Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB User Manual 1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Content
-
... ... @@ -1,4 +1,5 @@ 1 -[[image:image-20230511201248-1.png||height="403" width="489"]] 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 4 4 ... ... @@ -15,23 +15,21 @@ 15 15 16 16 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 17 17 19 + 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 20 - 21 21 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 22 23 - 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 - 27 27 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 28 28 29 - 30 30 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 31 31 32 32 33 33 == 1.2 Features == 34 34 33 + 35 35 * LoRaWAN 1.0.3 Class A 36 36 * Ultra-low power consumption 37 37 * Open-Source hardware/software ... ... @@ -44,6 +44,7 @@ 44 44 45 45 == 1.3 Specification == 46 46 46 + 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -80,6 +80,7 @@ 80 80 81 81 == 1.4 Sleep mode and working mode == 82 82 83 + 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -137,6 +137,7 @@ 137 137 138 138 == Hole Option == 139 139 141 + 140 140 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 141 141 142 142 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -290,90 +290,70 @@ 290 290 291 291 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 292 292 295 + 293 293 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 294 294 295 -(% style="width: 1110px" %)296 -|**Size(bytes)**|**2**|(% style="width:1 91px" %)**2**|(% style="width:78px" %)**2**|(% style="width:216px" %)**1**|(% style="width:308px" %)**2**|(% style="width:154px" %)**2**298 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 299 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 297 297 |**Value**|Bat|(% style="width:191px" %)((( 298 -Temperature(DS18B20) 299 - 300 -(PC13) 301 +Temperature(DS18B20)(PC13) 301 301 )))|(% style="width:78px" %)((( 302 -ADC 303 - 304 -(PA4) 303 +ADC(PA4) 305 305 )))|(% style="width:216px" %)((( 306 -Digital in(PB15) & 307 - 308 -Digital Interrupt(PA8) 309 - 310 - 305 +Digital in(PB15)&Digital Interrupt(PA8) 311 311 )))|(% style="width:308px" %)((( 312 -Temperature 313 - 314 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 307 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 315 315 )))|(% style="width:154px" %)((( 316 -Humidity 317 - 318 -(SHT20 or SHT31) 309 +Humidity(SHT20 or SHT31) 319 319 ))) 320 320 321 321 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 322 322 323 323 315 + 324 324 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 325 325 318 + 326 326 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 327 327 328 -(% style="width: 1011px" %)329 -|**Size(bytes)**|**2**|(% style="width:1 96px" %)**2**|(% style="width:87px" %)**2**|(% style="width:189px" %)**1**|(% style="width:208px" %)**2**|(% style="width:117px" %)**2**321 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 322 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 330 330 |**Value**|BAT|(% style="width:196px" %)((( 331 -Temperature(DS18B20) 332 - 333 -(PC13) 324 +Temperature(DS18B20)(PC13) 334 334 )))|(% style="width:87px" %)((( 335 -ADC 336 - 337 -(PA4) 326 +ADC(PA4) 338 338 )))|(% style="width:189px" %)((( 339 -Digital in(PB15) & 340 - 341 -Digital Interrupt(PA8) 328 +Digital in(PB15) & Digital Interrupt(PA8) 342 342 )))|(% style="width:208px" %)((( 343 -Distance measure by: 344 -1) LIDAR-Lite V3HP 345 -Or 346 -2) Ultrasonic Sensor 330 +Distance measure by:1) LIDAR-Lite V3HP 331 +Or 2) Ultrasonic Sensor 347 347 )))|(% style="width:117px" %)Reserved 348 348 349 349 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 350 350 351 -**Connection of LIDAR-Lite V3HP:** 352 352 337 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 338 + 353 353 [[image:image-20230512173758-5.png||height="563" width="712"]] 354 354 355 -**Connection to Ultrasonic Sensor:** 356 356 342 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 343 + 357 357 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 358 358 359 359 [[image:image-20230512173903-6.png||height="596" width="715"]] 360 360 348 + 361 361 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 362 362 363 -(% style="width: 1113px" %)364 -|**Size(bytes)**|**2**|(% style="width:1 83px" %)**2**|(% style="width:173px" %)**1**|(% style="width:84px" %)**2**|(% style="width:323px" %)**2**|(% style="width:188px" %)**2**351 