Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Xiaoling1 +XWiki.Saxer - Content
-
... ... @@ -16,23 +16,21 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 + 19 19 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 20 20 21 - 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 - 25 25 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 26 26 27 - 28 28 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 29 29 30 - 31 31 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 32 32 33 33 34 34 == 1.2 Features == 35 35 33 + 36 36 * LoRaWAN 1.0.3 Class A 37 37 * Ultra-low power consumption 38 38 * Open-Source hardware/software ... ... @@ -43,8 +43,10 @@ 43 43 * Downlink to change configure 44 44 * 8500mAh Battery for long term use 45 45 44 + 46 46 == 1.3 Specification == 47 47 47 + 48 48 (% style="color:#037691" %)**Common DC Characteristics:** 49 49 50 50 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -79,8 +79,10 @@ 79 79 * Sleep Mode: 5uA @ 3.3v 80 80 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 81 81 82 + 82 82 == 1.4 Sleep mode and working mode == 83 83 85 + 84 84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 85 85 86 86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -105,6 +105,7 @@ 105 105 ))) 106 106 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 107 107 110 + 108 108 == 1.6 BLE connection == 109 109 110 110 ... ... @@ -136,8 +136,9 @@ 136 136 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 137 137 138 138 139 -== Hole Option == 142 +== 1.9 Hole Option == 140 140 144 + 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 142 142 143 143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -150,7 +150,7 @@ 150 150 == 2.1 How it works == 151 151 152 152 153 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 154 154 155 155 156 156 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -158,7 +158,7 @@ 158 158 159 159 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 160 160 161 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.165 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 162 162 163 163 164 164 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -207,7 +207,7 @@ 207 207 === 2.3.1 Device Status, FPORT~=5 === 208 208 209 209 210 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 214 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 211 211 212 212 The Payload format is as below. 213 213 ... ... @@ -220,7 +220,7 @@ 220 220 Example parse in TTNv3 221 221 222 222 223 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 224 224 225 225 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 226 226 ... ... @@ -276,47 +276,39 @@ 276 276 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 277 277 278 278 279 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 283 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 280 280 281 281 For example: 282 282 283 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 287 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 284 285 285 286 286 (% style="color:red" %) **Important Notice:** 287 287 288 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 289 -1. All modes share the same Payload Explanation from HERE. 290 -1. By default, the device will send an uplink message every 20 minutes. 292 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 291 291 294 +2. All modes share the same Payload Explanation from HERE. 295 + 296 +3. By default, the device will send an uplink message every 20 minutes. 297 + 298 + 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 301 + 294 294 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 295 295 296 -(% style="width: 1110px" %)297 -|**Size(bytes)**|**2**|(% style="width:1 91px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**304 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 305 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 298 298 |**Value**|Bat|(% style="width:191px" %)((( 299 -Temperature(DS18B20) 300 - 301 -(PC13) 307 +Temperature(DS18B20)(PC13) 302 302 )))|(% style="width:78px" %)((( 303 -ADC 304 - 305 -(PA4) 309 +ADC(PA4) 306 306 )))|(% style="width:216px" %)((( 307 -Digital in(PB15) & 308 - 309 -Digital Interrupt(PA8) 310 - 311 - 311 +Digital in(PB15)&Digital Interrupt(PA8) 312 312 )))|(% style="width:308px" %)((( 313 -Temperature 314 - 315 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 313 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 316 316 )))|(% style="width:154px" %)((( 317 -Humidity 318 - 319 -(SHT20 or SHT31) 315 +Humidity(SHT20 or SHT31) 320 320 ))) 321 321 322 322 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] ... ... @@ -324,25 +324,19 @@ 324 324 325 325 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 326 326 323 + 327 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 328 329 -(% style="width: 1011px" %)330 -|**Size(bytes)**|**2**|(% style="width:1 96px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**326 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 327 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 331 |**Value**|BAT|(% style="width:196px" %)((( 332 -Temperature(DS18B20) 333 - 334 -(PC13) 329 +Temperature(DS18B20)(PC13) 335 335 )))|(% style="width:87px" %)((( 336 -ADC 337 - 338 -(PA4) 331 +ADC(PA4) 339 339 )))|(% style="width:189px" %)((( 340 -Digital in(PB15) & 341 - 342 -Digital Interrupt(PA8) 333 +Digital in(PB15) & Digital Interrupt(PA8) 343 343 )))|(% style="width:208px" %)((( 344 -Distance measure by: 345 -1) LIDAR-Lite V3HP 335 +Distance measure by:1) LIDAR-Lite V3HP 346 346 Or 347 347 2) Ultrasonic Sensor 348 348 )))|(% style="width:117px" %)Reserved ... ... @@ -349,32 +349,29 @@ 349 349 350 350 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 351 351 352 -**Connection of LIDAR-Lite V3HP:** 353 353 343 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 344 + 354 354 [[image:image-20230512173758-5.png||height="563" width="712"]] 355 355 356 -**Connection to Ultrasonic Sensor:** 357 357 358 - NeedtomoveR1 and R2 resistorstogetlow power,otherwise there willbe240uA standby current.348 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 359 359 350 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 351 + 360 360 [[image:image-20230512173903-6.png||height="596" width="715"]] 361 361 354 + 362 362 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 363 363 364 -(% style="width: 1113px" %)365 -|**Size(bytes)**|**2**|(% style="width:1 83px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**357 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 358 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 366 366 |**Value**|BAT|(% style="width:183px" %)((( 367 -Temperature(DS18B20) 368 - 369 -(PC13) 360 +Temperature(DS18B20)(PC13) 370 370 )))|(% style="width:173px" %)((( 371 -Digital in(PB15) & 372 - 373 -Digital Interrupt(PA8) 362 +Digital in(PB15) & Digital Interrupt(PA8) 374 374 )))|(% style="width:84px" %)((( 375 -ADC 376 - 377 -(PA4) 364 +ADC(PA4) 378 378 )))|(% style="width:323px" %)((( 379 379 Distance measure by:1)TF-Mini plus LiDAR 380 380 Or ... ... @@ -383,15 +383,17 @@ 383 383 384 384 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 385 385 373 + 386 386 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 387 387 388 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 376 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 389 389 390 390 [[image:image-20230512180609-7.png||height="555" width="802"]] 391 391 380 + 392 392 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 393 393 394 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 383 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 395 395 396 396 [[image:image-20230513105207-4.png||height="469" width="802"]] 397 397 ... ... @@ -398,34 +398,25 @@ 398 398 399 399 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 400 400 390 + 401 401 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 402 402 403 -(% style="width: 1031px" %)404 -|=((( 393 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 394 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 405 405 **Size(bytes)** 406 -)))|=(% style="width: 68px;" %)**2**|=(% style="width:75px;" %)**2**|=**2**|=**1**|=(% style="width:304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width:53px;" %)1396 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 407 407 |**Value**|(% style="width:68px" %)((( 408 -ADC1 409 - 410 -(PA4) 398 +ADC1(PA4) 411 411 )))|(% style="width:75px" %)((( 412 -ADC2 413 - 414 -(PA5) 400 +ADC2(PA5) 415 415 )))|((( 416 -ADC3 417 - 418 -(PA8) 402 +ADC3(PA8) 419 419 )))|((( 420 420 Digital Interrupt(PB15) 421 421 )))|(% style="width:304px" %)((( 422 -Temperature 423 - 424 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 406 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 425 425 )))|(% style="width:163px" %)((( 426 -Humidity 427 - 428 -(SHT20 or SHT31) 408 +Humidity(SHT20 or SHT31) 429 429 )))|(% style="width:53px" %)Bat 430 430 431 431 [[image:image-20230513110214-6.png]] ... ... @@ -436,73 +436,66 @@ 436 436 437 437 This mode has total 11 bytes. As shown below: 438 438 439 -(% style="width: 1017px" %)440 -|**Size(bytes)**|**2**|(% style="width:1 86px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**419 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 420 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 441 441 |**Value**|BAT|(% style="width:186px" %)((( 442 -Temperature1(DS18B20) 443 -(PC13) 422 +Temperature1(DS18B20)(PC13) 444 444 )))|(% style="width:82px" %)((( 445 -ADC 446 - 447 -(PA4) 424 +ADC(PA4) 448 448 )))|(% style="width:210px" %)((( 449 -Digital in(PB15) & 450 - 451 -Digital Interrupt(PA8) 426 +Digital in(PB15) & Digital