575 -
576 -(PA5)
534 +ADC2(PA5)
577 577  )))|(% style="width:82px" %)(((
578 -ADC3
579 -
580 -(PA8)
536 +ADC3(PA8)
581 581  )))
582 582  
583 583  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -585,56 +585,50 @@
585 585  
586 586  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
587 587  
588 -(% style="width:1010px" %)
589 -|=(((
590 -**Size(bytes)**
591 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
592 -|**Value**|BAT|(((
593 -Temperature1(DS18B20)
594 594  
595 -(PC13)
545 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
546 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
547 +**Size(bytes)**
548 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
549 +|Value|BAT|(((
550 +Temperature
551 +(DS18B20)(PC13)
596 596  )))|(((
597 -Temperature2(DS18B20)
598 -
599 -(PB9)
553 +Temperature2
554 +(DS18B20)(PB9)
600 600  )))|(((
601 601  Digital Interrupt
602 -
603 603  (PB15)
604 604  )))|(% style="width:193px" %)(((
605 -Temperature3(DS18B20)
606 -
607 -(PB8)
559 +Temperature3
560 +(DS18B20)(PB8)
608 608  )))|(% style="width:78px" %)(((
609 -Count1
610 -
611 -(PA8)
562 +Count1(PA8)
612 612  )))|(% style="width:78px" %)(((
613 -Count2
614 -
615 -(PA4)
564 +Count2(PA4)
616 616  )))
617 617  
618 618  [[image:image-20230513111255-9.png||height="341" width="899"]]
619 619  
620 -**The newly added AT command is issued correspondingly:**
569 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
621 621  
622 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
571 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
623 623  
624 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
573 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
625 625  
626 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
575 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
627 627  
628 -**AT+SETCNT=aa,bb** 
629 629  
578 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
579 +
630 630  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
631 631  
632 632  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
633 633  
634 634  
635 -
636 636  === 2.3.3  ​Decode payload ===
637 637  
587 +
638 638  While using TTN V3 network, you can add the payload format to decode the payload.
639 639  
640 640  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -641,13 +641,14 @@
641 641  
642 642  The payload decoder function for TTN V3 are here:
643 643  
644 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
594 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
645 645  
646 646  
647 647  ==== 2.3.3.1 Battery Info ====
648 648  
649 -Check the battery voltage for SN50v3.
650 650  
600 +Check the battery voltage for SN50v3-LB.
601 +
651 651  Ex1: 0x0B45 = 2885mV
652 652  
653 653  Ex2: 0x0B49 = 2889mV
... ... @@ -655,16 +655,18 @@
655 655  
656 656  ==== 2.3.3.2  Temperature (DS18B20) ====
657 657  
609 +
658 658  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
659 659  
660 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
612 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
661 661  
662 -**Connection:**
614 +(% style="color:blue" %)**Connection:**
663 663  
664 664  [[image:image-20230512180718-8.png||height="538" width="647"]]
665 665  
666 -**Example**:
667 667  
619 +(% style="color:blue" %)**Example**:
620 +
668 668  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
669 669  
670 670  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -674,6 +674,7 @@
674 674  
675 675  ==== 2.3.3.3 Digital Input ====
676 676  
630 +
677 677  The digital input for pin PB15,
678 678  
679 679  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -683,7 +683,7 @@
683 683  (((
684 684  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
685 685  
686 -**Note:**The maximum voltage input supports 3.6V.