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 352 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 365 365 |**Value**|BAT|(% style="width:183px" %)((( 366 -Temperature(DS18B20) 367 - 368 -(PC13) 354 +Temperature(DS18B20)(PC13) 369 369 )))|(% style="width:173px" %)((( 370 -Digital in(PB15) & 371 - 372 -Digital Interrupt(PA8) 356 +Digital in(PB15) & Digital Interrupt(PA8) 373 373 )))|(% style="width:84px" %)((( 374 -ADC 375 - 376 -(PA4) 358 +ADC(PA4) 377 377 )))|(% style="width:323px" %)((( 378 378 Distance measure by:1)TF-Mini plus LiDAR 379 379 Or ... ... @@ -382,6 +382,7 @@ 382 382 383 383 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 384 384 367 + 385 385 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 386 386 387 387 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. ... ... @@ -388,6 +388,7 @@ 388 388 389 389 [[image:image-20230512180609-7.png||height="555" width="802"]] 390 390 374 + 391 391 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 392 392 393 393 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. ... ... @@ -397,34 +397,25 @@ 397 397 398 398 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 399 399 384 + 400 400 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 401 401 402 -(% style="width: 1031px" %)403 -|=((( 387 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 388 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 404 404 **Size(bytes)** 405 -)))|=(% style="width: 68px;" %)**2**|=(% style="width:75px;" %)**2**|=**2**|=**1**|=(% style="width:304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width:53px;" %)1390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 406 406 |**Value**|(% style="width:68px" %)((( 407 -ADC1 408 - 409 -(PA4) 392 +ADC1(PA4) 410 410 )))|(% style="width:75px" %)((( 411 -ADC2 412 - 413 -(PA5) 394 +ADC2(PA5) 414 414 )))|((( 415 -ADC3 416 - 417 -(PA8) 396 +ADC3(PA8) 418 418 )))|((( 419 419 Digital Interrupt(PB15) 420 420 )))|(% style="width:304px" %)((( 421 -Temperature 422 - 423 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 400 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 424 424 )))|(% style="width:163px" %)((( 425 -Humidity 426 - 427 -(SHT20 or SHT31) 402 +Humidity(SHT20 or SHT31) 428 428 )))|(% style="width:53px" %)Bat 429 429 430 430 [[image:image-20230513110214-6.png]] ... ... @@ -435,22 +435,16 @@ 435 435 436 436 This mode has total 11 bytes. As shown below: 437 437 438 -(% style="width: 1017px" %)439 -|**Size(bytes)**|**2**|(% style="width:1 86px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**413 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 440 440 |**Value**|BAT|(% style="width:186px" %)((( 441 -Temperature1(DS18B20) 442 -(PC13) 416 +Temperature1(DS18B20)(PC13) 443 443 )))|(% style="width:82px" %)((( 444 -ADC 445 - 446 -(PA4) 418 +ADC(PA4) 447 447 )))|(% style="width:210px" %)((( 448 -Digital in(PB15) & 449 - 450 -Digital Interrupt(PA8) 420 +Digital in(PB15) & Digital Interrupt(PA8) 451 451 )))|(% style="width:191px" %)Temperature2(DS18B20) 452 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 453 -(PB8) 422 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 454 454 455 455 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 456 456 ... ... @@ -457,8 +457,10 @@ 457 457 [[image:image-20230513134006-1.png||height="559" width="736"]] 458 458 459 459 429 + 460 460 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 461 461 432 + 462 462 [[image:image-20230512164658-2.png||height="532" width="729"]] 463 463 464 464 Each HX711 need to be calibrated before used. User need to do below two steps: ... ... @@ -477,23 +477,17 @@ 477 477 478 478 Check the response of this command and adjust the value to match the real value for thing. 479 479 480 -(% style="width: 767px" %)481 -|=((( 451 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 452 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 482 482 **Size(bytes)** 483 -)))|=**2**|=(% style="width: 1 93px;" %)**2**|=(% style="width:85px;" %)**2**|=(% style="width:186px;" %)**1**|=(% style="width:100px;" %)**4**454 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 484 484 |**Value**|BAT|(% style="width:193px" %)((( 485 485 Temperature(DS18B20) 486 - 487 487 (PC13) 488 - 489 - 490 490 )))|(% style="width:85px" %)((( 491 -ADC 492 - 493 -(PA4) 459 +ADC(PA4) 494 494 )))|(% style="width:186px" %)((( 495 495 Digital in(PB15) & 496 - 497 497 Digital