<
From version < 41.1 >
edited by Xiaoling
on 2023/05/15 13:56
To version < 54.1 >
edited by Bei Jinggeng
on 2023/07/02 15:56
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Bei
Content
... ... @@ -1,4 +1,5 @@
1 -[[image:image-20230511201248-1.png||height="403" width="489"]]
1 +(% style="text-align:center" %)
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
2 2  
3 3  
4 4  
... ... @@ -15,23 +15,21 @@
15 15  
16 16  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
19 +
18 18  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
19 19  
20 -
21 21  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 22  
23 -
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 -
27 27  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -
30 30  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
31 31  
32 32  
33 33  == 1.2 ​Features ==
34 34  
33 +
35 35  * LoRaWAN 1.0.3 Class A
36 36  * Ultra-low power consumption
37 37  * Open-Source hardware/software
... ... @@ -42,8 +42,10 @@
42 42  * Downlink to change configure
43 43  * 8500mAh Battery for long term use
44 44  
44 +
45 45  == 1.3 Specification ==
46 46  
47 +
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 49  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -78,8 +78,10 @@
78 78  * Sleep Mode: 5uA @ 3.3v
79 79  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80 80  
82 +
81 81  == 1.4 Sleep mode and working mode ==
82 82  
85 +
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -104,6 +104,7 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
110 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -122,7 +122,7 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230513102034-2.png]]
129 +[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
... ... @@ -135,8 +135,9 @@
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
137 137  
138 -== Hole Option ==
142 +== 1.9 Hole Option ==
139 139  
144 +
140 140  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
141 141  
142 142  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -149,7 +149,7 @@
149 149  == 2.1 How it works ==
150 150  
151 151  
152 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
153 153  
154 154  
155 155  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -157,7 +157,7 @@
157 157  
158 158  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
159 159  
160 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
165 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
161 161  
162 162  
163 163  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -206,7 +206,7 @@
206 206  === 2.3.1 Device Status, FPORT~=5 ===
207 207  
208 208  
209 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
214 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
210 210  
211 211  The Payload format is as below.
212 212  
... ... @@ -214,44 +214,44 @@
214 214  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
215 215  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
216 216  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
217 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
222 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
218 218  
219 219  Example parse in TTNv3
220 220  
221 221  
222 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
223 223  
224 224  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
225 225  
226 226  (% style="color:#037691" %)**Frequency Band**:
227 227  
228 -*0x01: EU868
233 +0x01: EU868
229 229  
230 -*0x02: US915
235 +0x02: US915
231 231  
232 -*0x03: IN865
237 +0x03: IN865
233 233  
234 -*0x04: AU915
239 +0x04: AU915
235 235  
236 -*0x05: KZ865
241 +0x05: KZ865
237 237  
238 -*0x06: RU864
243 +0x06: RU864
239 239  
240 -*0x07: AS923
245 +0x07: AS923
241 241  
242 -*0x08: AS923-1
247 +0x08: AS923-1
243 243  
244 -*0x09: AS923-2
249 +0x09: AS923-2
245 245  
246 -*0x0a: AS923-3
251 +0x0a: AS923-3
247 247  
248 -*0x0b: CN470
253 +0x0b: CN470
249 249  
250 -*0x0c: EU433
255 +0x0c: EU433
251 251  
252 -*0x0d: KR920
257 +0x0d: KR920
253 253  
254 -*0x0e: MA869
259 +0x0e: MA869
255 255  
256 256  
257 257  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -275,47 +275,39 @@
275 275  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
276 276  
277 277  
278 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
283 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
279 279  
280 280  For example:
281 281  
282 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
287 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283 283  
284 284  
285 285  (% style="color:red" %) **Important Notice:**
286 286  
287 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 -1. All modes share the same Payload Explanation from HERE.
289 -1. By default, the device will send an uplink message every 20 minutes.
292 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
290 290  
291 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
294 +2. All modes share the same Payload Explanation from HERE.
292 292  
293 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
296 +3. By default, the device will send an uplink message every 20 minutes.
