<
From version < 42.1 >
edited by Saxer Lin
on 2023/05/16 11:27
To version < 44.4 >
edited by Xiaoling
on 2023/05/18 09:18
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -16,23 +16,21 @@
16 16  
17 17  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
18 18  
19 +
19 19  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
20 20  
21 -
22 22  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
23 23  
24 -
25 25  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
26 26  
27 -
28 28  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
29 29  
30 -
31 31  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32 32  
33 33  
34 34  == 1.2 ​Features ==
35 35  
33 +
36 36  * LoRaWAN 1.0.3 Class A
37 37  * Ultra-low power consumption
38 38  * Open-Source hardware/software
... ... @@ -43,8 +43,11 @@
43 43  * Downlink to change configure
44 44  * 8500mAh Battery for long term use
45 45  
44 +
45 +
46 46  == 1.3 Specification ==
47 47  
48 +
48 48  (% style="color:#037691" %)**Common DC Characteristics:**
49 49  
50 50  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -79,8 +79,11 @@
79 79  * Sleep Mode: 5uA @ 3.3v
80 80  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
81 81  
83 +
84 +
82 82  == 1.4 Sleep mode and working mode ==
83 83  
87 +
84 84  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
85 85  
86 86  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -105,6 +105,8 @@
105 105  )))
106 106  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
107 107  
112 +
113 +
108 108  == 1.6 BLE connection ==
109 109  
110 110  
... ... @@ -138,6 +138,7 @@
138 138  
139 139  == Hole Option ==
140 140  
147 +
141 141  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
142 142  
143 143  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -150,7 +150,7 @@
150 150  == 2.1 How it works ==
151 151  
152 152  
153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
154 154  
155 155  
156 156  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -158,7 +158,7 @@
158 158  
159 159  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
160 160  
161 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
168 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
162 162  
163 163  
164 164  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -207,7 +207,7 @@
207 207  === 2.3.1 Device Status, FPORT~=5 ===
208 208  
209 209  
210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
217 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
211 211  
212 212  The Payload format is as below.
213 213  
... ... @@ -220,7 +220,7 @@
220 220  Example parse in TTNv3
221 221  
222 222  
223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
224 224  
225 225  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
226 226  
... ... @@ -276,47 +276,39 @@
276 276  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
277 277  
278 278  
279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
286 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
280 280  
281 281  For example:
282 282  
283 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
290 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 284  
285 285  
286 286  (% style="color:red" %) **Important Notice:**
287 287  
288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
289 -1. All modes share the same Payload Explanation from HERE.
290 -1. By default, the device will send an uplink message every 20 minutes.
295 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
291 291  
297 +2. All modes share the same Payload Explanation from HERE.
298 +
299 +3. By default, the device will send an uplink message every 20 minutes.
300 +
301 +
292 292  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
293 293  
304 +
294 294  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
295 295  
296 -(% style="width:1110px" %)
297 -|**Size(bytes)**|**2**|(% style="width:191px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**
307 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
308 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
298 298  |**Value**|Bat|(% style="width:191px" %)(((
299 -Temperature(DS18B20)
300 -
301 -(PC13)
310 +Temperature(DS18B20)(PC13)
302 302  )))|(% style="width:78px" %)(((
303 -ADC
304 -
305 -(PA4)
312 +ADC(PA4)
306 306  )))|(% style="width:216px" %)(((
307 -Digital in(PB15) &
308 -
309 -Digital Interrupt(PA8)
310 -
311 -
314 +Digital in(PB15)&Digital Interrupt(PA8)
312 312  )))|(% style="width:308px" %)(((
313 -Temperature
314 -
315 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
316 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
316 316  )))|(% style="width:154px" %)(((
317 -Humidity
318 -
319 -(SHT20 or SHT31)
318 +Humidity(SHT20 or SHT31)
320 320  )))
321 321  
322 322  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -324,25 +324,19 @@
324 324  
325 325  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
326 326  
326 +
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 -(% style="width:1011px" %)
330 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
329 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 331  |**Value**|BAT|(% style="width:196px" %)(((
332 -Temperature(DS18B20)
333 -
334 -(PC13)
332 +Temperature(DS18B20)(PC13)