Interrupt(PA8) 498 498 )))|(% style="width:100px" %)Weight 499 499 ... ... @@ -500,8 +500,10 @@ 500 500 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 501 501 502 502 468 + 503 503 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 504 504 471 + 505 505 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 506 506 507 507 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -508,45 +508,36 @@ 508 508 509 509 [[image:image-20230512181814-9.png||height="543" width="697"]] 510 510 511 -**Note:** 478 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 512 512 513 -(% style="width: 961px" %)514 -|=**Size(bytes)**|=**2**|=(% style="width: 2 56px;" %)**2**|=(% style="width:108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width:145px;" %)**4**480 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 481 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 515 515 |**Value**|BAT|(% style="width:256px" %)((( 516 -Temperature(DS18B20) 517 - 518 -(PC13) 483 +Temperature(DS18B20)(PC13) 519 519 )))|(% style="width:108px" %)((( 520 -ADC 521 - 522 -(PA4) 485 +ADC(PA4) 523 523 )))|(% style="width:126px" %)((( 524 -Digital in 525 - 526 -(PB15) 487 +Digital in(PB15) 527 527 )))|(% style="width:145px" %)((( 528 -Count 529 - 530 -(PA8) 489 +Count(PA8) 531 531 ))) 532 532 533 533 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 534 534 535 535 495 + 536 536 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 537 537 538 -(% style="width:1108px" %) 539 -|=((( 498 + 499 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 500 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 540 540 **Size(bytes)** 541 -)))|=**2**|=(% style="width: 188px;" %)**2**|=(% style="width:83px;" %)**2**|=(% style="width:184px;" %)**1**|=(% style="width:186px;" %)**1**|=(% style="width:197px;" %)1|=(% style="width:100px;" %)2502 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 542 542 |**Value**|BAT|(% style="width:188px" %)((( 543 543 Temperature(DS18B20) 544 - 545 545 (PC13) 546 546 )))|(% style="width:83px" %)((( 547 -ADC 548 - 549 -(PA5) 507 +ADC(PA5) 550 550 )))|(% style="width:184px" %)((( 551 551 Digital Interrupt1(PA8) 552 552 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved ... ... @@ -553,30 +553,25 @@ 553 553 554 554 [[image:image-20230513111203-7.png||height="324" width="975"]] 555 555 514 + 556 556 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 557 557 558 -(% style="width:922px" %) 559 -|=((( 517 + 518 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 519 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 560 560 **Size(bytes)** 561 -)))|=**2**|=(% style="width: 20 7px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width:82px;" %)2521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 562 562 |**Value**|BAT|(% style="width:207px" %)((( 563 563 Temperature(DS18B20) 564 - 565 565 (PC13) 566 566 )))|(% style="width:94px" %)((( 567 -ADC1 568 - 569 -(PA4) 526 +ADC1(PA4) 570 570 )))|(% style="width:198px" %)((( 571 571 Digital Interrupt(PB15) 572 572 )))|(% style="width:84px" %)((( 573 -ADC2 574 - 575 -(PA5) 530 +ADC2(PA5) 576 576 )))|(% style="width:82px" %)((( 577 -ADC3 578 - 579 -(PA8) 532 +ADC3(PA8) 580 580 ))) 581 581 582 582 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -584,56 +584,50 @@ 584 584 585 585 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 586 586 587 -(% style="width:1010px" %) 588 -|=((( 540 + 541 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 542 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 589 589 **Size(bytes)** 590 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 1 93px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 591 591 |**Value**|BAT|((( 592 592 Temperature1(DS18B20) 593 - 594 594 (PC13) 595 595 )))|((( 596 596 Temperature2(DS18B20) 597 - 598 598 (PB9) 599 599 )))|((( 600 600 Digital Interrupt 601 - 602 602 (PB15) 603 603 )))|(% style="width:193px" %)((( 604 604 Temperature3(DS18B20) 605 - 606 606 (PB8) 607 607 )))|(% style="width:78px" %)((( 608 -Count1 609 - 610 -(PA8) 558 +Count1(PA8) 611 611 )))|(% style="width:78px" %)((( 612 -Count2 613 - 614 -(PA4) 560 +Count2(PA4) 615 615 ))) 616 616 617 617 [[image:image-20230513111255-9.png||height="341" width="899"]] 618 618 619 -**The newly added AT command is issued correspondingly:** 565 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 620 620 621 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**567 