294 294  
295 -(% style="width:1110px" %)
296 -|**Size(bytes)**|**2**|(% style="width:191px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**
297 -|**Value**|Bat|(% style="width:191px" %)(((
298 -Temperature(DS18B20)
299 299  
300 -(PC13)
301 -)))|(% style="width:78px" %)(((
302 -ADC
299 +==== 2.3.2.1  MOD~=1 (Default Mode) ====
303 303  
304 -(PA4)
305 -)))|(% style="width:216px" %)(((
306 -Digital in(PB15) &
307 307  
308 -Digital Interrupt(PA8)
302 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
309 309  
310 -
304 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
305 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
306 +|Value|Bat|(% style="width:191px" %)(((
307 +Temperature(DS18B20)(PC13)
308 +)))|(% style="width:78px" %)(((
309 +ADC(PA4)
310 +)))|(% style="width:216px" %)(((
311 +Digital in(PB15)&Digital Interrupt(PA8)
311 311  )))|(% style="width:308px" %)(((
312 -Temperature
313 -
314 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
313 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
315 315  )))|(% style="width:154px" %)(((
316 -Humidity
317 -
318 -(SHT20 or SHT31)
315 +Humidity(SHT20 or SHT31)
319 319  )))
320 320  
321 321  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -323,108 +323,90 @@
323 323  
324 324  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325 325  
323 +
326 326  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
327 327  
328 -(% style="width:1011px" %)
329 -|**Size(bytes)**|**2**|(% style="width:196px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**
330 -|**Value**|BAT|(% style="width:196px" %)(((
331 -Temperature(DS18B20)
332 -
333 -(PC13)
326 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
327 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
328 +|Value|BAT|(% style="width:196px" %)(((
329 +Temperature(DS18B20)(PC13)
334 334  )))|(% style="width:87px" %)(((
335 -ADC
336 -
337 -(PA4)
331 +ADC(PA4)
338 338  )))|(% style="width:189px" %)(((
339 -Digital in(PB15) &
340 -
341 -Digital Interrupt(PA8)
333 +Digital in(PB15) & Digital Interrupt(PA8)
342 342  )))|(% style="width:208px" %)(((
343 -Distance measure by:
344 -1) LIDAR-Lite V3HP
345 -Or
346 -2) Ultrasonic Sensor
335 +Distance measure by: 1) LIDAR-Lite V3HP
336 +Or 2) Ultrasonic Sensor
347 347  )))|(% style="width:117px" %)Reserved
348 348  
349 349  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
350 350  
351 -**Connection of LIDAR-Lite V3HP:**
352 352  
342 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
343 +
353 353  [[image:image-20230512173758-5.png||height="563" width="712"]]
354 354  
355 -**Connection to Ultrasonic Sensor:**
356 356  
357 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
347 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
358 358  
349 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
350 +
359 359  [[image:image-20230512173903-6.png||height="596" width="715"]]
360 360  
353 +
361 361  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
362 362  
363 -(% style="width:1113px" %)
364 -|**Size(bytes)**|**2**|(% style="width:183px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**
365 -|**Value**|BAT|(% style="width:183px" %)(((
366 -Temperature(DS18B20)
367 -
368 -(PC13)
356 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
357 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
358 +|Value|BAT|(% style="width:183px" %)(((
359 +Temperature(DS18B20)(PC13)
369 369  )))|(% style="width:173px" %)(((
370 -Digital in(PB15) &
371 -
372 -Digital Interrupt(PA8)
361 +Digital in(PB15) & Digital Interrupt(PA8)
373 373  )))|(% style="width:84px" %)(((
374 -ADC
375 -
376 -(PA4)
363 +ADC(PA4)
377 377  )))|(% style="width:323px" %)(((
