<
From version < 42.1 >
edited by Saxer Lin
on 2023/05/16 11:27
To version < 86.1 >
edited by Xiaoling
on 2024/01/03 09:55
>
Change comment: Uploaded new attachment "image-20240103095513-1.jpeg", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -3,7 +3,7 @@
3 3  
4 4  
5 5  
6 -**Table of Contents**
6 +**Table of Contents:**
7 7  
8 8  {{toc/}}
9 9  
... ... @@ -16,23 +16,20 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 +
19 19  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
20 20  
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
21 21  
22 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 -
24 -
25 25  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
26 26  
27 -
28 28  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
29 29  
30 -
31 31  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32 32  
33 -
34 34  == 1.2 ​Features ==
35 35  
32 +
36 36  * LoRaWAN 1.0.3 Class A
37 37  * Ultra-low power consumption
38 38  * Open-Source hardware/software
... ... @@ -45,6 +45,7 @@
45 45  
46 46  == 1.3 Specification ==
47 47  
45 +
48 48  (% style="color:#037691" %)**Common DC Characteristics:**
49 49  
50 50  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -81,6 +81,7 @@
81 81  
82 82  == 1.4 Sleep mode and working mode ==
83 83  
82 +
84 84  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85 85  
86 86  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -89,7 +89,7 @@
89 89  == 1.5 Button & LEDs ==
90 90  
91 91  
92 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
93 93  
94 94  
95 95  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -123,21 +123,27 @@
123 123  == 1.7 Pin Definitions ==
124 124  
125 125  
126 -[[image:image-20230513102034-2.png]]
125 +[[image:image-20230610163213-1.png||height="404" width="699"]]
127 127  
128 128  
129 129  == 1.8 Mechanical ==
130 130  
130 +=== 1.8.1 for LB version ===
131 131  
132 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
133 133  
134 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
135 135  
135 +
136 136  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
137 137  
138 +=== 1.8.2 for LS version ===
138 138  
139 -== Hole Option ==
140 +[[image:image-20231231203439-3.png||height="385" width="886"]]
140 140  
142 +
143 +== 1.9 Hole Option ==
144 +
145 +
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
215 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -215,44 +215,44 @@
215 215  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
216 216  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
217 217  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
218 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
219 219  
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
228 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
227 227  (% style="color:#037691" %)**Frequency Band**:
228 228  
229 -*0x01: EU868
234 +0x01: EU868
230 230  
231 -*0x02: US915
236 +0x02: US915
232 232  
233 -*0x03: IN865
238 +0x03: IN865
234 234  
235 -*0x04: AU915
240 +0x04: AU915
236 236  
237 -*0x05: KZ865
242 +0x05: KZ865
238 238  
239 -*0x06: RU864
244 +0x06: RU864
240 240  
241 -*0x07: AS923
246 +0x07: AS923
242 242  
243 -*0x08: AS923-1
248 +0x08: AS923-1
244 244  
245 -*0x09: AS923-2
250 +0x09: AS923-2
246 246  
247 -*0x0a: AS923-3
252 +0x0a: AS923-3
248 248  
249 -*0x0b: CN470
254 +0x0b: CN470
250 250  
251 -*0x0c: EU433
256 +0x0c: EU433
252 252  
253 -*0x0d: KR920
258 +0x0d: KR920
254 254  
255 -*0x0e: MA869
260 +0x0e: MA869
256 256  
257 257  
258 258  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -276,47 +276,39 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
284 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
293 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
291 291  
292 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
295 +2. All modes share the same Payload Explanation from HERE.
293 293  
294 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
297 +3. By default, the device will send an uplink message every 20 minutes.