640 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
687 687  
688 688  
689 689  )))
... ... @@ -690,6 +690,7 @@
690 690  
691 691  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
692 692  
647 +
693 693  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
694 694  
695 695  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -696,39 +696,43 @@
696 696  
697 697  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
698 698  
699 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
700 700  
655 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
701 701  
657 +
702 702  ==== 2.3.3.5 Digital Interrupt ====
703 703  
704 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
705 705  
706 -**~ Interrupt connection method:**
661 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
707 707  
663 +(% style="color:blue" %)** Interrupt connection method:**
664 +
708 708  [[image:image-20230513105351-5.png||height="147" width="485"]]
709 709  
710 -**Example to use with door sensor :**
711 711  
668 +(% style="color:blue" %)**Example to use with door sensor :**
669 +
712 712  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
713 713  
714 714  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
715 715  
716 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
674 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
717 717  
718 -**~ Below is the installation example:**
719 719  
720 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
677 +(% style="color:blue" %)**Below is the installation example:**
721 721  
679 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
680 +
722 722  * (((
723 -One pin to SN50_v3's PA8 pin
682 +One pin to SN50v3-LB's PA8 pin
724 724  )))
725 725  * (((
726 -The other pin to SN50_v3's VDD pin
685 +The other pin to SN50v3-LB's VDD pin
727 727  )))
728 728  
729 729  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
730 730  
731 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
690 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
732 732  
733 733  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
734 734  
... ... @@ -740,30 +740,33 @@
740 740  
741 741  The command is:
742 742  
743 -**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
702 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
744 744  
745 745  Below shows some screen captures in TTN V3:
746 746  
747 747  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
748 748  
749 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
750 750  
709 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
710 +
751 751  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
752 752  
753 753  
754 754  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
755 755  
716 +
756 756  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
757 757  
758 758  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
759 759  
760 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
721 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
761 761  
723 +
762 762  Below is the connection to SHT20/ SHT31. The connection is as below:
763 763  
764 -
765 765  [[image:image-20230513103633-3.png||height="448" width="716"]]
766 766  
728 +
767 767  The device will be able to get the I2C sensor data now and upload to IoT Server.
768 768  
769 769  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -781,23 +781,26 @@
781 781  
782 782  ==== 2.3.3.7  ​Distance Reading ====
783 783  
784 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
785 785  
747 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
786 786  
749 +
787 787  ==== 2.3.3.8 Ultrasonic Sensor ====
788 788  
752 +
789 789  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
790 790  
791 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
755 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
792 792  
793 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
757 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
794 794  
795 795  The picture below shows the connection:
796 796  
797 797  [[image:image-20230512173903-6.png||height="596" width="715"]]
798 798  
799 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
800 800  
764 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
765 +
801 801  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
802 802  
803 803  **Example:**
... ... @@ -805,37 +805,40 @@
805 805  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
806 806  
807 807  
808 -
809 809  ==== 2.3.3.9  Battery Output - BAT pin ====
810 810  
811 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
812 812  
776 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
813 813  
778 +
814 814  ==== 2.3.3.10  +5V Output ====
815 815  
816 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
817 817  
782 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
783 +
818 818  The 5V output time can be controlled by AT Command.
819 819  
820 -**AT+5VT=1000**
786 +(% style="color:blue" %)**AT+5VT=1000**
821 821  
822 822  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
823 823  
824 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
790 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
825 825  
826 826  
827 -
828 828  ==== 2.3.3.11  BH1750 Illumination Sensor ====
829 829  
795 +
830 830  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
831 831  
832 832  [[image:image-20230512172447-4.png||height="416" width="712"]]
833 833  
800 +
834 834  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
835 835  
836 836  
837 837  ==== 2.3.3.12  Working MOD ====
838 838  
806 +
839 839  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
840 840  
841 841  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -852,9 +852,6 @@
852 852  * 7: MOD8
853 853  * 8: MOD9
854 854  
855 -(% class="wikigeneratedid" %)
856 -== ==
857 -
858 858  == 2.4 Payload Decoder file ==
859 859  
860 860  
... ... @@ -865,7 +865,6 @@
865 865  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
866 866  
867 867  
868 -
869 869  == 2.5 Frequency Plans ==
870 870  
871 871  
... ... @@ -901,11 +901,12 @@
901 901  == 3.3 Commands special design for SN50v3-LB ==
902 902  
903 903  
904 -These commands only valid for S31x-LB, as below:
868 +These commands only valid for SN50v3-LB, as below:
905 905  
906 906  
907 907  === 3.3.1 Set Transmit Interval Time ===
908 908  
873 +
909 909  Feature: Change LoRaWAN End Node Transmit Interval.
910 910  
911 911  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -931,26 +931,25 @@
931 931  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
932 932  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
933 933  
934 -(% class="wikigeneratedid" %)
935 -=== ===
936 -
937 937  === 3.3.2 Get Device Status ===
938 938  
901 +
939 939  Send a LoRaWAN downlink to ask the device to send its status.
940 940  
941 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
904 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
942 942  
943 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
906 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
944 944  
945 945  
946 946  === 3.3.3 Set Interrupt Mode ===
947 947  
911 +
948 948  Feature, Set Interrupt mode for GPIO_EXIT.
