Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Ellie - Content
-
... ... @@ -16,23 +16,21 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 + 19 19 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 20 20 21 - 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 - 25 25 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 26 26 27 - 28 28 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 29 29 30 - 31 31 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 32 32 33 33 34 34 == 1.2 Features == 35 35 33 + 36 36 * LoRaWAN 1.0.3 Class A 37 37 * Ultra-low power consumption 38 38 * Open-Source hardware/software ... ... @@ -43,8 +43,10 @@ 43 43 * Downlink to change configure 44 44 * 8500mAh Battery for long term use 45 45 44 + 46 46 == 1.3 Specification == 47 47 47 + 48 48 (% style="color:#037691" %)**Common DC Characteristics:** 49 49 50 50 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -79,8 +79,10 @@ 79 79 * Sleep Mode: 5uA @ 3.3v 80 80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 81 81 82 + 82 82 == 1.4 Sleep mode and working mode == 83 83 85 + 84 84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 85 85 86 86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -105,6 +105,7 @@ 105 105 ))) 106 106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 107 107 110 + 108 108 == 1.6 BLE connection == 109 109 110 110 ... ... @@ -138,6 +138,7 @@ 138 138 139 139 == Hole Option == 140 140 144 + 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 142 142 143 143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -289,60 +289,45 @@ 289 289 1. All modes share the same Payload Explanation from HERE. 290 290 1. By default, the device will send an uplink message every 20 minutes. 291 291 296 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 299 + 294 294 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 295 295 296 -(% style="width: 1110px" %)297 -|**Size(bytes)**|**2**|(% style="width:1 91px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**302 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 303 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 298 298 |**Value**|Bat|(% style="width:191px" %)((( 299 -Temperature(DS18B20) 300 - 301 -(PC13) 305 +Temperature(DS18B20)(PC13) 302 302 )))|(% style="width:78px" %)((( 303 -ADC 304 - 305 -(PA4) 307 +ADC(PA4) 306 306 )))|(% style="width:216px" %)((( 307 -Digital in(PB15) & 308 - 309 -Digital Interrupt(PA8) 310 - 311 - 309 +Digital in(PB15)&Digital Interrupt(PA8) 312 312 )))|(% style="width:308px" %)((( 313 -Temperature 314 - 315 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 311 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 316 316 )))|(% style="width:154px" %)((( 317 -Humidity 318 - 319 -(SHT20 or SHT31) 313 +Humidity(SHT20 or SHT31) 320 320 ))) 321 321 322 322 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 323 323 324 324 319 + 325 325 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 326 326 322 + 327 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 328 329 -(% style="width: 1011px" %)330 -|**Size(bytes)**|**2**|(% style="width:1 96px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**325 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 326 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 331 |**Value**|BAT|(% style="width:196px" %)((( 332 -Temperature(DS18B20) 333 - 334 -(PC13) 328 +Temperature(DS18B20)(PC13) 335 335 )))|(% style="width:87px" %)((( 336 -ADC 337 - 338 -(PA4) 330 +ADC(PA4) 339 339 )))|(% style="width:189px" %)((( 340 -Digital in(PB15) & 341 - 342 -Digital Interrupt(PA8) 332 +Digital in(PB15) & Digital Interrupt(PA8) 343 343 )))|(% style="width:208px" %)((( 344 -Distance measure by: 345 -1) LIDAR-Lite V3HP 334 +Distance measure by:1) LIDAR-Lite V3HP 346 346 Or 347 347 2) Ultrasonic Sensor 348 348 )))|(% style="width:117px" %)Reserved ... ... @@ -349,32 +349,29 @@ 349 349 350 350 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 351 351 352 -**Connection of LIDAR-Lite V3HP:** 353 353 342 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 343 + 354 354 [[image:image-20230512173758-5.png||height="563" width="712"]] 355 355 356 -**Connection to Ultrasonic Sensor:** 357 357 358 - NeedtomoveR1 and R2 resistorstogetlow power,otherwise there willbe240uA standby current.347 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 359 359 349 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 350 + 360 360 [[image:image-20230512173903-6.png||height="596" width="715"]] 361 361 353 + 362 362 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 363 363 364 -(% style="width: 1113px" %)365 -|**Size(bytes)**|**2**|(% style="width:1 83px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**356 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 357 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 366 366 |**Value**|BAT|(% style="width:183px" %)((( 367 -Temperature(DS18B20) 368 - 369 -(PC13) 359 +Temperature(DS18B20)(PC13) 370 370 )))|(% style="width:173px" %)((( 371 -Digital in(PB15) & 372 - 373 -Digital Interrupt(PA8) 361 +Digital in(PB15) & Digital Interrupt(PA8) 374 374 )))|(% style="width:84px" %)((( 375 -ADC 376 - 377 -(PA4) 363 +ADC(PA4) 378 378 )))|(% style="width:323px" %)((( 379 379 Distance measure by:1)TF-Mini plus LiDAR 380 380 Or ... ... @@ -383,15 +383,17 @@ 383 383 384 384 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 385 385 372 + 386 386 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 387 387 388 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 375 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 389 389 390 390 [[image:image-20230512180609-7.png||height="555" width="802"]] 391 391 379 + 392 392 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 393 393 394 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 382 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 395 395 396 396 [[image:image-20230513105207-4.png||height="469" width="802"]] 397 397 ... ... @@ -398,34 +398,25 @@ 398 398 399 399 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 400 400 389 + 401 401 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 402 402 403 -(% style="width: 1031px" %)404 -|=((( 392 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 393 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 405 405 **Size(bytes)** 406 -)))|=(% style="width: 68px;" %)**2**|=(% style="width:75px;" %)**2**|=**2**|=**1**|=(% style="width:304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width:53px;" %)1395 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 407 407 |**Value**|(% style="width:68px" %)((( 408 -ADC1 409 - 410 -(PA4) 397 +ADC1(PA4) 411 411 )))|(% style="width:75px" %)((( 412 -ADC2 413 - 414 -(PA5) 399 +ADC2(PA5) 415 415 )))|((( 416 -ADC3 417 - 418 -(PA8) 401 +ADC3(PA8) 419 419 )))|((( 420 420 Digital Interrupt(PB15) 421 421 )))|(% style="width:304px" %)((( 422 -Temperature 423 - 424 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 405 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 425 425 )))|(% style="width:163px" %)((( 426 -Humidity 427 - 428 -(SHT20 or SHT31) 407 +Humidity(SHT20 or SHT31) 429 429 )))|(% style="width:53px" %)Bat 430 430 431 431 [[image:image-20230513110214-6.png]] ... ... @@ -436,22 +436,16 @@ 436 436 437 437 This mode has total 11 bytes. As shown below: 438 438 439 -(% style="width: 1017px" %)440 -|**Size(bytes)**|**2**|(% style="width:1 86px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**418 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 419 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 441 441 |**Value**|BAT|(% style="width:186px" %)((( 442 -Temperature1(DS18B20) 443 -(PC13) 421 +Temperature1(DS18B20)(PC13) 444 444 )))|(% style="width:82px" %)((( 445 -ADC 446 - 447 -(PA4) 423 +ADC(PA4) 448 448 )))|(% style="width:210px" %)((( 449 -Digital in(PB15) & 450 - 451 -Digital Interrupt(PA8) 425 +Digital in(PB15) & Digital Interrupt(PA8) 452 452 )))|(% style="width:191px" %)Temperature2(DS18B20) 453 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 454 -(PB8) 427 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 455 455 456 456 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 457 457 ... ... @@ -458,8 +458,10 @@ 458 458 [[image:image-20230513134006-1.png||height="559" width="736"]] 459 459 460 460 434 + 461 461 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 462 462 437 + 463 463 [[image:image-20230512164658-2.png||height="532" width="729"]] 464 464 465 465 Each HX711 need to be calibrated before used. User need to do below two steps: ... ... @@ -468,6 +468,9 @@ 468 468 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 469 469 1. ((( 470 470 Weight has 4 bytes, the unit is g. 446 + 447 + 448 + 471 471 ))) 472 472 473 473 For example: ... ... @@ -478,31 +478,25 @@ 478 478 479 479 Check the response of this command and adjust the value to match the real value for thing. 480 480 481 -(% style="width: 767px" %)482 -|=((( 459 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 460 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 483 483 **Size(bytes)** 484 -)))|=**2**|=(% style="width: 1 93px;" %)**2**|=(% style="width:85px;" %)**2**|=(% style="width:186px;" %)**1**|=(% style="width:100px;" %)**4**462 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 485 485 |**Value**|BAT|(% style="width:193px" %)((( 486 -Temperature(DS18B20) 487 - 488 -(PC13) 489 - 490 - 464 +Temperature(DS18B20)(PC13) 491 491 )))|(% style="width:85px" %)((( 492 -ADC 493 - 494 -(PA4) 466 +ADC(PA4) 495 495 )))|(% style="width:186px" %)((( 496 -Digital in(PB15) & 497 - 498 -Digital Interrupt(PA8) 468 +Digital in(PB15) & Digital Interrupt(PA8) 499 499 )))|(% style="width:100px" %)Weight 500 500 