378 378  Distance measure by:1)TF-Mini plus LiDAR
379 -Or 
380 -2) TF-Luna LiDAR
366 +Or 2) TF-Luna LiDAR
381 381  )))|(% style="width:188px" %)Distance signal  strength
382 382  
383 383  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
384 384  
371 +
385 385  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
386 386  
387 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
388 388  
389 389  [[image:image-20230512180609-7.png||height="555" width="802"]]
390 390  
378 +
391 391  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
392 392  
393 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
394 394  
395 -[[image:image-20230513105207-4.png||height="469" width="802"]]
383 +[[image:image-20230610170047-1.png||height="452" width="799"]]
396 396  
397 397  
398 398  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
399 399  
388 +
400 400  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
401 401  
402 -(% style="width:1031px" %)
403 -|=(((
391 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
404 404  **Size(bytes)**
405 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
406 -|**Value**|(% style="width:68px" %)(((
407 -ADC1
408 -
409 -(PA4)
394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
395 +|Value|(% style="width:68px" %)(((
396 +ADC1(PA4)
410 410  )))|(% style="width:75px" %)(((
411 -ADC2
412 -
413 -(PA5)
398 +ADC2(PA5)
414 414  )))|(((
415 -ADC3
416 -
417 -(PA8)
400 +ADC3(PA8)
418 418  )))|(((
419 419  Digital Interrupt(PB15)
420 420  )))|(% style="width:304px" %)(((
421 -Temperature
422 -
423 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
404 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
424 424  )))|(% style="width:163px" %)(((
425 -Humidity
426 -
427 -(SHT20 or SHT31)
406 +Humidity(SHT20 or SHT31)
428 428  )))|(% style="width:53px" %)Bat
429 429  
430 430  [[image:image-20230513110214-6.png]]
... ... @@ -435,73 +435,66 @@
435 435  
436 436  This mode has total 11 bytes. As shown below:
437 437  
438 -(% style="width:1017px" %)
439 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
440 -|**Value**|BAT|(% style="width:186px" %)(((
441 -Temperature1(DS18B20)
442 -(PC13)
417 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
419 +|Value|BAT|(% style="width:186px" %)(((
420 +Temperature1(DS18B20)(PC13)
443 443  )))|(% style="width:82px" %)(((
444 -ADC
445 -
446 -(PA4)
422 +ADC(PA4)
447 447  )))|(% style="width:210px" %)(((
448 -Digital in(PB15) &
449 -
450 -Digital Interrupt(PA8) 
424 +Digital in(PB15) & Digital Interrupt(PA8) 
451 451  )))|(% style="width:191px" %)Temperature2(DS18B20)
452 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
453 -(PB8)
426 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
454 454  
455 455  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
456 456  
430 +
457 457  [[image:image-20230513134006-1.png||height="559" width="736"]]
458 458  
459 459  
460 460  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
461 461  
436 +
462 462  [[image:image-20230512164658-2.png||height="532" width="729"]]
463 463  
464 464  Each HX711 need to be calibrated before used. User need to do below two steps:
465 465  
466 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
467 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
468 468  1. (((
469 469  Weight has 4 bytes, the unit is g.
445 +
446 +
447 +
470 470  )))
471 471  
472 472  For example:
473 473  
474 -**AT+GETSENSORVALUE =0**
452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
475 475  
476 476  Response:  Weight is 401 g
477 477  
478 478  Check the response of this command and adjust the value to match the real value for thing.