295 295  
296 -(% style="width:1110px" %)
297 -|**Size(bytes)**|**2**|(% style="width:191px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**
298 -|**Value**|Bat|(% style="width:191px" %)(((
299 -Temperature(DS18B20)
300 300  
301 -(PC13)
302 -)))|(% style="width:78px" %)(((
303 -ADC
300 +==== 2.3.2.1  MOD~=1 (Default Mode) ====
304 304  
305 -(PA4)
306 -)))|(% style="width:216px" %)(((
307 -Digital in(PB15) &
308 308  
309 -Digital Interrupt(PA8)
303 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
310 310  
311 -
305 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
306 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
307 +|Value|Bat|(% style="width:191px" %)(((
308 +Temperature(DS18B20)(PC13)
309 +)))|(% style="width:78px" %)(((
310 +ADC(PA4)
311 +)))|(% style="width:216px" %)(((
312 +Digital in(PB15)&Digital Interrupt(PA8)
312 312  )))|(% style="width:308px" %)(((
313 -Temperature
314 -
315 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
314 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
316 316  )))|(% style="width:154px" %)(((
317 -Humidity
318 -
319 -(SHT20 or SHT31)
316 +Humidity(SHT20 or SHT31)
320 320  )))
321 321  
322 322  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -324,108 +324,90 @@
324 324  
325 325  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
326 326  
324 +
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 -(% style="width:1011px" %)
330 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
331 -|**Value**|BAT|(% style="width:196px" %)(((
332 -Temperature(DS18B20)
333 -
334 -(PC13)
327 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
328 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
329 +|Value|BAT|(% style="width:196px" %)(((
330 +Temperature(DS18B20)(PC13)
335 335  )))|(% style="width:87px" %)(((
336 -ADC
337 -
338 -(PA4)
332 +ADC(PA4)
339 339  )))|(% style="width:189px" %)(((
340 -Digital in(PB15) &
341 -
342 -Digital Interrupt(PA8)
334 +Digital in(PB15) & Digital Interrupt(PA8)
343 343  )))|(% style="width:208px" %)(((
344 -Distance measure by:
345 -1) LIDAR-Lite V3HP
346 -Or
347 -2) Ultrasonic Sensor
336 +Distance measure by: 1) LIDAR-Lite V3HP
337 +Or 2) Ultrasonic Sensor
348 348  )))|(% style="width:117px" %)Reserved
349 349  
350 350  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
351 351  
352 -**Connection of LIDAR-Lite V3HP:**
353 353  
343 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
344 +
354 354  [[image:image-20230512173758-5.png||height="563" width="712"]]
355 355  
356 -**Connection to Ultrasonic Sensor:**
357 357  
358 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
348 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
359 359  
350 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
351 +
360 360  [[image:image-20230512173903-6.png||height="596" width="715"]]
361 361  
354 +
362 362  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
363 363  
364 -(% style="width:1113px" %)
365 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
366 -|**Value**|BAT|(% style="width:183px" %)(((
367 -Temperature(DS18B20)
368 -
369 -(PC13)
357 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
358 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
359 +|Value|BAT|(% style="width:183px" %)(((
360 +Temperature(DS18B20)(PC13)
370 370  )))|(% style="width:173px" %)(((
371 -Digital in(PB15) &
372 -
373 -Digital Interrupt(PA8)
362 +Digital in(PB15) & Digital Interrupt(PA8)
374 374  )))|(% style="width:84px" %)(((
375 -ADC
376 -
377 -(PA4)
364 +ADC(PA4)
378 378  )))|(% style="width:323px" %)(((
379 379  Distance measure by:1)TF-Mini plus LiDAR
380 -Or 
381 -2) TF-Luna LiDAR
367 +Or 2) TF-Luna LiDAR
382 382  )))|(% style="width:188px" %)Distance signal  strength
383 383  
384 384  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
385 385  
372 +
386 386  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
387 387  
388 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
375 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
389 389  
390 390  [[image:image-20230512180609-7.png||height="555" width="802"]]
391 391  
379 +
392 392  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
393 393  
394 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
382 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
395 395  
396 -[[image:image-20230513105207-4.png||height="469" width="802"]]
384 +[[image:image-20230610170047-1.png||height="452" width="799"]]