501 501 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 502 502 503 503 474 + 504 504 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 505 505 477 + 506 506 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 507 507 508 508 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -509,45 +509,37 @@ 509 509 510 510 [[image:image-20230512181814-9.png||height="543" width="697"]] 511 511 512 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 513 513 514 -(% style="width:961px" %) 515 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 516 -|**Value**|BAT|(% style="width:256px" %)((( 517 -Temperature(DS18B20) 485 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 518 518 519 -(PC13) 487 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 488 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 489 +|**Value**|BAT|(% style="width:256px" %)((( 490 +Temperature(DS18B20)(PC13) 520 520 )))|(% style="width:108px" %)((( 521 -ADC 522 - 523 -(PA4) 492 +ADC(PA4) 524 524 )))|(% style="width:126px" %)((( 525 -Digital in 526 - 527 -(PB15) 494 +Digital in(PB15) 528 528 )))|(% style="width:145px" %)((( 529 -Count 530 - 531 -(PA8) 496 +Count(PA8) 532 532 ))) 533 533 534 534 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 535 535 536 536 502 + 537 537 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 538 538 539 -(% style="width:1108px" %) 540 -|=((( 505 + 506 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 507 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 541 541 **Size(bytes)** 542 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2509 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 543 543 |**Value**|BAT|(% style="width:188px" %)((( 544 544 Temperature(DS18B20) 545 - 546 546 (PC13) 547 547 )))|(% style="width:83px" %)((( 548 -ADC 549 - 550 -(PA5) 514 +ADC(PA5) 551 551 )))|(% style="width:184px" %)((( 552 552 Digital Interrupt1(PA8) 553 553 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -554,30 +554,25 @@ 554 554 555 555 [[image:image-20230513111203-7.png||height="324" width="975"]] 556 556 521 + 557 557 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 558 558 559 -(% style="width:922px" %) 560 -|=((( 524 + 525 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 526 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 561 561 **Size(bytes)** 562 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2528 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 563 563 |**Value**|BAT|(% style="width:207px" %)((( 564 564 Temperature(DS18B20) 565 - 566 566 (PC13) 567 567 )))|(% style="width:94px" %)((( 568 -ADC1 569 - 570 -(PA4) 533 +ADC1(PA4) 571 571 )))|(% style="width:198px" %)((( 572 572 Digital Interrupt(PB15) 573 573 )))|(% style="width:84px" %)((( 574 -ADC2 575 - 576 -(PA5) 537 +ADC2(PA5) 577 577 )))|(% style="width:82px" %)((( 578 -ADC3 579 - 580 -(PA8) 539 +ADC3(PA8) 581 581 ))) 582 582 583 583 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -585,56 +585,50 @@ 585 585 586 586 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 587 587 588 -(% style="width:1010px" %) 589 -|=((( 547 + 548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 549 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 590 590 **Size(bytes)** 591 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4551 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 592 592 |**Value**|BAT|((( 593 -Temperature1(DS18B20) 594 - 595 -(PC13) 553 +Temperature 554 +(DS18B20)(PC13) 596 596 )))|((( 597 -Temperature2(DS18B20) 598 - 599 -(PB9) 556 +Temperature2 557 +(DS18B20)(PB9) 600 600 )))|((( 601 601 Digital Interrupt 602 - 603 603 (PB15) 604 604 )))|(% style="width:193px" %)((( 605 -Temperature3(DS18B20) 606 - 607 -(PB8) 562 +Temperature3 563 +(DS18B20)(PB8) 608 608 )))|(% style="width:78px" %)((( 609 -Count1 610 - 611 -(PA8) 565 +Count1(PA8) 612 612 )))|(% style="width:78px" %)((( 613 -Count2 614 - 615 -(PA4) 567 +Count2(PA4) 616 616 ))) 617 617 618 618 [[image:image-20230513111255-9.png||height="341" width="899"]] 619 619 620 -**The newly added AT command is issued correspondingly:** 572 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 621 621 622 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**574 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 623 623 624 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**576 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 625 625 626 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**578 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 627 627 628 -**AT+SETCNT=aa,bb** 629 629 581 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 582 + 630 630 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 631 631 632 632 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 633 633 634 634 635 - 636 636 === 2.3.3 Decode payload === 637 637 590 + 638 638 While using TTN V3 network, you can add the payload format to decode the payload. 