479 479  
480 -(% style="width:767px" %)
481 -|=(((
458 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
459 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
482 482  **Size(bytes)**
483 -)))|=**2**|=(% style="width: 193px;" %)**2**|=(% style="width: 85px;" %)**2**|=(% style="width: 186px;" %)**1**|=(% style="width: 100px;" %)**4**
484 -|**Value**|BAT|(% style="width:193px" %)(((
485 -Temperature(DS18B20)
486 -
487 -(PC13)
488 -
489 -
461 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
462 +|Value|BAT|(% style="width:193px" %)(((
463 +Temperature(DS18B20)(PC13)
490 490  )))|(% style="width:85px" %)(((
491 -ADC
492 -
493 -(PA4)
465 +ADC(PA4)
494 494  )))|(% style="width:186px" %)(((
495 -Digital in(PB15) &
496 -
497 -Digital Interrupt(PA8)
467 +Digital in(PB15) & Digital Interrupt(PA8)
498 498  )))|(% style="width:100px" %)Weight
499 499  
500 500  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
501 501  
502 502  
473 +
503 503  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
504 504  
476 +
505 505  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
506 506  
507 507  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -508,26 +508,19 @@
508 508  
509 509  [[image:image-20230512181814-9.png||height="543" width="697"]]
510 510  
511 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
512 512  
513 -(% style="width:961px" %)
514 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
515 -|**Value**|BAT|(% style="width:256px" %)(((
516 -Temperature(DS18B20)
484 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
517 517  
518 -(PC13)
486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 +|Value|BAT|(% style="width:256px" %)(((
489 +Temperature(DS18B20)(PC13)
519 519  )))|(% style="width:108px" %)(((
520 -ADC
521 -
522 -(PA4)
491 +ADC(PA4)
523 523  )))|(% style="width:126px" %)(((
524 -Digital in
525 -
526 -(PB15)
493 +Digital in(PB15)
527 527  )))|(% style="width:145px" %)(((
528 -Count
529 -
530 -(PA8)
495 +Count(PA8)
531 531  )))
532 532  
533 533  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -535,18 +535,16 @@
535 535  
536 536  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
537 537  
538 -(% style="width:1108px" %)
539 -|=(((
503 +
504 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
505 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
540 540  **Size(bytes)**
541 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width: 83px;" %)**2**|=(% style="width: 184px;" %)**1**|=(% style="width: 186px;" %)**1**|=(% style="width: 197px;" %)1|=(% style="width: 100px;" %)2
542 -|**Value**|BAT|(% style="width:188px" %)(((
507 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
508 +|Value|BAT|(% style="width:188px" %)(((
543 543  Temperature(DS18B20)
544 -
545 545  (PC13)
546 546  )))|(% style="width:83px" %)(((
547 -ADC
548 -
549 -(PA5)
512 +ADC(PA5)
550 550  )))|(% style="width:184px" %)(((
551 551  Digital Interrupt1(PA8)
552 552  )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
... ... @@ -553,30 +553,25 @@
553 553  
554 554  [[image:image-20230513111203-7.png||height="324" width="975"]]
555 555  
519 +
556 556  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
557 557  
558 -(% style="width:922px" %)
559 -|=(((
522 +
523 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
560 560  **Size(bytes)**
561 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 82px;" %)2
562 -|**Value**|BAT|(% style="width:207px" %)(((
526 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
527 +|Value|BAT|(% style="width:207px" %)(((
563 563  Temperature(DS18B20)
564 -
565 565  (PC13)
566 566  )))|(% style="width:94px" %)(((
567 -ADC1
568 -
569 -(PA4)
531 +ADC1(PA4)
570 570  )))|(% style="width:198px" %)(((
571 571  Digital Interrupt(PB15)
572 572  )))|(% style="width:84px" %)(((
573 -ADC2
574 -
575 -(PA5)
535 +ADC2(PA5)
576 576  )))|(% style="width:82px" %)(((
577 -ADC3
578 -
579 -(PA8)
537 +ADC3(PA8)
580 580  )))
581 581  
582 582  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -584,56 +584,50 @@
584 584  
585 585  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
586 586  
587 -(% style="width:1010px" %)
588 -|=(((
589 -**Size(bytes)**
590 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
591 -|**Value**|BAT|(((
592 -Temperature1(DS18B20)
593 593  
594 -(PC13)
546 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
547 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
548 +**Size(bytes)**
549 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
550 +|Value|BAT|(((
551 +Temperature
552 +(DS18B20)(PC13)
595 595  )))|(((
596 -Temperature2(DS18B20)
597 -
598 -(PB9)
554 +Temperature2
555 +(DS18B20)(PB9)
599 599  )))|(((
600 600  Digital Interrupt
601 -
602 602  (PB15)
603 603  )))|(% style="width:193px" %)(((
604 -Temperature3(DS18B20)
605 -
606 -(PB8)
560 +Temperature3
561 +(DS18B20)(PB8)
607 607  )))|(% style="width:78px" %)(((
608 -Count1
609 -
610 -(PA8)
563 +Count1(PA8)
611 611  )))|(% style="width:78px" %)(((
612 -Count2
613 -
614 -(PA4)
565 +Count2(PA4)
615 615  )))
616 616  
617 617  [[image:image-20230513111255-9.png||height="341" width="899"]]
618 618  
619 -**The newly added AT command is issued correspondingly:**
570 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
620 620  
621 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
572 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
622 622  
623 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
574 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
624 624  
625 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
576 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
626 626  
627 -**AT+SETCNT=aa,bb** 
628 628  
579 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
580 +
629 629  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
630 630  
631 631  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
632 632  
633 633  
634 -
635 635  === 2.3.3  ​Decode payload ===
636 636  
588 +
637 637  While using TTN V3 network, you can add the payload format to decode the payload.