335 335  )))|(% style="width:87px" %)(((
336 -ADC
337 -
338 -(PA4)
334 +ADC(PA4)
339 339  )))|(% style="width:189px" %)(((
340 -Digital in(PB15) &
341 -
342 -Digital Interrupt(PA8)
336 +Digital in(PB15) & Digital Interrupt(PA8)
343 343  )))|(% style="width:208px" %)(((
344 -Distance measure by:
345 -1) LIDAR-Lite V3HP
338 +Distance measure by:1) LIDAR-Lite V3HP
346 346  Or
347 347  2) Ultrasonic Sensor
348 348  )))|(% style="width:117px" %)Reserved
... ... @@ -349,32 +349,29 @@
349 349  
350 350  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
351 351  
352 -**Connection of LIDAR-Lite V3HP:**
353 353  
346 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
347 +
354 354  [[image:image-20230512173758-5.png||height="563" width="712"]]
355 355  
356 -**Connection to Ultrasonic Sensor:**
357 357  
358 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
351 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
359 359  
353 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
354 +
360 360  [[image:image-20230512173903-6.png||height="596" width="715"]]
361 361  
357 +
362 362  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
363 363  
364 -(% style="width:1113px" %)
365 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
360 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
361 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
366 366  |**Value**|BAT|(% style="width:183px" %)(((
367 -Temperature(DS18B20)
368 -
369 -(PC13)
363 +Temperature(DS18B20)(PC13)
370 370  )))|(% style="width:173px" %)(((
371 -Digital in(PB15) &
372 -
373 -Digital Interrupt(PA8)
365 +Digital in(PB15) & Digital Interrupt(PA8)
374 374  )))|(% style="width:84px" %)(((
375 -ADC
376 -
377 -(PA4)
367 +ADC(PA4)
378 378  )))|(% style="width:323px" %)(((
379 379  Distance measure by:1)TF-Mini plus LiDAR
380 380  Or 
... ... @@ -383,15 +383,17 @@
383 383  
384 384  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
385 385  
376 +
386 386  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
387 387  
388 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
379 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
389 389  
390 390  [[image:image-20230512180609-7.png||height="555" width="802"]]
391 391  
383 +
392 392  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
393 393  
394 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
386 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
395 395  
396 396  [[image:image-20230513105207-4.png||height="469" width="802"]]
397 397  
... ... @@ -398,34 +398,25 @@
398 398  
399 399  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
400 400  
393 +
401 401  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
402 402  
403 -(% style="width:1031px" %)
404 -|=(((
396 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
397 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
405 405  **Size(bytes)**
406 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
399 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
407 407  |**Value**|(% style="width:68px" %)(((
408 -ADC1
409 -
410 -(PA4)
401 +ADC1(PA4)
411 411  )))|(% style="width:75px" %)(((
412 -ADC2
413 -
414 -(PA5)
403 +ADC2(PA5)
415 415  )))|(((
416 -ADC3
417 -
418 -(PA8)
405 +ADC3(PA8)
419 419  )))|(((
420 420  Digital Interrupt(PB15)
421 421  )))|(% style="width:304px" %)(((
422 -Temperature
423 -
424 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
409 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
425 425  )))|(% style="width:163px" %)(((
426 -Humidity
427 -
428 -(SHT20 or SHT31)
411 +Humidity(SHT20 or SHT31)
429 429  )))|(% style="width:53px" %)Bat
430 430  
431 431  [[image:image-20230513110214-6.png]]
... ... @@ -436,73 +436,66 @@
436 436  
437 437  This mode has total 11 bytes. As shown below:
438 438  
439 -(% style="width:1017px" %)
440 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
422 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
423 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
441 441  |**Value**|BAT|(% style="width:186px" %)(((
442 -Temperature1(DS18B20)
443 -(PC13)
425 +Temperature1(DS18B20)(PC13)
444 444  )))|(% style="width:82px" %)(((
445 -ADC
446 -
447 -(PA4)
427 +ADC(PA4)
448 448  )))|(% style="width:210px" %)(((
449 -Digital in(PB15) &
450 -
451 -Digital Interrupt(PA8) 
429 +Digital in(PB15) & Digital Interrupt(PA8) 
452 452  )))|(% style="width:191px" %)Temperature2(DS18B20)
453 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
454 -(PB8)
431 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
455 455  
456 456  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
457 457  
435 +
458 458  [[image:image-20230513134006-1.png||height="559" width="736"]]
459 459  
460 460  
461 461  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
462 462  
441 +
463 463  [[image:image-20230512164658-2.png||height="532" width="729"]]
464 464  
465 465  Each HX711 need to be calibrated before used. User need to do below two steps:
466 466  
467 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
468 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
446 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
447 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
469 469  1. (((
470 470  Weight has 4 bytes, the unit is g.