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 622 622 623 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**569 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 624 624 625 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**571 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 626 626 627 -**AT+SETCNT=aa,bb** 628 628 574 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 575 + 629 629 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 630 630 631 631 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 632 632 633 633 634 - 635 635 === 2.3.3 Decode payload === 636 636 583 + 637 637 While using TTN V3 network, you can add the payload format to decode the payload. 638 638 639 639 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -645,6 +645,7 @@ 645 645 646 646 ==== 2.3.3.1 Battery Info ==== 647 647 595 + 648 648 Check the battery voltage for SN50v3. 649 649 650 650 Ex1: 0x0B45 = 2885mV ... ... @@ -654,16 +654,18 @@ 654 654 655 655 ==== 2.3.3.2 Temperature (DS18B20) ==== 656 656 657 -If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 658 658 659 - More DS18B20 cancheckthe[[3DS18B20mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]606 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 660 660 661 - **Connection:**608 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 662 662 610 +(% style="color:blue" %)**Connection:** 611 + 663 663 [[image:image-20230512180718-8.png||height="538" width="647"]] 664 664 665 -**Example**: 666 666 615 +(% style="color:blue" %)**Example**: 616 + 667 667 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 668 668 669 669 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -673,6 +673,7 @@ 673 673 674 674 ==== 2.3.3.3 Digital Input ==== 675 675 626 + 676 676 The digital input for pin PB15, 677 677 678 678 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -682,11 +682,14 @@ 682 682 ((( 683 683 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 684 684 685 -**Note:**The maximum voltage input supports 3.6V. 636 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 637 + 638 + 686 686 ))) 687 687 688 688 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 689 689 643 + 690 690 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 691 691 692 692 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -693,18 +693,21 @@ 693 693 694 694 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 695 695 696 -**Note: **If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.650 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 697 697 652 + 698 698 ==== 2.3.3.5 Digital Interrupt ==== 699 699 655 + 700 700 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 701 701 702 -** ~Interrupt connection method:**658 +(% style="color:blue" %)** Interrupt connection method:** 703 703 704 704 [[image:image-20230513105351-5.png||height="147" width="485"]] 705 705 706 -**Example to use with door sensor :** 707 707 663 +(% style="color:blue" %)**Example to use with door sensor :** 664 + 708 708 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 709 709 710 710 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] ... ... @@ -711,8 +711,9 @@ 711 711 712 712 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 713 713 714 -**~ Below is the installation example:** 715 715 672 +(% style="color:blue" %)**Below is the installation example:** 673 + 716 716 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 717 717 718 718 * ((( ... ... @@ -724,7 +724,7 @@ 724 724 725 725 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 726 726 727 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 685 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 728 728 729 729 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 730 730 ... ... @@ -736,12 +736,13 @@ 736 736 737 737 The command is: 738 738 739 -**AT+INTMOD1=1 697 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 740 740 741 741 Below shows some screen captures in TTN V3: 742 742 743 743 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 744 744 703 + 745 745 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 746 746 747 747 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -749,6 +749,7 @@ 749 749 750 750 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 751 751 711 + 752 752 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 753 753 754 754 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. ... ... @@ -777,23 +777,26 @@ 777 777 778 778 ==== 