Interrupt(PA8) 452 452 )))|(% style="width:191px" %)Temperature2(DS18B20) 453 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 454 -(PB8) 428 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 455 455 456 456 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 457 457 432 + 458 458 [[image:image-20230513134006-1.png||height="559" width="736"]] 459 459 460 460 461 461 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 462 462 438 + 463 463 [[image:image-20230512164658-2.png||height="532" width="729"]] 464 464 465 465 Each HX711 need to be calibrated before used. User need to do below two steps: 466 466 467 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 468 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 443 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 444 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 469 469 1. ((( 470 470 Weight has 4 bytes, the unit is g. 447 + 448 + 449 + 471 471 ))) 472 472 473 473 For example: 474 474 475 -**AT+GETSENSORVALUE =0** 454 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 476 476 477 477 Response: Weight is 401 g 478 478 479 479 Check the response of this command and adjust the value to match the real value for thing. 480 480 481 -(% style="width: 767px" %)482 -|=((( 460 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 461 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 483 483 **Size(bytes)** 484 -)))|=**2**|=(% style="width: 1 93px;" %)**2**|=(% style="width:85px;" %)**2**|=(% style="width:186px;" %)**1**|=(% style="width:100px;" %)**4**463 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 485 485 |**Value**|BAT|(% style="width:193px" %)((( 486 -Temperature(DS18B20) 487 - 488 -(PC13) 489 - 490 - 465 +Temperature(DS18B20)(PC13) 491 491 )))|(% style="width:85px" %)((( 492 -ADC 493 - 494 -(PA4) 467 +ADC(PA4) 495 495 )))|(% style="width:186px" %)((( 496 -Digital in(PB15) & 497 - 498 -Digital Interrupt(PA8) 469 +Digital in(PB15) & Digital Interrupt(PA8) 499 499 )))|(% style="width:100px" %)Weight 500 500 501 501 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 502 502 503 503 475 + 504 504 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 505 505 478 + 506 506 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 507 507 508 508 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -509,26 +509,19 @@ 509 509 510 510 [[image:image-20230512181814-9.png||height="543" width="697"]] 511 511 512 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 513 513 514 -(% style="width:961px" %) 515 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 516 -|**Value**|BAT|(% style="width:256px" %)((( 517 -Temperature(DS18B20) 486 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 518 518 519 -(PC13) 488 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 489 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 490 +|**Value**|BAT|(% style="width:256px" %)((( 491 +Temperature(DS18B20)(PC13) 520 520 )))|(% style="width:108px" %)((( 521 -ADC 522 - 523 -(PA4) 493 +ADC(PA4) 524 524 )))|(% style="width:126px" %)((( 525 -Digital in 526 - 527 -(PB15) 495 +Digital in(PB15) 528 528 )))|(% style="width:145px" %)((( 529 -Count 530 - 531 -(PA8) 497 +Count(PA8) 532 532 ))) 533 533 534 534 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] ... ... @@ -536,18 +536,16 @@ 536 536 537 537 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 538 538 539 -(% style="width:1108px" %) 540 -|=((( 505 + 506 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 507 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 541 541 **Size(bytes)** 542 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2509 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 543 543 |**Value**|BAT|(% style="width:188px" %)((( 544 544 Temperature(DS18B20) 545 - 546 546 (PC13) 547 547 )))|(% style="width:83px" %)((( 548 -ADC 549 - 550 -(PA5) 514 +ADC(PA5) 551 551 )))|(% style="width:184px" %)((( 552 552 Digital Interrupt1(PA8) 553 553 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -554,30 +554,25 @@ 554 554 555 555 [[image:image-20230513111203-7.png||height="324" width="975"]] 556 556 521 + 557 557 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 558 558 559 -(% style="width:922px" %) 560 -|=((( 524 + 525 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 526 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 561 561 **Size(bytes)** 562 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2528 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 563 563 |**Value**|BAT|(% style="width:207px" %)((( 564 564 Temperature(DS18B20) 565 - 566 566 (PC13) 567 567 )))|(% style="width:94px" %)((( 568 -ADC1 569 - 570 -(PA4) 533 +ADC1(PA4) 571 571 )))|(% style="width:198px" %)((( 572 572 Digital Interrupt(PB15) 573 573 )))|(% style="width:84px" %)((( 574 -ADC2 575 - 576 -(PA5) 537 +ADC2(PA5) 577 577 )))|(% style="width:82px" %)((( 578 -ADC3 579 - 580 -(PA8) 539 +ADC3(PA8) 581 581 ))) 582 582 583 583 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -585,56 +585,50 @@ 585 585 586 586 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 587 587 588 -(% style="width:1010px" %) 589 -|=((( 547 + 548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 549 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 590 590 **Size(bytes)** 591 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4551 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 592 592 |**Value**|BAT|((( 593 -Temperature1(DS18B20) 594 - 595 -(PC13) 553 +Temperature 554 +(DS18B20)(PC13) 596 596 )))|((( 597 -Temperature2(DS18B20) 598 - 599 -(PB9) 556 +Temperature2 557 +(DS18B20)(PB9) 600 600 )))|((( 601 601 Digital Interrupt 602 - 603 603 (PB15) 604 604 )))|(% style="width:193px" %)((( 605 -Temperature3(DS18B20) 606 - 607 -(PB8) 562 +Temperature3 563 +(DS18B20)(PB8) 608 608 )))|(% style="width:78px" %)((( 609 -Count1 610 - 611 -(PA8) 565 +Count1(PA8) 612 612 )))|(% style="width:78px" %)((( 613 -Count2 614 - 615 -(PA4) 567 +Count2(PA4) 616 616 ))) 617 617 618 618 [[image:image-20230513111255-9.png||height="341" width="899"]] 619 619 620 -**The newly added AT command is issued correspondingly:** 572 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 621 621 622 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**574 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 623 623 624 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**576 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 625 625 626 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**578 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 627 627 628 -**AT+SETCNT=aa,bb** 629 629 581 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 582 + 630 630 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 631 631 632 632 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 633 633 634 634 635 - 636 636 === 2.3.3 Decode payload === 637 637 590 + 638 638 While using TTN V3 network, you can add the payload format to decode the payload. 639 639 640 640 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -641,13 +641,14 @@ 641 641 642 642 The payload decoder function for TTN V3 are here: 643 643 644 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 597 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 645 645 646 646 647 647 ==== 2.3.3.1 Battery Info ==== 648 648 649 -Check the battery voltage for SN50v3. 650 650 603 +Check the battery voltage for SN50v3-LB. 604 + 651 651 Ex1: 0x0B45 = 2885mV 652 652 653 653 Ex2: 0x0B49 = 2889mV ... ... @@ -655,16 +655,18 @@ 655 655 656 656 ==== 2.3.3.2 Temperature (DS18B20) ==== 657 657 658 -If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 659 659 660 - More DS18B20 cancheckthe[[3DS18B20mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]613 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 661 661 662 - **Connection:**615 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 663 663 617 +(% style="color:blue" %)**Connection:** 618 + 664 664 [[image:image-20230512180718-8.png||height="538" width="647"]] 665 665 666 -**Example**: 667 667 622 +(% style="color:blue" %)**Example**: 623 + 668 668 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 669 669 670 670 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -674,6 +674,7 @@ 674 674 675 675 ==== 2.3.3.3 Digital Input ==== 676 676 633 + 677 677 The digital input for pin PB15, 678 678 679 679 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -683,11 +683,14 @@ 683 683 ((( 684 684 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 685 685 686 -**Note:**The maximum voltage input supports 3.6V. 643 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 644 + 645 + 687 687 ))) 688 688 689 689 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 690 690 650 + 691 691 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 692 692 693 693 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -694,38 +694,43 @@ 694 694 695 695 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 696 696 697 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 698 698 658 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 659 + 660 + 699 699 ==== 2.3.3.5 Digital Interrupt ==== 700 700 701 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 702 702 703 - **~Interruptconnection method:**664 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 704 704 666 +(% style="color:blue" %)** Interrupt connection method:** 667 + 705 705 [[image:image-20230513105351-5.png||height="147" width="485"]] 706 706 707 -**Example to use with door sensor :** 708 708 671 +(% style="color:blue" %)**Example to use with door sensor :** 672 + 709 709 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 710 710 711 711 