450 +
451 +
452 +
471 471  )))
472 472  
473 473  For example:
474 474  
475 -**AT+GETSENSORVALUE =0**
457 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
476 476  
477 477  Response:  Weight is 401 g
478 478  
479 479  Check the response of this command and adjust the value to match the real value for thing.
480 480  
481 -(% style="width:767px" %)
482 -|=(((
463 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
464 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
483 483  **Size(bytes)**
484 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
466 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
485 485  |**Value**|BAT|(% style="width:193px" %)(((
486 -Temperature(DS18B20)
487 -
488 -(PC13)
489 -
490 -
468 +Temperature(DS18B20)(PC13)
491 491  )))|(% style="width:85px" %)(((
492 -ADC
493 -
494 -(PA4)
470 +ADC(PA4)
495 495  )))|(% style="width:186px" %)(((
496 -Digital in(PB15) &
497 -
498 -Digital Interrupt(PA8)
472 +Digital in(PB15) & Digital Interrupt(PA8)
499 499  )))|(% style="width:100px" %)Weight
500 500  
501 501  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
502 502  
503 503  
478 +
504 504  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
505 505  
481 +
506 506  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
507 507  
508 508  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -509,26 +509,19 @@
509 509  
510 510  [[image:image-20230512181814-9.png||height="543" width="697"]]
511 511  
512 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
513 513  
514 -(% style="width:961px" %)
515 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
516 -|**Value**|BAT|(% style="width:256px" %)(((
517 -Temperature(DS18B20)
489 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
518 518  
519 -(PC13)
491 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
492 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
493 +|**Value**|BAT|(% style="width:256px" %)(((
494 +Temperature(DS18B20)(PC13)
520 520  )))|(% style="width:108px" %)(((
521 -ADC
522 -
523 -(PA4)
496 +ADC(PA4)
524 524  )))|(% style="width:126px" %)(((
525 -Digital in
526 -
527 -(PB15)
498 +Digital in(PB15)
528 528  )))|(% style="width:145px" %)(((
529 -Count
530 -
531 -(PA8)
500 +Count(PA8)
532 532  )))
533 533  
534 534  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -536,18 +536,16 @@
536 536  
537 537  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
538 538  
539 -(% style="width:1108px" %)
540 -|=(((
508 +
509 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
510 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
541 541  **Size(bytes)**
542 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
512 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
543 543  |**Value**|BAT|(% style="width:188px" %)(((
544 544  Temperature(DS18B20)
545 -
546 546  (PC13)
547 547  )))|(% style="width:83px" %)(((
548 -ADC
549 -
550 -(PA5)
517 +ADC(PA5)
551 551  )))|(% style="width:184px" %)(((
552 552  Digital Interrupt1(PA8)
553 553  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -554,30 +554,25 @@
554 554  
555 555  [[image:image-20230513111203-7.png||height="324" width="975"]]
556 556  
524 +
557 557  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
558 558  
559 -(% style="width:922px" %)
560 -|=(((
527 +
528 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
529 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
561 561  **Size(bytes)**
562 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
531 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
563 563  |**Value**|BAT|(% style="width:207px" %)(((
564 564  Temperature(DS18B20)
565 -
566 566  (PC13)
567 567  )))|(% style="width:94px" %)(((
568 -ADC1
569 -
570 -(PA4)
536 +ADC1(PA4)
571 571  )))|(% style="width:198px" %)(((
572 572  Digital Interrupt(PB15)