397 397  
398 398  
399 399  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
400 400  
389 +
401 401  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
402 402  
403 -(% style="width:1031px" %)
404 -|=(((
392 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
393 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
405 405  **Size(bytes)**
406 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
407 -|**Value**|(% style="width:68px" %)(((
408 -ADC1
409 -
410 -(PA4)
395 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
396 +|Value|(% style="width:68px" %)(((
397 +ADC1(PA4)
411 411  )))|(% style="width:75px" %)(((
412 -ADC2
413 -
414 -(PA5)
399 +ADC2(PA5)
415 415  )))|(((
416 -ADC3
417 -
418 -(PA8)
401 +ADC3(PA8)
419 419  )))|(((
420 420  Digital Interrupt(PB15)
421 421  )))|(% style="width:304px" %)(((
422 -Temperature
423 -
424 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
405 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
425 425  )))|(% style="width:163px" %)(((
426 -Humidity
427 -
428 -(SHT20 or SHT31)
407 +Humidity(SHT20 or SHT31)
429 429  )))|(% style="width:53px" %)Bat
430 430  
431 431  [[image:image-20230513110214-6.png]]
... ... @@ -436,66 +436,57 @@
436 436  
437 437  This mode has total 11 bytes. As shown below:
438 438  
439 -(% style="width:1017px" %)
440 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
441 -|**Value**|BAT|(% style="width:186px" %)(((
442 -Temperature1(DS18B20)
443 -(PC13)
418 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
419 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
420 +|Value|BAT|(% style="width:186px" %)(((
421 +Temperature1(DS18B20)(PC13)
444 444  )))|(% style="width:82px" %)(((
445 -ADC
446 -
447 -(PA4)
423 +ADC(PA4)
448 448  )))|(% style="width:210px" %)(((
449 -Digital in(PB15) &
450 -
451 -Digital Interrupt(PA8) 
425 +Digital in(PB15) & Digital Interrupt(PA8) 
452 452  )))|(% style="width:191px" %)Temperature2(DS18B20)
453 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
454 -(PB8)
427 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
455 455  
456 456  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
457 457  
431 +
458 458  [[image:image-20230513134006-1.png||height="559" width="736"]]
459 459  
460 460  
461 461  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
462 462  
437 +
463 463  [[image:image-20230512164658-2.png||height="532" width="729"]]
464 464  
465 465  Each HX711 need to be calibrated before used. User need to do below two steps:
466 466  
467 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
468 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
442 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
443 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
469 469  1. (((
470 470  Weight has 4 bytes, the unit is g.
446 +
447 +
448 +
471 471  )))
472 472  
473 473  For example:
474 474  
475 -**AT+GETSENSORVALUE =0**
453 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
476 476  
477 477  Response:  Weight is 401 g
478 478  
479 479  Check the response of this command and adjust the value to match the real value for thing.
480 480  
481 -(% style="width:767px" %)
482 -|=(((
459 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
460 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
483 483  **Size(bytes)**
484 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
485 -|**Value**|BAT|(% style="width:193px" %)(((
486 -Temperature(DS18B20)
487 -
488 -(PC13)
489 -
490 -
462 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
463 +|Value|BAT|(% style="width:193px" %)(((
464 +Temperature(DS18B20)(PC13)
491 491  )))|(% style="width:85px" %)(((
492 -ADC
493 -
494 -(PA4)
466 +ADC(PA4)
495 495  )))|(% style="width:186px" %)(((
496 -Digital in(PB15) &
497 -
498 -Digital Interrupt(PA8)
468 +Digital in(PB15) & Digital Interrupt(PA8)
499 499  )))|(% style="width:100px" %)Weight
500 500  
501 501  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
... ... @@ -503,6 +503,7 @@
503 503  
504 504  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
505 505  
476 +
506 506  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
507 507  
508 508  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -509,26 +509,19 @@
509 509  
510 510  [[image:image-20230512181814-9.png||height="543" width="697"]]
511 511  
512 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
513 513  
514 -(% style="width:961px" %)