639 639 640 640 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -646,6 +646,7 @@ 646 646 647 647 ==== 2.3.3.1 Battery Info ==== 648 648 602 + 649 649 Check the battery voltage for SN50v3. 650 650 651 651 Ex1: 0x0B45 = 2885mV ... ... @@ -655,16 +655,18 @@ 655 655 656 656 ==== 2.3.3.2 Temperature (DS18B20) ==== 657 657 612 + 658 658 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 659 659 660 -More DS18B20 can check the [[3 DS18B20 mode>> url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]615 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 661 661 662 -**Connection:** 617 +(% style="color:blue" %)**Connection:** 663 663 664 664 [[image:image-20230512180718-8.png||height="538" width="647"]] 665 665 666 -**Example**: 667 667 622 +(% style="color:blue" %)**Example**: 623 + 668 668 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 669 669 670 670 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -674,6 +674,7 @@ 674 674 675 675 ==== 2.3.3.3 Digital Input ==== 676 676 633 + 677 677 The digital input for pin PB15, 678 678 679 679 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -683,11 +683,14 @@ 683 683 ((( 684 684 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 685 685 686 -**Note:**The maximum voltage input supports 3.6V. 643 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 644 + 645 + 687 687 ))) 688 688 689 689 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 690 690 650 + 691 691 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 692 692 693 693 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -694,18 +694,21 @@ 694 694 695 695 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 696 696 697 -**Note: **If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.657 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 698 698 659 + 699 699 ==== 2.3.3.5 Digital Interrupt ==== 700 700 662 + 701 701 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 702 702 703 -** ~Interrupt connection method:**665 +(% style="color:blue" %)** Interrupt connection method:** 704 704 705 705 [[image:image-20230513105351-5.png||height="147" width="485"]] 706 706 707 -**Example to use with door sensor :** 708 708 670 +(% style="color:blue" %)**Example to use with door sensor :** 671 + 709 709 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 710 710 711 711 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] ... ... @@ -712,8 +712,9 @@ 712 712 713 713 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 714 714 715 -**~ Below is the installation example:** 716 716 679 +(% style="color:blue" %)**Below is the installation example:** 680 + 717 717 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 718 718 719 719 * ((( ... ... @@ -725,7 +725,7 @@ 725 725 726 726 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 727 727 728 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 692 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 729 729 730 730 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 731 731 ... ... @@ -737,12 +737,13 @@ 737 737 738 738 The command is: 739 739 740 -**AT+INTMOD1=1 704 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 741 741 742 742 Below shows some screen captures in TTN V3: 743 743 744 744 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 745 745 710 + 746 746 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 747 747 748 748 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -750,6 +750,7 @@ 750 750 751 751 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 752 752 718 + 753 753 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 754 754 755 755 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. ... ... @@ -778,23 +778,26 @@ 778 778 779 779 ==== 2.3.3.7 Distance Reading ==== 780 780 781 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 782 782 748 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 783 783 750 + 784 784 ==== 2.3.3.8 Ultrasonic Sensor ==== 785 785 753 + 786 786 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 787 787 788 788 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 789 789 790 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 758 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 791 791 792 792 The picture below shows the connection: 793 793 794 794 [[image:image-20230512173903-6.png||height="596" width="715"]] 795 795 796 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 797 797 765 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 766 + 798 798 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 799 799 800 800 **Example:** ... ... @@ -802,19 +802,20 @@ 802 802 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 803 803 804 804 805 - 806 806 ==== 2.3.3.9 Battery Output - BAT pin ==== 807 807 776 + 808 808 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 809 809 810 810 811 811 ==== 2.3.3.10 +5V Output ==== 812 812 782 + 813 813 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 814 814 815 815 The 5V output time can be controlled by AT Command. 