573 573  )))|(% style="width:84px" %)(((
574 -ADC2
575 -
576 -(PA5)
540 +ADC2(PA5)
577 577  )))|(% style="width:82px" %)(((
578 -ADC3
579 -
580 -(PA8)
542 +ADC3(PA8)
581 581  )))
582 582  
583 583  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -585,56 +585,50 @@
585 585  
586 586  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
587 587  
588 -(% style="width:1010px" %)
589 -|=(((
550 +
551 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
552 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
590 590  **Size(bytes)**
591 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
554 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
592 592  |**Value**|BAT|(((
593 -Temperature1(DS18B20)
594 -
595 -(PC13)
556 +Temperature
557 +(DS18B20)(PC13)
596 596  )))|(((
597 -Temperature2(DS18B20)
598 -
599 -(PB9)
559 +Temperature2
560 +(DS18B20)(PB9)
600 600  )))|(((
601 601  Digital Interrupt
602 -
603 603  (PB15)
604 604  )))|(% style="width:193px" %)(((
605 -Temperature3(DS18B20)
606 -
607 -(PB8)
565 +Temperature3
566 +(DS18B20)(PB8)
608 608  )))|(% style="width:78px" %)(((
609 -Count1
610 -
611 -(PA8)
568 +Count1(PA8)
612 612  )))|(% style="width:78px" %)(((
613 -Count2
614 -
615 -(PA4)
570 +Count2(PA4)
616 616  )))
617 617  
618 618  [[image:image-20230513111255-9.png||height="341" width="899"]]
619 619  
620 -**The newly added AT command is issued correspondingly:**
575 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
621 621  
622 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
577 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
623 623  
624 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
579 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
625 625  
626 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
581 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
627 627  
628 -**AT+SETCNT=aa,bb** 
629 629  
584 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
585 +
630 630  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
631 631  
632 632  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
633 633  
634 634  
635 -
636 636  === 2.3.3  ​Decode payload ===
637 637  
593 +
638 638  While using TTN V3 network, you can add the payload format to decode the payload.
639 639  
640 640  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -641,13 +641,14 @@
641 641  
642 642  The payload decoder function for TTN V3 are here:
643 643  
644 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
600 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
645 645  
646 646  
647 647  ==== 2.3.3.1 Battery Info ====
648 648  
649 -Check the battery voltage for SN50v3.
650 650  
606 +Check the battery voltage for SN50v3-LB.
607 +
651 651  Ex1: 0x0B45 = 2885mV
652 652  
653 653  Ex2: 0x0B49 = 2889mV
... ... @@ -655,16 +655,18 @@
655 655  
656 656  ==== 2.3.3.2  Temperature (DS18B20) ====
657 657  
615 +
658 658  If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
659 659  
660 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
618 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
661 661  
662 -**Connection:**
620 +(% style="color:blue" %)**Connection:**
663 663  
664 664  [[image:image-20230512180718-8.png||height="538" width="647"]]
665 665  
666 -**Example**:
667 667  
625 +(% style="color:blue" %)**Example**:
626 +
668 668  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
669 669  
670 670  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -674,6 +674,7 @@
674 674  
675 675  ==== 2.3.3.3 Digital Input ====
676 676  
636 +
677 677  The digital input for pin PB15,
678 678  
679 679  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -683,11 +683,14 @@
683 683  (((
684 684  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
685 685  
686 -**Note:**The maximum voltage input supports 3.6V.