515 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
516 -|**Value**|BAT|(% style="width:256px" %)(((
517 -Temperature(DS18B20)
484 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
518 518  
519 -(PC13)
486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 +|Value|BAT|(% style="width:256px" %)(((
489 +Temperature(DS18B20)(PC13)
520 520  )))|(% style="width:108px" %)(((
521 -ADC
522 -
523 -(PA4)
491 +ADC(PA4)
524 524  )))|(% style="width:126px" %)(((
525 -Digital in
526 -
527 -(PB15)
493 +Digital in(PB15)
528 528  )))|(% style="width:145px" %)(((
529 -Count
530 -
531 -(PA8)
495 +Count(PA8)
532 532  )))
533 533  
534 534  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -536,18 +536,16 @@
536 536  
537 537  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
538 538  
539 -(% style="width:1108px" %)
540 -|=(((
503 +
504 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
505 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
541 541  **Size(bytes)**
542 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
543 -|**Value**|BAT|(% style="width:188px" %)(((
507 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
508 +|Value|BAT|(% style="width:188px" %)(((
544 544  Temperature(DS18B20)
545 -
546 546  (PC13)
547 547  )))|(% style="width:83px" %)(((
548 -ADC
549 -
550 -(PA5)
512 +ADC(PA5)
551 551  )))|(% style="width:184px" %)(((
552 552  Digital Interrupt1(PA8)
553 553  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -554,30 +554,25 @@
554 554  
555 555  [[image:image-20230513111203-7.png||height="324" width="975"]]
556 556  
519 +
557 557  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
558 558  
559 -(% style="width:922px" %)
560 -|=(((
522 +
523 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
561 561  **Size(bytes)**
562 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
563 -|**Value**|BAT|(% style="width:207px" %)(((
526 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
527 +|Value|BAT|(% style="width:207px" %)(((
564 564  Temperature(DS18B20)
565 -
566 566  (PC13)
567 567  )))|(% style="width:94px" %)(((
568 -ADC1
569 -
570 -(PA4)
531 +ADC1(PA4)
571 571  )))|(% style="width:198px" %)(((
572 572  Digital Interrupt(PB15)
573 573  )))|(% style="width:84px" %)(((
574 -ADC2
575 -
576 -(PA5)
535 +ADC2(PA5)
577 577  )))|(% style="width:82px" %)(((
578 -ADC3
579 -
580 -(PA8)
537 +ADC3(PA8)
581 581  )))
582 582  
583 583  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -585,56 +585,149 @@
585 585  
586 586  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
587 587  
588 -(% style="width:1010px" %)
589 -|=(((
590 -**Size(bytes)**
591 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
592 -|**Value**|BAT|(((
593 -Temperature1(DS18B20)
594 594  
595 -(PC13)
546 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
547 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
548 +**Size(bytes)**
549 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
550 +|Value|BAT|(((
551 +Temperature
552 +(DS18B20)(PC13)
596 596  )))|(((
597 -Temperature2(DS18B20)
598 -
599 -(PB9)
554 +Temperature2
555 +(DS18B20)(PB9)
600 600  )))|(((
601 601  Digital Interrupt
602 -
603 603  (PB15)
604 604  )))|(% style="width:193px" %)(((
605 -Temperature3(DS18B20)
606 -
607 -(PB8)
560 +Temperature3
561 +(DS18B20)(PB8)
608 608  )))|(% style="width:78px" %)(((
609 -Count1
610 -
611 -(PA8)
563 +Count1(PA8)
612 612  )))|(% style="width:78px" %)(((
613 -Count2
614 -
615 -(PA4)
565 +Count2(PA4)
616 616  )))
617 617  
618 618  [[image:image-20230513111255-9.png||height="341" width="899"]]
619 619  
620 -**The newly added AT command is issued correspondingly:**
570 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
621 621  
622 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
572 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
623 623  
624 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
574 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
625 625  
626 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
576 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
627 627  
628 -**AT+SETCNT=aa,bb** 
629 629  
579 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
580 +
630 630  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
631 631  
632 632  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
633 633  
634 634  
586 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
635 635  