949 949  
950 950  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
951 951  
952 952  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
953 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
917 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
954 954  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
955 955  0
956 956  OK
... ... @@ -965,7 +965,6 @@
965 965  )))|(% style="width:157px" %)OK
966 966  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
967 967  Set Transmit Interval
968 -
969 969  trigger by rising edge.
970 970  )))|(% style="width:157px" %)OK
971 971  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -981,11 +981,9 @@
981 981  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
982 982  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
983 983  
984 -(% class="wikigeneratedid" %)
985 -=== ===
986 -
987 987  === 3.3.4 Set Power Output Duration ===
988 988  
949 +
989 989  Control the output duration 5V . Before each sampling, device will
990 990  
991 991  ~1. first enable the power output to external sensor,
... ... @@ -997,10 +997,9 @@
997 997  (% style="color:blue" %)**AT Command: AT+5VT**
998 998  
999 999  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1000 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
961 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1001 1001  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1002 1002  500(default)
1003 -
1004 1004  OK
1005 1005  )))
1006 1006  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -1016,17 +1016,15 @@
1016 1016  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1017 1017  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1018 1018  
1019 -(% class="wikigeneratedid" %)
1020 -=== ===
1021 -
1022 1022  === 3.3.5 Set Weighing parameters ===
1023 1023  
981 +
1024 1024  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1025 1025  
1026 1026  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1027 1027  
1028 1028  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1029 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
987 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1030 1030  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1031 1031  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1032 1032  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1043,11 +1043,9 @@
1043 1043  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1044 1044  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1045 1045  
1046 -(% class="wikigeneratedid" %)
1047 -=== ===
1048 -
1049 1049  === 3.3.6 Set Digital pulse count value ===
1050 1050  
1006 +
1051 1051  Feature: Set the pulse count value.
1052 1052  
1053 1053  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1055,7 +1055,7 @@
1055 1055  (% style="color:blue" %)**AT Command: AT+SETCNT**
1056 1056  
1057 1057  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1058 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1014 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1059 1059  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1060 1060  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1061 1061  
... ... @@ -1068,23 +1068,20 @@
1068 1068  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1069 1069  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1070 1070  
1071 -(% class="wikigeneratedid" %)
1072 -=== ===
1073 -
1074 1074  === 3.3.7 Set Workmode ===
1075 1075  
1029 +
1076 1076  Feature: Switch working mode.
1077 1077  
1078 1078  (% style="color:blue" %)**AT Command: AT+MOD**
1079 1079  
1080 1080  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1081 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1035 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response**
1082 1082  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1083 1083  OK
1084 1084  )))
1085 1085  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1086 1086  OK
1087 -
1088 1088  Attention:Take effect after ATZ
1089 1089  )))
1090 1090  
... ... @@ -1095,9 +1095,6 @@
1095 1095  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1096 1096  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1097 1097  
1098 -(% class="wikigeneratedid" %)
1099 -= =
1100 -
1101 1101  = 4. Battery & Power Consumption =
1102 1102  
1103 1103  
... ... @@ -1110,17 +1110,16 @@
1110 1110  
1111 1111  
1112 1112  (% class="wikigeneratedid" %)
1113 -User can change firmware SN50v3-LB to:
1063 +**User can change firmware SN50v3-LB to:**
1114 1114  
1115 1115  * Change Frequency band/ region.
1116 1116  * Update with new features.
1117 1117  * Fix bugs.
1118 1118  
1119 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1069 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1120 1120  
1071 +**Methods to Update Firmware:**
1121 1121  
1122 -Methods to Update Firmware:
1123 -
1124 1124  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1125 1125  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1126 1126  
... ... @@ -1128,6 +1128,7 @@
1128 1128  
1129 1129  == 6.1 Where can i find source code of SN50v3-LB? ==
1130 1130  
1080 +
1131 1131  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1132 1132  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1133 1133  
... ... @@ -1156,6 +1156,7 @@
1156 1156  
1157 1157  = 8. ​Packing Info =
1158 1158  
1109 +
1159 1159  (% style="color:#037691" %)**Package Includes**:
1160 1160  
1161 1161  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1171,4 +1171,5 @@
1171 1171  
1172 1172  
1173 1173  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1125 +
1174 1174  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0