646 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
647 +
648 +
687 687  )))
688 688  
689 689  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
690 690  
653 +
691 691  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
692 692  
693 693  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -694,38 +694,43 @@
694 694  
695 695  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
696 696  
697 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
698 698  
661 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
662 +
663 +
699 699  ==== 2.3.3.5 Digital Interrupt ====
700 700  
701 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
702 702  
703 -**~ Interrupt connection method:**
667 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
704 704  
669 +(% style="color:blue" %)** Interrupt connection method:**
670 +
705 705  [[image:image-20230513105351-5.png||height="147" width="485"]]
706 706  
707 -**Example to use with door sensor :**
708 708  
674 +(% style="color:blue" %)**Example to use with door sensor :**
675 +
709 709  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
710 710  
711 711  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
712 712  
713 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
680 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
714 714  
715 -**~ Below is the installation example:**
716 716  
717 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
683 +(% style="color:blue" %)**Below is the installation example:**
718 718  
685 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
686 +
719 719  * (((
720 -One pin to SN50_v3's PA8 pin
688 +One pin to SN50v3-LB's PA8 pin
721 721  )))
722 722  * (((
723 -The other pin to SN50_v3's VDD pin
691 +The other pin to SN50v3-LB's VDD pin
724 724  )))
725 725  
726 726  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
727 727  
728 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
696 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
729 729  
730 730  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
731 731  
... ... @@ -737,30 +737,33 @@
737 737  
738 738  The command is:
739 739  
740 -**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
708 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
741 741  
742 742  Below shows some screen captures in TTN V3:
743 743  
744 744  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
745 745  
746 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
747 747  
715 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
716 +
748 748  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
749 749  
750 750  
751 751  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
752 752  
722 +
753 753  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
754 754  
755 755  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
756 756  
757 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
727 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
758 758  
729 +
759 759  Below is the connection to SHT20/ SHT31. The connection is as below:
760 760  
761 -
762 762  [[image:image-20230513103633-3.png||height="448" width="716"]]
763 763  
734 +
764 764  The device will be able to get the I2C sensor data now and upload to IoT Server.
765 765  
766 766  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -778,23 +778,26 @@
778 778  
779 779  ==== 2.3.3.7  ​Distance Reading ====
780 780  
781 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
782 782  
753 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
783 783  
755 +
784 784  ==== 2.3.3.8 Ultrasonic Sensor ====
785 785  
758 +
786 786  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
787 787  
788 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
761 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
789 789  
790 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
763 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
791 791  
792 792  The picture below shows the connection:
793 793  
794 794  [[image:image-20230512173903-6.png||height="596" width="715"]]
795 795  
796 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
797 797  
770 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
771 +
798 798  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
799 799  
800 800  **Example:**
... ... @@ -802,37 +802,40 @@
802 802  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
803 803  
804 804  
805 -
806 806  ==== 2.3.3.9  Battery Output - BAT pin ====
807 807  
808 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
809 809  
782 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
810 810  
784 +
811 811  ==== 2.3.3.10  +5V Output ====
812 812  
813 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
814 814  
788 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
789 +
815 815  The 5V output time can be controlled by AT Command.
816 816  
817 -**AT+5VT=1000**
792 +(% style="color:blue" %)**AT+5VT=1000**
818 818  
819 819  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
820 820  
821 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
796 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
822 822  
823 823  
824 -
825 825  ==== 2.3.3.11  BH1750 Illumination Sensor ====
826 826  
801 +
827 827  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
828 828  
829 829  [[image:image-20230512172447-4.png||height="416" width="712"]]
830 830  
806 +
831 831  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
832 832  
833 833  
834 834  ==== 2.3.3.12  Working MOD ====
835 835  
812 +
836 836  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
837 837  
838 838  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -849,6 +849,8 @@
849 849  * 7: MOD8
850 850  * 8: MOD9
851 851  
829 +
830 +
852 852  == 2.4 Payload Decoder file ==
853 853  
854 854  
... ... @@ -859,7 +859,6 @@
859 859  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
860 860  
861 861  
862 -
863 863  == 2.5 Frequency Plans ==
864 864  
865 865  
... ... @@ -879,6 +879,8 @@
879 879  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
880 880  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
881 881  
860 +
861 +
882 882  == 3.2 General Commands ==
883 883  
884 884  
... ... @@ -895,11 +895,12 @@
895 895  == 3.3 Commands special design for SN50v3-LB ==
896 896  
897 897  
898 -These commands only valid for S31x-LB, as below:
878 +These commands only valid for SN50v3-LB, as below:
899 899  
900 900  
901 901  === 3.3.1 Set Transmit Interval Time ===
902 902  
883 +
903 903  Feature: Change LoRaWAN End Node Transmit Interval.