588 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
589 +
590 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
591 +
592 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
593 +
594 +
595 +===== 2.3.2.10.a  Uplink, PWM input capture =====
596 +
597 +
598 +[[image:image-20230817172209-2.png||height="439" width="683"]]
599 +
600 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
601 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
602 +|Value|Bat|(% style="width:191px" %)(((
603 +Temperature(DS18B20)(PC13)
604 +)))|(% style="width:78px" %)(((
605 +ADC(PA4)
606 +)))|(% style="width:135px" %)(((
607 +PWM_Setting
608 +&Digital Interrupt(PA8)
609 +)))|(% style="width:70px" %)(((
610 +Pulse period
611 +)))|(% style="width:89px" %)(((
612 +Duration of high level
613 +)))
614 +
615 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
616 +
617 +
618 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
619 +
620 +**Frequency:**
621 +
622 +(% class="MsoNormal" %)
623 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
624 +
625 +(% class="MsoNormal" %)
626 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
627 +
628 +
629 +(% class="MsoNormal" %)
630 +**Duty cycle:**
631 +
632 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
633 +
634 +[[image:image-20230818092200-1.png||height="344" width="627"]]
635 +
636 +===== 2.3.2.10.b  Uplink, PWM output =====
637 +
638 +[[image:image-20230817172209-2.png||height="439" width="683"]]
639 +
640 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
641 +
642 +a is the time delay of the output, the unit is ms.
643 +
644 +b is the output frequency, the unit is HZ.
645 +
646 +c is the duty cycle of the output, the unit is %.
647 +
648 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
649 +
650 +aa is the time delay of the output, the unit is ms.
651 +
652 +bb is the output frequency, the unit is HZ.
653 +
654 +cc is the duty cycle of the output, the unit is %.
655 +
656 +
657 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
658 +
659 +The oscilloscope displays as follows:
660 +
661 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
662 +
663 +
664 +===== 2.3.2.10.c  Downlink, PWM output =====
665 +
666 +
667 +[[image:image-20230817173800-3.png||height="412" width="685"]]
668 +
669 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
670 +
671 + xx xx xx is the output frequency, the unit is HZ.
672 +
673 + yy is the duty cycle of the output, the unit is %.
674 +
675 + zz zz is the time delay of the output, the unit is ms.
676 +
677 +
678 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
679 +
680 +The oscilloscope displays as follows:
681 +
682 +[[image:image-20230817173858-5.png||height="694" width="921"]]
683 +
684 +
636 636  === 2.3.3  ​Decode payload ===
637 637  
687 +
638 638  While using TTN V3 network, you can add the payload format to decode the payload.
639 639  
640 640  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -641,13 +641,14 @@
641 641  
642 642  The payload decoder function for TTN V3 are here:
643 643  
644 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
694 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
645 645  
646 646  
647 647  ==== 2.3.3.1 Battery Info ====
648 648  
649 -Check the battery voltage for SN50v3.
650 650  
700 +Check the battery voltage for SN50v3-LB.
701 +
651 651  Ex1: 0x0B45 = 2885mV
652 652  
653 653  Ex2: 0x0B49 = 2889mV
... ... @@ -655,16 +655,18 @@
655 655  
656 656  ==== 2.3.3.2  Temperature (DS18B20) ====
657 657  
709 +
658 658  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
659 659  
660 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
712 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
661 661  
662 -**Connection:**
714 +(% style="color:blue" %)**Connection:**
663 663  
664 664  [[image:image-20230512180718-8.png||height="538" width="647"]]
665 665  
666 -**Example**:
667 667  
719 +(% style="color:blue" %)**Example**:
720 +
668 668  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
669 669  
670 670  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -674,6 +674,7 @@
674 674  
675 675  ==== 2.3.3.3 Digital Input ====
676 676  
730 +
677 677  The digital input for pin PB15,
678 678  
679 679  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -683,49 +683,61 @@
683 683  (((
684 684  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
685 685  
686 -**Note:**The maximum voltage input supports 3.6V.