2.3.3.7 Distance Reading ==== 779 779 780 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 781 781 741 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 782 782 743 + 783 783 ==== 2.3.3.8 Ultrasonic Sensor ==== 784 784 746 + 785 785 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 786 786 787 787 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 788 788 789 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 751 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 790 790 791 791 The picture below shows the connection: 792 792 793 793 [[image:image-20230512173903-6.png||height="596" width="715"]] 794 794 795 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 796 796 758 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 759 + 797 797 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 798 798 799 799 **Example:** ... ... @@ -804,16 +804,18 @@ 804 804 805 805 ==== 2.3.3.9 Battery Output - BAT pin ==== 806 806 770 + 807 807 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 808 808 809 809 810 810 ==== 2.3.3.10 +5V Output ==== 811 811 776 + 812 812 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 813 813 814 814 The 5V output time can be controlled by AT Command. 815 815 816 -**AT+5VT=1000** 781 +(% style="color:blue" %)**AT+5VT=1000** 817 817 818 818 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 819 819 ... ... @@ -823,6 +823,7 @@ 823 823 824 824 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 825 825 791 + 826 826 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 827 827 828 828 [[image:image-20230512172447-4.png||height="416" width="712"]] ... ... @@ -857,9 +857,7 @@ 857 857 858 858 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 859 859 860 - 861 861 862 - 863 863 864 864 == 2.5 Frequency Plans == 865 865 ... ... @@ -926,9 +926,6 @@ 926 926 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 927 927 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 928 928 929 -(% class="wikigeneratedid" %) 930 -=== === 931 - 932 932 === 3.3.2 Get Device Status === 933 933 934 934 Send a LoRaWAN downlink to ask the device to send its status. ... ... @@ -976,9 +976,6 @@ 976 976 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 977 977 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 978 978 979 -(% class="wikigeneratedid" %) 980 -=== === 981 - 982 982 === 3.3.4 Set Power Output Duration === 983 983 984 984 Control the output duration 5V . Before each sampling, device will ... ... @@ -995,7 +995,6 @@ 995 995 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 996 996 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 997 997 500(default) 998 - 999 999 OK 1000 1000 ))) 1001 1001 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( ... ... @@ -1011,9 +1011,6 @@ 1011 1011 * Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1012 1012 * Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1013 1013 1014 -(% class="wikigeneratedid" %) 1015 -=== === 1016 - 1017 1017 === 3.3.5 Set Weighing parameters === 1018 1018 1019 1019 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. ... ... @@ -1038,9 +1038,6 @@ 1038 1038 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1039 1039 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1040 1040 1041 -(% class="wikigeneratedid" %) 1042 -=== === 1043 - 1044 1044 === 3.3.6 Set Digital pulse count value === 1045 1045 1046 1046 Feature: Set the pulse count value. ... ... @@ -1063,9 +1063,6 @@ 1063 1063 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1064 1064 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1065 1065 1066 -(% class="wikigeneratedid" %) 1067 -=== === 1068 - 1069 1069 === 3.3.7 Set Workmode === 1070 1070 1071 1071 Feature: Switch working mode. ... ... @@ -1079,7 +1079,6 @@ 1079 1079 ))) 1080 1080 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1081 1081 OK 1082 - 1083 1083 Attention:Take effect after ATZ 1084 1084 ))) 1085 1085 ... ... @@ -1090,9 +1090,6 @@ 1090 1090 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1091 1091 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1092 1092 1093 -(% class="wikigeneratedid" %) 1094 -= = 1095 - 1096 1096 = 4. Battery & Power Consumption = 1097 1097 1098 1098 ... ... @@ -1166,4 +1166,5 @@ 1166 1166 1167 1167 1168 1168 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1169 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1113 + 1114 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]