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 712 712 713 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.677 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 714 714 715 -**~ Below is the installation example:** 716 716 717 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:680 +(% style="color:blue" %)**Below is the installation example:** 718 718 682 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 683 + 719 719 * ((( 720 -One pin to SN50 _v3's PA8 pin685 +One pin to SN50v3-LB's PA8 pin 721 721 ))) 722 722 * ((( 723 -The other pin to SN50 _v3's VDD pin688 +The other pin to SN50v3-LB's VDD pin 724 724 ))) 725 725 726 726 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 727 727 728 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 693 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 729 729 730 730 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 731 731 ... ... @@ -737,30 +737,33 @@ 737 737 738 738 The command is: 739 739 740 -**AT+INTMOD1=1 705 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 741 741 742 742 Below shows some screen captures in TTN V3: 743 743 744 744 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 745 745 746 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 747 747 712 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 713 + 748 748 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 749 749 750 750 751 751 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 752 752 719 + 753 753 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 754 754 755 755 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 756 756 757 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50 _v3 will be a good reference.724 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 758 758 726 + 759 759 Below is the connection to SHT20/ SHT31. The connection is as below: 760 760 761 - 762 762 [[image:image-20230513103633-3.png||height="448" width="716"]] 763 763 731 + 764 764 The device will be able to get the I2C sensor data now and upload to IoT Server. 765 765 766 766 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -778,23 +778,26 @@ 778 778 779 779 ==== 2.3.3.7 Distance Reading ==== 780 780 781 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 782 782 750 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 783 783 752 + 784 784 ==== 2.3.3.8 Ultrasonic Sensor ==== 785 785 755 + 786 786 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 787 787 788 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.758 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 789 789 790 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 760 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 791 791 792 792 The picture below shows the connection: 793 793 794 794 [[image:image-20230512173903-6.png||height="596" width="715"]] 795 795 796 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 797 797 767 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 768 + 798 798 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 799 799 800 800 **Example:** ... ... @@ -802,37 +802,40 @@ 802 802 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 803 803 804 804 805 - 806 806 ==== 2.3.3.9 Battery Output - BAT pin ==== 807 807 808 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 809 809 779 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 810 810 781 + 811 811 ==== 2.3.3.10 +5V Output ==== 812 812 813 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 814 814 785 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 786 + 815 815 The 5V output time can be controlled by AT Command. 816 816 817 -**AT+5VT=1000** 789 +(% style="color:blue" %)**AT+5VT=1000** 818 818 819 819 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 820 820 821 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 793 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 822 822 823 823 824 - 825 825 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 826 826 798 + 827 827 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 828 828 829 829 [[image:image-20230512172447-4.png||height="416" width="712"]] 830 830 803 + 831 831 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 832 832 833 833 834 834 ==== 2.3.3.12 Working MOD ==== 835 835 809 + 836 836 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 837 837 838 838 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -849,6 +849,7 @@ 849 849 * 7: MOD8 850 850 * 8: MOD9 851 851 826 + 852 852 == 2.4 Payload Decoder file == 853 853 854 854 ... ... @@ -859,7 +859,6 @@ 859 859 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 860 860 861 861 862 - 863 863 == 2.5 Frequency Plans == 864 864 865 865 ... ... @@ -879,6 +879,7 @@ 879 879 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 880 880 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 881 881 856 + 882 882 == 3.2 General Commands == 883 883 884 884 ... ... @@ -895,11 +895,12 @@ 895 895 == 3.3 Commands special design for SN50v3-LB == 896 896 897 897 898 -These commands only valid for S3 1x-LB, as below:873 +These commands only valid for SN50v3-LB, as below: 899 899 900 900 901 901 === 3.3.1 Set Transmit Interval Time === 902 902 878 + 903 903 Feature: Change LoRaWAN End Node Transmit Interval. 