740 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
741 +
742 +
687 687  )))
688 688  
689 689  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
690 690  
691 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
692 692  
693 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
748 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
694 694  
750 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
751 +
695 695  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
696 696  
697 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
698 698  
755 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
756 +
757 +
758 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
759 +
760 +[[image:image-20230811113449-1.png||height="370" width="608"]]
761 +
699 699  ==== 2.3.3.5 Digital Interrupt ====
700 700  
701 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
702 702  
703 -**~ Interrupt connection method:**
765 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
704 704  
767 +(% style="color:blue" %)** Interrupt connection method:**
768 +
705 705  [[image:image-20230513105351-5.png||height="147" width="485"]]
706 706  
707 -**Example to use with door sensor :**
708 708  
772 +(% style="color:blue" %)**Example to use with door sensor :**
773 +
709 709  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
710 710  
711 711  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
712 712  
713 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
778 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
714 714  
715 -**~ Below is the installation example:**
716 716  
717 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
781 +(% style="color:blue" %)**Below is the installation example:**
718 718  
783 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
784 +
719 719  * (((
720 -One pin to SN50_v3's PA8 pin
786 +One pin to SN50v3-LB's PA8 pin
721 721  )))
722 722  * (((
723 -The other pin to SN50_v3's VDD pin
789 +The other pin to SN50v3-LB's VDD pin
724 724  )))
725 725  
726 726  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
727 727  
728 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
794 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
729 729  
730 730  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
731 731  
... ... @@ -737,29 +737,32 @@
737 737  
738 738  The command is:
739 739  
740 -**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
806 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
741 741  
742 742  Below shows some screen captures in TTN V3:
743 743  
744 744  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
745 745  
746 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
747 747  
813 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
814 +
748 748  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
749 749  
750 750  
751 751  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
752 752  
820 +
753 753  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
754 754  
755 755  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
756 756  
757 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
825 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
758 758  
827 +
759 759  Below is the connection to SHT20/ SHT31. The connection is as below:
760 760  
830 +[[image:image-20230610170152-2.png||height="501" width="846"]]
761 761  
762 -[[image:image-20230513103633-3.png||height="448" width="716"]]
763 763  
764 764  The device will be able to get the I2C sensor data now and upload to IoT Server.
765 765  
... ... @@ -778,23 +778,26 @@
778 778  
779 779  ==== 2.3.3.7  ​Distance Reading ====
780 780  
781 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
782 782  
851 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
783 783  
853 +
784 784  ==== 2.3.3.8 Ultrasonic Sensor ====
785 785  
856 +
786 786  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
787 787  
788 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
859 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
789 789  
790 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
861 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
791 791  
792 792  The picture below shows the connection:
793 793  
794 794  [[image:image-20230512173903-6.png||height="596" width="715"]]
795 795  
796 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
797 797  
868 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
869 +
798 798  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
799 799  
800 800  **Example:**
... ... @@ -802,37 +802,71 @@
802 802  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
803 803  
804 804  
805 -
806 806  ==== 2.3.3.9  Battery Output - BAT pin ====
807 807  
808 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
809 809  
880 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
810 810  
882 +
811 811  ==== 2.3.3.10  +5V Output ====
812 812  
813 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
814 814  
886 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
887 +
815 815  The 5V output time can be controlled by AT Command.
816 816  
817 -**AT+5VT=1000**
890 +(% style="color:blue" %)**AT+5VT=1000**
818 818  
819 819  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
820 820  
821 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
894 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
822 822  
823 823  
824 -
825 825  ==== 2.3.3.11  BH1750 Illumination Sensor ====
826 826  
899 +
827 827  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
828 828  
829 829  [[image:image-20230512172447-4.png||height="416" width="712"]]
830 830  
904 +
831 831  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
832 832  
833 833  
834 -==== 2.3.3.12  Working MOD ====
908 +==== 2.3.3.12  PWM MOD ====
835 835  
910 +
911 +* (((
912 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
913 +)))
914 +* (((
915 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
916 +)))
917 +
918 + [[image:image-20230817183249-3.png||height="320" width="417"]]
919 +
920 +* (((
921 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
922 +)))
923 +* (((
924 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
925 +)))
926 +* (((
927 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
928 +
929 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
930 +
931 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
932 +
933 +b) If the output duration is more than 30 seconds, better to use external power source. 