816 816 817 -**AT+5VT=1000** 787 +(% style="color:blue" %)**AT+5VT=1000** 818 818 819 819 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 820 820 ... ... @@ -821,18 +821,20 @@ 821 821 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 822 822 823 823 824 - 825 825 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 826 826 796 + 827 827 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 828 828 829 829 [[image:image-20230512172447-4.png||height="416" width="712"]] 830 830 801 + 831 831 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 832 832 833 833 834 834 ==== 2.3.3.12 Working MOD ==== 835 835 807 + 836 836 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 837 837 838 838 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -849,6 +849,7 @@ 849 849 * 7: MOD8 850 850 * 8: MOD9 851 851 824 + 852 852 == 2.4 Payload Decoder file == 853 853 854 854 ... ... @@ -859,7 +859,6 @@ 859 859 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 860 860 861 861 862 - 863 863 == 2.5 Frequency Plans == 864 864 865 865 ... ... @@ -879,6 +879,7 @@ 879 879 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 880 880 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 881 881 854 + 882 882 == 3.2 General Commands == 883 883 884 884 ... ... @@ -900,6 +900,7 @@ 900 900 901 901 === 3.3.1 Set Transmit Interval Time === 902 902 876 + 903 903 Feature: Change LoRaWAN End Node Transmit Interval. 904 904 905 905 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -928,6 +928,7 @@ 928 928 929 929 === 3.3.2 Get Device Status === 930 930 905 + 931 931 Send a LoRaWAN downlink to ask the device to send its status. 932 932 933 933 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 ... ... @@ -937,6 +937,7 @@ 937 937 938 938 === 3.3.3 Set Interrupt Mode === 939 939 915 + 940 940 Feature, Set Interrupt mode for GPIO_EXIT. 941 941 942 942 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -957,7 +957,6 @@ 957 957 )))|(% style="width:157px" %)OK 958 958 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 959 959 Set Transmit Interval 960 - 961 961 trigger by rising edge. 962 962 )))|(% style="width:157px" %)OK 963 963 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -976,6 +976,7 @@ 976 976 977 977 === 3.3.4 Set Power Output Duration === 978 978 954 + 979 979 Control the output duration 5V . Before each sampling, device will 980 980 981 981 ~1. first enable the power output to external sensor, ... ... @@ -990,7 +990,6 @@ 990 990 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 991 991 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 992 992 500(default) 993 - 994 994 OK 995 995 ))) 996 996 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( ... ... @@ -1009,6 +1009,7 @@ 1009 1009 1010 1010 === 3.3.5 Set Weighing parameters === 1011 1011 987 + 1012 1012 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1013 1013 1014 1014 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -1034,6 +1034,7 @@ 1034 1034 1035 1035 === 3.3.6 Set Digital pulse count value === 1036 1036 1013 + 1037 1037 Feature: Set the pulse count value. 1038 1038 1039 1039 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1057,6 +1057,7 @@ 1057 1057 1058 1058 === 3.3.7 Set Workmode === 1059 1059 1037 + 1060 1060 Feature: Switch working mode. 1061 1061 1062 1062 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1068,7 +1068,6 @@ 1068 1068 ))) 1069 1069 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1070 1070 OK 1071 - 1072 1072 Attention:Take effect after ATZ 1073 1073 ))) 1074 1074 ... ... @@ -1106,13 +1106,16 @@ 1106 1106 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1107 1107 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1108 1108 1086 + 1109 1109 = 6. FAQ = 1110 1110 1111 1111 == 6.1 Where can i find source code of SN50v3-LB? == 1112 1112 1091 + 1113 1113 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1114 1114 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1115 1115 1095 + 1116 1116 = 7. Order Info = 1117 1117 1118 1118 ... ... @@ -1136,8 +1136,10 @@ 1136 1136 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1137 1137 * (% style="color:red" %)**NH**(%%): No Hole 1138 1138 1119 + 1139 1139 = 8. Packing Info = 1140 1140 1122 + 1141 1141 (% style="color:#037691" %)**Package Includes**: 1142 1142 1143 1143 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1149,8 +1149,10 @@ 1149 1149 * Package Size / pcs : cm 1150 1150 * Weight / pcs : g 1151 1151 1134 + 1152 1152 = 9. Support = 1153 1153 1154 1154 1155 1155 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1139 + 1156 1156 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]