Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -16,18 +16,15 @@ 16 16 17 17 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 18 18 19 + 19 19 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 20 20 21 - 22 22 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 23 23 24 - 25 25 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 26 26 27 - 28 28 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 29 29 30 - 31 31 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 32 32 33 33 ... ... @@ -45,6 +45,7 @@ 45 45 46 46 == 1.3 Specification == 47 47 45 + 48 48 (% style="color:#037691" %)**Common DC Characteristics:** 49 49 50 50 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -81,6 +81,7 @@ 81 81 82 82 == 1.4 Sleep mode and working mode == 83 83 82 + 84 84 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 85 85 86 86 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -138,6 +138,7 @@ 138 138 139 139 == Hole Option == 140 140 140 + 141 141 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 142 142 143 143 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -291,10 +291,11 @@ 291 291 292 292 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 293 293 294 + 294 294 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 295 295 296 -(% style="width: 1110px" %)297 -|**Size(bytes)**|**2**|(% style="width:191px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2** 297 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 298 +|(% style="background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|(% style="background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:191px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:78px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:216px;background-color:#D9E2F3;color:#0070C0" %)**1**|(% style="width:308px;background-color:#D9E2F3;color:#0070C0" %)**2**|(% style="width:154px;background-color:#D9E2F3;color:#0070C0" %)**2** 298 298 |**Value**|Bat|(% style="width:191px" %)((( 299 299 Temperature(DS18B20) 300 300 ... ... @@ -655,7 +655,7 @@ 655 655 656 656 ==== 2.3.3.2 Temperature (DS18B20) ==== 657 657 658 -If there is a DS18B20 connected to P B3 pin. The temperature will be uploaded in the payload.659 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 659 659 660 660 More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]] 661 661 ... ... @@ -684,6 +684,8 @@ 684 684 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 685 685 686 686 **Note:**The maximum voltage input supports 3.6V. 688 + 689 + 687 687 ))) 688 688 689 689 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== ... ... @@ -696,6 +696,7 @@ 696 696 697 697 **Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 698 698 702 + 699 699 ==== 2.3.3.5 Digital Interrupt ==== 700 700 701 701 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. ... ... @@ -849,6 +849,8 @@ 849 849 * 7: MOD8 850 850 * 8: MOD9 851 851 856 +== == 857 + 852 852 == 2.4 Payload Decoder file == 853 853 854 854 ... ... @@ -925,8 +925,8 @@ 925 925 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 926 926 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 927 927 934 +=== === 928 928 929 - 930 930 === 3.3.2 Get Device Status === 931 931 932 932 Send a LoRaWAN downlink to ask the device to send its status. ... ... @@ -974,8 +974,8 @@ 974 974 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 975 975 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 976 976 983 +=== === 977 977 978 - 979 979 === 3.3.4 Set Power Output Duration === 980 980 981 981 Control the output duration 5V . Before each sampling, device will ... ... @@ -1008,8 +1008,8 @@ 1008 1008 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1009 1009 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1010 1010 1017 +=== === 1011 1011 1012 - 1013 1013 === 3.3.5 Set Weighing parameters === 1014 1014 1015 1015 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. ... ... @@ -1034,8 +1034,8 @@ 1034 1034 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1035 1035 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1036 1036 1043 +=== === 1037 1037 1038 - 1039 1039 === 3.3.6 Set Digital pulse count value === 1040 1040 1041 1041 Feature: Set the pulse count value. ... ... @@ -1058,8 +1058,8 @@ 1058 1058 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1059 1059 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1060 1060 1067 +=== === 1061 1061 1062 - 1063 1063 === 3.3.7 Set Workmode === 1064 1064 1065 1065 Feature: Switch working mode. ... ... @@ -1084,8 +1084,8 @@ 1084 1084 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1085 1085 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1086 1086 1093 += = 1087 1087 1088 - 1089 1089 = 4. Battery & Power Consumption = 1090 1090 1091 1091