934 +
935 +
936 +
937 +)))
938 +
939 +==== 2.3.3.13  Working MOD ====
940 +
941 +
836 836  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
837 837  
838 838  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -848,6 +848,7 @@
848 848  * 6: MOD7
849 849  * 7: MOD8
850 850  * 8: MOD9
957 +* 9: MOD10
851 851  
852 852  == 2.4 Payload Decoder file ==
853 853  
... ... @@ -859,7 +859,6 @@
859 859  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
860 860  
861 861  
862 -
863 863  == 2.5 Frequency Plans ==
864 864  
865 865  
... ... @@ -895,17 +895,18 @@
895 895  == 3.3 Commands special design for SN50v3-LB ==
896 896  
897 897  
898 -These commands only valid for S31x-LB, as below:
1004 +These commands only valid for SN50v3-LB, as below:
899 899  
900 900  
901 901  === 3.3.1 Set Transmit Interval Time ===
902 902  
1009 +
903 903  Feature: Change LoRaWAN End Node Transmit Interval.
904 904  
905 905  (% style="color:blue" %)**AT Command: AT+TDC**
906 906  
907 907  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
908 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1015 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
909 909  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
910 910  30000
911 911  OK
... ... @@ -925,24 +925,25 @@
925 925  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
926 926  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
927 927  
928 -
929 929  === 3.3.2 Get Device Status ===
930 930  
1037 +
931 931  Send a LoRaWAN downlink to ask the device to send its status.
932 932  
933 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1040 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
934 934  
935 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
1042 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
936 936  
937 937  
938 938  === 3.3.3 Set Interrupt Mode ===
939 939  
1047 +
940 940  Feature, Set Interrupt mode for GPIO_EXIT.
941 941  
942 942  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
943 943  
944 944  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
945 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1053 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
946 946  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
947 947  0
948 948  OK
... ... @@ -957,7 +957,6 @@
957 957  )))|(% style="width:157px" %)OK
958 958  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
959 959  Set Transmit Interval
960 -
961 961  trigger by rising edge.
962 962  )))|(% style="width:157px" %)OK
963 963  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -973,9 +973,9 @@
973 973  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
974 974  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
975 975  
976 -
977 977  === 3.3.4 Set Power Output Duration ===
978 978  
1085 +
979 979  Control the output duration 5V . Before each sampling, device will
980 980  
981 981  ~1. first enable the power output to external sensor,
... ... @@ -987,10 +987,9 @@
987 987  (% style="color:blue" %)**AT Command: AT+5VT**
988 988  
989 989  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
990 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1097 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
991 991  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
992 992  500(default)
993 -
994 994  OK
995 995  )))
996 996  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -1006,15 +1006,15 @@
1006 1006  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1007 1007  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1008 1008  
1009 -
1010 1010  === 3.3.5 Set Weighing parameters ===
1011 1011  
1117 +
1012 1012  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1013 1013  
1014 1014  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1015 1015  
1016 1016  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1017 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1123 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1018 1018  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1019 1019  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1020 1020  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1031,9 +1031,9 @@
1031 1031  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1032 1032  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1033 1033  
1034 -
1035 1035  === 3.3.6 Set Digital pulse count value ===
1036 1036  
1142 +
1037 1037  Feature: Set the pulse count value.
1038 1038  
1039 1039  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1041,7 +1041,7 @@
1041 1041  (% style="color:blue" %)**AT Command: AT+SETCNT**
1042 1042  
1043 1043  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1044 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1150 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1045 1045  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1046 1046  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1047 1047  
... ... @@ -1054,21 +1054,20 @@
1054 1054  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1055 1055  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1056 1056  
1057 -
1058 1058  === 3.3.7 Set Workmode ===
1059 1059  
1165 +
1060 1060  Feature: Switch working mode.