904 904 905 905 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -926,18 +926,19 @@ 926 926 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 927 927 928 928 929 - 930 930 === 3.3.2 Get Device Status === 931 931 907 + 932 932 Send a LoRaWAN downlink to ask the device to send its status. 933 933 934 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01910 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 935 935 936 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 912 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 937 937 938 938 939 939 === 3.3.3 Set Interrupt Mode === 940 940 917 + 941 941 Feature, Set Interrupt mode for GPIO_EXIT. 942 942 943 943 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -958,7 +958,6 @@ 958 958 )))|(% style="width:157px" %)OK 959 959 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 960 960 Set Transmit Interval 961 - 962 962 trigger by rising edge. 963 963 )))|(% style="width:157px" %)OK 964 964 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -975,9 +975,9 @@ 975 975 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 976 976 977 977 978 - 979 979 === 3.3.4 Set Power Output Duration === 980 980 956 + 981 981 Control the output duration 5V . Before each sampling, device will 982 982 983 983 ~1. first enable the power output to external sensor, ... ... @@ -992,7 +992,6 @@ 992 992 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 993 993 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 994 994 500(default) 995 - 996 996 OK 997 997 ))) 998 998 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( ... ... @@ -1009,9 +1009,9 @@ 1009 1009 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1010 1010 1011 1011 1012 - 1013 1013 === 3.3.5 Set Weighing parameters === 1014 1014 989 + 1015 1015 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1016 1016 1017 1017 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -1035,9 +1035,9 @@ 1035 1035 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1036 1036 1037 1037 1038 - 1039 1039 === 3.3.6 Set Digital pulse count value === 1040 1040 1015 + 1041 1041 Feature: Set the pulse count value. 1042 1042 1043 1043 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1059,9 +1059,9 @@ 1059 1059 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1060 1060 1061 1061 1062 - 1063 1063 === 3.3.7 Set Workmode === 1064 1064 1039 + 1065 1065 Feature: Switch working mode. 1066 1066 1067 1067 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1073,7 +1073,6 @@ 1073 1073 ))) 1074 1074 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1075 1075 OK 1076 - 1077 1077 Attention:Take effect after ATZ 1078 1078 ))) 1079 1079 ... ... @@ -1085,7 +1085,6 @@ 1085 1085 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1086 1086 1087 1087 1088 - 1089 1089 = 4. Battery & Power Consumption = 1090 1090 1091 1091 ... ... @@ -1098,27 +1098,29 @@ 1098 1098 1099 1099 1100 1100 (% class="wikigeneratedid" %) 1101 -User can change firmware SN50v3-LB to: 1074 +**User can change firmware SN50v3-LB to:** 1102 1102 1103 1103 * Change Frequency band/ region. 1104 1104 * Update with new features. 1105 1105 * Fix bugs. 1106 1106 1107 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1080 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1108 1108 1082 +**Methods to Update Firmware:** 1109 1109 1110 -Methods to Update Firmware: 1111 - 1112 1112 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1113 1113 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1114 1114 1087 + 1115 1115 = 6. FAQ = 1116 1116 1117 1117 == 6.1 Where can i find source code of SN50v3-LB? == 1118 1118 1092 + 1119 1119 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1120 1120 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1121 1121 1096 + 1122 1122 = 7. Order Info = 1123 1123 1124 1124 ... ... @@ -1142,8 +1142,10 @@ 1142 1142 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1143 1143 * (% style="color:red" %)**NH**(%%): No Hole 1144 1144 1120 + 1145 1145 = 8. Packing Info = 1146 1146 1123 + 1147 1147 (% style="color:#037691" %)**Package Includes**: 1148 1148 1149 1149 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1155,8 +1155,10 @@ 1155 1155 * Package Size / pcs : cm 1156 1156 * Weight / pcs : g 1157 1157 1135 + 1158 1158 = 9. Support = 1159 1159 1160 1160 1161 1161 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1140 + 1162 1162 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]