904 904  
905 905  (% style="color:blue" %)**AT Command: AT+TDC**
... ... @@ -926,17 +926,20 @@
926 926  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
927 927  
928 928  
910 +
929 929  === 3.3.2 Get Device Status ===
930 930  
913 +
931 931  Send a LoRaWAN downlink to ask the device to send its status.
932 932  
933 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
916 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
934 934  
935 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
918 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
936 936  
937 937  
938 938  === 3.3.3 Set Interrupt Mode ===
939 939  
923 +
940 940  Feature, Set Interrupt mode for GPIO_EXIT.
941 941  
942 942  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
... ... @@ -957,7 +957,6 @@
957 957  )))|(% style="width:157px" %)OK
958 958  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
959 959  Set Transmit Interval
960 -
961 961  trigger by rising edge.
962 962  )))|(% style="width:157px" %)OK
963 963  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -974,8 +974,10 @@
974 974  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
975 975  
976 976  
960 +
977 977  === 3.3.4 Set Power Output Duration ===
978 978  
963 +
979 979  Control the output duration 5V . Before each sampling, device will
980 980  
981 981  ~1. first enable the power output to external sensor,
... ... @@ -990,7 +990,6 @@
990 990  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
991 991  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
992 992  500(default)
993 -
994 994  OK
995 995  )))
996 996  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -1007,8 +1007,10 @@
1007 1007  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1008 1008  
1009 1009  
994 +
1010 1010  === 3.3.5 Set Weighing parameters ===
1011 1011  
997 +
1012 1012  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1013 1013  
1014 1014  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
... ... @@ -1032,8 +1032,10 @@
1032 1032  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1033 1033  
1034 1034  
1021 +
1035 1035  === 3.3.6 Set Digital pulse count value ===
1036 1036  
1024 +
1037 1037  Feature: Set the pulse count value.
1038 1038  
1039 1039  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1055,8 +1055,10 @@
1055 1055  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1056 1056  
1057 1057  
1046 +
1058 1058  === 3.3.7 Set Workmode ===
1059 1059  
1049 +
1060 1060  Feature: Switch working mode.
1061 1061  
1062 1062  (% style="color:blue" %)**AT Command: AT+MOD**
... ... @@ -1068,7 +1068,6 @@
1068 1068  )))
1069 1069  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1070 1070  OK
1071 -
1072 1072  Attention:Take effect after ATZ
1073 1073  )))
1074 1074  
... ... @@ -1080,6 +1080,7 @@
1080 1080  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1081 1081  
1082 1082  
1072 +
1083 1083  = 4. Battery & Power Consumption =
1084 1084  
1085 1085  
... ... @@ -1092,27 +1092,31 @@
1092 1092  
1093 1093  
1094 1094  (% class="wikigeneratedid" %)
1095 -User can change firmware SN50v3-LB to:
1085 +**User can change firmware SN50v3-LB to:**
1096 1096  
1097 1097  * Change Frequency band/ region.
1098 1098  * Update with new features.
1099 1099  * Fix bugs.
1100 1100  
1101 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1091 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1102 1102  
1093 +**Methods to Update Firmware:**
1103 1103  
1104 -Methods to Update Firmware:
1105 -
1106 1106  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1107 1107  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1108 1108  
1098 +
1099 +
1109 1109  = 6. FAQ =
1110 1110  
1111 1111  == 6.1 Where can i find source code of SN50v3-LB? ==
1112 1112  
1104 +
1113 1113  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1114 1114  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1115 1115  
1108 +
1109 +
1116 1116  = 7. Order Info =
1117 1117  
1118 1118  
... ... @@ -1136,8 +1136,11 @@
1136 1136  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1137 1137  * (% style="color:red" %)**NH**(%%): No Hole
1138 1138  
1133 +
1134 +
1139 1139  = 8. ​Packing Info =
1140 1140  
1137 +
1141 1141  (% style="color:#037691" %)**Package Includes**:
1142 1142  
1143 1143  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1149,8 +1149,11 @@
1149 1149  * Package Size / pcs : cm
1150 1150  * Weight / pcs : g
1151 1151  
1149 +
1150 +
1152 1152  = 9. Support =
1153 1153  
1154 1154  
1155 1155  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1155 +
1156 1156  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0