1061 1061  
1062 1062  (% style="color:blue" %)**AT Command: AT+MOD**
1063 1063  
1064 1064  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1065 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1171 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1066 1066  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1067 1067  OK
1068 1068  )))
1069 1069  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1070 1070  OK
1071 -
1072 1072  Attention:Take effect after ATZ
1073 1073  )))
1074 1074  
... ... @@ -1079,10 +1079,101 @@
1079 1079  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1080 1080  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1081 1081  
1187 +(% id="H3.3.8PWMsetting" %)
1188 +=== 3.3.8 PWM setting ===
1082 1082  
1083 -= 4. Battery & Power Consumption =
1084 1084  
1191 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1085 1085  
1193 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1194 +
1195 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1196 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1197 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1198 +0(default)
1199 +
1200 +OK
1201 +)))
1202 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1203 +OK
1204 +
1205 +)))
1206 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1207 +
1208 +(% style="color:blue" %)**Downlink Command: 0x0C**
1209 +
1210 +Format: Command Code (0x0C) followed by 1 bytes.
1211 +
1212 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1213 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1214 +
1215 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1216 +
1217 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1218 +
1219 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1220 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1221 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1222 +0,0,0(default)
1223 +
1224 +OK
1225 +)))
1226 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1227 +OK
1228 +
1229 +)))
1230 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1231 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1232 +
1233 +
1234 +)))|(% style="width:137px" %)(((
1235 +OK
1236 +)))
1237 +
1238 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1239 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1240 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1241 +AT+PWMOUT=a,b,c
1242 +
1243 +
1244 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1245 +Set PWM output time, output frequency and output duty cycle.
1246 +
1247 +(((
1248 +
1249 +)))
1250 +
1251 +(((
1252 +
1253 +)))
1254 +)))|(% style="width:242px" %)(((
1255 +a: Output time (unit: seconds)
1256 +
1257 +The value ranges from 0 to 65535.
1258 +
1259 +When a=65535, PWM will always output.
1260 +)))
1261 +|(% style="width:242px" %)(((
1262 +b: Output frequency (unit: HZ)
1263 +)))
1264 +|(% style="width:242px" %)(((
1265 +c: Output duty cycle (unit: %)
1266 +
1267 +The value ranges from 0 to 100.
1268 +)))
1269 +
1270 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1271 +
1272 +Format: Command Code (0x0B01) followed by 6 bytes.
1273 +
1274 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1275 +
1276 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1277 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1278 +
1279 += 4. Battery & Power Cons =
1280 +
1281 +
1086 1086  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1087 1087  
1088 1088  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -1092,27 +1092,43 @@
1092 1092  
1093 1093  
1094 1094  (% class="wikigeneratedid" %)
1095 -User can change firmware SN50v3-LB to:
1291 +**User can change firmware SN50v3-LB to:**
1096 1096  
1097 1097  * Change Frequency band/ region.
1098 1098  * Update with new features.
1099 1099  * Fix bugs.
1100 1100  
1101 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1297 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1102 1102  
1299 +**Methods to Update Firmware:**
1103 1103  
1104 -Methods to Update Firmware:
1301 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1302 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1105 1105  
1106 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1107 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1108 -
1109 1109  = 6. FAQ =
1110 1110  
1111 1111  == 6.1 Where can i find source code of SN50v3-LB? ==
1112 1112  
1308 +
1113 1113  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1114 1114  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1115 1115  
1312 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1313 +
1314 +
1315 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1316 +
1317 +
1318 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1319 +
1320 +
1321 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1322 +
1323 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1324 +
1325 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1326 +
1327 +
1116 1116  = 7. Order Info =
1117 1117  
1118 1118  
... ... @@ -1138,6 +1138,7 @@
1138 1138  
1139 1139  = 8. ​Packing Info =
1140 1140  
1353 +
1141 1141  (% style="color:#037691" %)**Package Includes**:
1142 1142  
1143 1143  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1153,4 +1153,5 @@
1153 1153  
1154 1154  
1155 1155  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1369 +
1156 1156  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0