638 638  
639 639  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -640,13 +640,14 @@
640 640  
641 641  The payload decoder function for TTN V3 are here:
642 642  
643 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
595 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
644 644  
645 645  
646 646  ==== 2.3.3.1 Battery Info ====
647 647  
648 -Check the battery voltage for SN50v3.
649 649  
601 +Check the battery voltage for SN50v3-LB.
602 +
650 650  Ex1: 0x0B45 = 2885mV
651 651  
652 652  Ex2: 0x0B49 = 2889mV
... ... @@ -654,16 +654,18 @@
654 654  
655 655  ==== 2.3.3.2  Temperature (DS18B20) ====
656 656  
657 -If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
658 658  
659 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
611 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
660 660  
661 -**Connection:**
613 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
662 662  
615 +(% style="color:blue" %)**Connection:**
616 +
663 663  [[image:image-20230512180718-8.png||height="538" width="647"]]
664 664  
665 -**Example**:
666 666  
620 +(% style="color:blue" %)**Example**:
621 +
667 667  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
668 668  
669 669  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -673,6 +673,7 @@
673 673  
674 674  ==== 2.3.3.3 Digital Input ====
675 675  
631 +
676 676  The digital input for pin PB15,
677 677  
678 678  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -682,49 +682,57 @@
682 682  (((
683 683  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
684 684  
685 -**Note:**The maximum voltage input supports 3.6V.
641 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
642 +
643 +
686 686  )))
687 687  
688 688  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
689 689  
690 -The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
691 691  
692 -When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
649 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
693 693  
651 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
652 +
694 694  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
695 695  
696 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
697 697  
656 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
657 +
658 +
698 698  ==== 2.3.3.5 Digital Interrupt ====
699 699  
700 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
701 701  
702 -**~ Interrupt connection method:**
662 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
703 703  
664 +(% style="color:blue" %)** Interrupt connection method:**
665 +
704 704  [[image:image-20230513105351-5.png||height="147" width="485"]]
705 705  
706 -**Example to use with door sensor :**
707 707  
669 +(% style="color:blue" %)**Example to use with door sensor :**
670 +
708 708  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
709 709  
710 710  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
711 711  
712 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
675 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
713 713  
714 -**~ Below is the installation example:**
715 715  
716 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
678 +(% style="color:blue" %)**Below is the installation example:**
717 717  
680 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
681 +
718 718  * (((
719 -One pin to SN50_v3's PA8 pin
683 +One pin to SN50v3-LB's PA8 pin
720 720  )))
721 721  * (((
722 -The other pin to SN50_v3's VDD pin
686 +The other pin to SN50v3-LB's VDD pin
723 723  )))
724 724  
725 725  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
726 726  
727 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
691 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
728 728  
729 729  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
730 730  
... ... @@ -736,29 +736,32 @@
736 736  
737 737  The command is:
738 738  
739 -**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
703 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
740 740  
741 741  Below shows some screen captures in TTN V3:
742 742  
743 743  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
744 744  
745 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
746 746  
710 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
711 +
747 747  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
748 748  
749 749  
750 750  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
751 751  
717 +
752 752  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
753 753  
754 754  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
755 755  
756 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
722 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
757 757  
724 +
758 758  Below is the connection to SHT20/ SHT31. The connection is as below:
759 759  
727 +[[image:image-20230610170152-2.png||height="501" width="846"]]
760 760  
761 -[[image:image-20230513103633-3.png||height="448" width="716"]]
762 762  
763 763  The device will be able to get the I2C sensor data now and upload to IoT Server.
764 764  
... ... @@ -777,23 +777,26 @@
777 777  
778 778  ==== 2.3.3.7  ​Distance Reading ====
779 779  
780 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
781 781  
748 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
782 782  
750 +
783 783  ==== 2.3.3.8 Ultrasonic Sensor ====
784 784  
753 +
785 785  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
786 786  
787 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
756 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
788 788  
789 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
758 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
790 790  
791 791  The picture below shows the connection:
792 792  
793 793  [[image:image-20230512173903-6.png||height="596" width="715"]]
794 794  
795 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
796 796  
765 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
766 +
797 797  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
798 798  
799 799  **Example:**
... ... @@ -801,37 +801,40 @@
801 801  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
802 802  
803 803  
804 -
805 805  ==== 2.3.3.9  Battery Output - BAT pin ====
806 806  
807 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
808 808  
777 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
809 809  
779 +
810 810  ==== 2.3.3.10  +5V Output ====
811 811  
812 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
813 813  
783 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
784 +
814 814  The 5V output time can be controlled by AT Command.
815 815  
816 -**AT+5VT=1000**
787 +(% style="color:blue" %)**AT+5VT=1000**
817 817  
818 818  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
819 819  
820 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
791 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
821 821  
822 822  
823 -
824 824  ==== 2.3.3.11  BH1750 Illumination Sensor ====
825 825  
796 +
826 826  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
827 827  
828 828  [[image:image-20230512172447-4.png||height="416" width="712"]]
829 829  
801 +
830 830  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
831 831  
832 832  
833 833  ==== 2.3.3.12  Working MOD ====
834 834  
807 +
835 835  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
836 836  
837 837  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -848,6 +848,7 @@
848 848  * 7: MOD8
849 849  * 8: MOD9
850 850  
824 +
851 851  == 2.4 Payload Decoder file ==
852 852  
853 853  
... ... @@ -857,10 +857,7 @@
857 857  
858 858  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
859 859  
860 -
861 861  
862 -
863 -
864 864  == 2.5 Frequency Plans ==
865 865  
866 866  
... ... @@ -880,6 +880,7 @@
880 880  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
881 881  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
882 882  
854 +
883 883  == 3.2 General Commands ==
884 884  
885 885  
... ... @@ -896,17 +896,18 @@
896 896  == 3.3 Commands special design for SN50v3-LB ==
897 897  
898 898  
899 -These commands only valid for S31x-LB, as below:
871 +These commands only valid for SN50v3-LB, as below:
900 900  
901 901  
902 902  === 3.3.1 Set Transmit Interval Time ===
903 903  
876 +
904 904  Feature: Change LoRaWAN End Node Transmit Interval.
905 905  
906 906  (% style="color:blue" %)**AT Command: AT+TDC**
907 907  
908 908  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
909 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
882 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
910 910  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
911 911  30000
912 912  OK
... ... @@ -926,26 +926,26 @@
926 926  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
927 927  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
928 928  
929 -(% class="wikigeneratedid" %)
930 -=== ===
931 931  
932 932  === 3.3.2 Get Device Status ===
933 933  
905 +
934 934  Send a LoRaWAN downlink to ask the device to send its status.
935 935  
936 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
908 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
937 937  
938 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
910 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
939 939  
940 940  
941 941  === 3.3.3 Set Interrupt Mode ===
942 942  
915 +
943 943  Feature, Set Interrupt mode for GPIO_EXIT.
944 944  
945 945  (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
946 946  
947 947  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
948 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
921 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
949 949  |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
950 950  0
951 951  OK
... ... @@ -960,7 +960,6 @@
960 960  )))|(% style="width:157px" %)OK
961 961  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
962 962  Set Transmit Interval
963 -
964 964  trigger by rising edge.
965 965  )))|(% style="width:157px" %)OK
966 966  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -976,11 +976,10 @@
976 976  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
977 977  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
978 978  
979 -(% class="wikigeneratedid" %)
980 -=== ===
981 981  
982 982  === 3.3.4 Set Power Output Duration ===
983 983  
954 +
984 984  Control the output duration 5V . Before each sampling, device will
985 985  
986 986  ~1. first enable the power output to external sensor,
... ... @@ -992,10 +992,9 @@
992 992  (% style="color:blue" %)**AT Command: AT+5VT**
993 993  
994 994  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
995 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
966 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
996 996  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
997 997  500(default)
998 -
999 999  OK
1000 1000  )))
1001 1001  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -1011,17 +1011,16 @@
1011 1011  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1012 1012  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1013 1013  
1014 -(% class="wikigeneratedid" %)
1015 -=== ===
1016 1016  
1017 1017  === 3.3.5 Set Weighing parameters ===
1018 1018  
987 +
1019 1019  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1020 1020  
1021 1021  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1022 1022  
1023 1023  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1024 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
993 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1025 1025  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1026 1026  |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1027 1027  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
... ... @@ -1038,11 +1038,10 @@
1038 1038  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1039 1039  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1040 1040  
1041 -(% class="wikigeneratedid" %)
1042 -=== ===
1043 1043  
1044 1044  === 3.3.6 Set Digital pulse count value ===
1045 1045  
1013 +
1046 1046  Feature: Set the pulse count value.
1047 1047  
1048 1048  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1050,7 +1050,7 @@
1050 1050  (% style="color:blue" %)**AT Command: AT+SETCNT**
1051 1051  
1052 1052  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1053 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1021 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1054 1054  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1055 1055  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1056 1056  
... ... @@ -1063,23 +1063,21 @@
1063 1063  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1064 1064  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1065 1065  
1066 -(% class="wikigeneratedid" %)
1067 -=== ===
1068 1068  
1069 1069  === 3.3.7 Set Workmode ===
1070 1070  
1037 +
1071 1071  Feature: Switch working mode.
1072 1072  
1073 1073  (% style="color:blue" %)**AT Command: AT+MOD**
1074 1074  
1075 1075  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1076 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1043 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1077 1077  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1078 1078  OK
1079 1079  )))
1080 1080  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1081 1081  OK
1082 -
1083 1083  Attention:Take effect after ATZ
1084 1084  )))
1085 1085  
... ... @@ -1090,8 +1090,6 @@
1090 1090  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1091 1091  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1092 1092  
1093 -(% class="wikigeneratedid" %)
1094 -= =
1095 1095  
1096 1096  = 4. Battery & Power Consumption =
1097 1097  
... ... @@ -1105,27 +1105,29 @@
1105 1105  
1106 1106  
1107 1107  (% class="wikigeneratedid" %)
1108 -User can change firmware SN50v3-LB to:
1072 +**User can change firmware SN50v3-LB to:**
1109 1109  
1110 1110  * Change Frequency band/ region.
1111 1111  * Update with new features.
1112 1112  * Fix bugs.
1113 1113  
1114 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1078 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1115 1115  
1080 +**Methods to Update Firmware:**
1116 1116  
1117 -Methods to Update Firmware:
1082 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1083 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1118 1118  
1119 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1120 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1121 1121  
1122 1122  = 6. FAQ =
1123 1123  
1124 1124  == 6.1 Where can i find source code of SN50v3-LB? ==
1125 1125  
1090 +
1126 1126  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1127 1127  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1128 1128  
1094 +
1129 1129  = 7. Order Info =
1130 1130  
1131 1131  
... ... @@ -1149,8 +1149,10 @@
1149 1149  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1150 1150  * (% style="color:red" %)**NH**(%%): No Hole
1151 1151  
1118 +
1152 1152  = 8. ​Packing Info =
1153 1153  
1121 +
1154 1154  (% style="color:#037691" %)**Package Includes**:
1155 1155  
1156 1156  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1162,8 +1162,10 @@
1162 1162  * Package Size / pcs : cm
1163 1163  * Weight / pcs : g
1164 1164  
1133 +
1165 1165  = 9. Support =
1166 1166  
1167 1167  
1168 1168  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1169 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1138 +
1139 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0