Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB User Manual 1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Xiaoling - Content
-
... ... @@ -1,4 +1,5 @@ 1 -[[image:image-20230511201248-1.png||height="403" width="489"]] 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 4 4 ... ... @@ -15,23 +15,21 @@ 15 15 16 16 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 17 17 19 + 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 20 - 21 21 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 22 23 - 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 - 27 27 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 28 28 29 - 30 30 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 31 31 32 32 33 33 == 1.2 Features == 34 34 33 + 35 35 * LoRaWAN 1.0.3 Class A 36 36 * Ultra-low power consumption 37 37 * Open-Source hardware/software ... ... @@ -44,6 +44,7 @@ 44 44 45 45 == 1.3 Specification == 46 46 46 + 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -80,6 +80,7 @@ 80 80 81 81 == 1.4 Sleep mode and working mode == 82 82 83 + 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -135,8 +135,9 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 139 +== 1.9 Hole Option == 139 139 141 + 140 140 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 141 141 142 142 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -149,7 +149,7 @@ 149 149 == 2.1 How it works == 150 150 151 151 152 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.154 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 153 153 154 154 155 155 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -157,7 +157,7 @@ 157 157 158 158 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 159 159 160 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.162 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 161 161 162 162 163 163 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -206,7 +206,7 @@ 206 206 === 2.3.1 Device Status, FPORT~=5 === 207 207 208 208 209 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 211 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 210 210 211 211 The Payload format is as below. 212 212 ... ... @@ -219,7 +219,7 @@ 219 219 Example parse in TTNv3 220 220 221 221 222 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 224 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 223 223 224 224 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 225 225 ... ... @@ -275,46 +275,39 @@ 275 275 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 276 276 277 277 278 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 279 279 280 280 For example: 281 281 282 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 284 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 283 283 284 284 285 285 (% style="color:red" %) **Important Notice:** 286 286 287 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 -1. All modes share the same Payload Explanation from HERE. 289 -1. By default, the device will send an uplink message every 20 minutes. 289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 290 290 291 - ====2.3.2.1MOD~=1(DefaultMode)====291 +2. All modes share the same Payload Explanation from HERE. 292 292 293 - Inthismode,uplinkpayloadincludesin total11 bytes.UplinkpacketsuseFPORT=2.293 +3. By default, the device will send an uplink message every 20 minutes. 294 294 295 -|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 -|**Value**|Bat|((( 297 -Temperature(DS18B20) 298 298 299 -(PC13) 300 -)))|((( 301 -ADC 296 +==== 2.3.2.1 MOD~=1 (Default Mode) ==== 302 302 303 -(PA4) 304 -)))|(% style="width:216px" %)((( 305 -Digital in(PB15) & 306 306 307 - DigitalInterrupt(PA8)299 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 308 308 309 - 310 -)))|(% style="width:342px" %)((( 311 -Temperature 312 - 313 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 314 -)))|(% style="width:171px" %)((( 315 -Humidity 316 - 317 -(SHT20 or SHT31) 301 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 303 +|**Value**|Bat|(% style="width:191px" %)((( 304 +Temperature(DS18B20)(PC13) 305 +)))|(% style="width:78px" %)((( 306 +ADC(PA4) 307 +)))|(% style="width:216px" %)((( 308 +Digital in(PB15)&Digital Interrupt(PA8) 309 +)))|(% style="width:308px" %)((( 310 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 311 +)))|(% style="width:154px" %)((( 312 +Humidity(SHT20 or SHT31) 318 318 ))) 319 319 320 320 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] ... ... @@ -322,72 +322,67 @@ 322 322 323 323 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 324 324 320 + 325 325 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 326 326 327 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 328 -|**Value**|BAT|((( 329 -Temperature(DS18B20) 330 - 331 -(PC13) 332 -)))|((( 333 -ADC 334 - 335 -(PA4) 336 -)))|((( 337 -Digital in(PB15) & 338 - 339 -Digital Interrupt(PA8) 340 -)))|((( 341 -Distance measure by: 342 -1) LIDAR-Lite V3HP 323 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 324 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 325 +|**Value**|BAT|(% style="width:196px" %)((( 326 +Temperature(DS18B20)(PC13) 327 +)))|(% style="width:87px" %)((( 328 +ADC(PA4) 329 +)))|(% style="width:189px" %)((( 330 +Digital in(PB15) & Digital Interrupt(PA8) 331 +)))|(% style="width:208px" %)((( 332 +Distance measure by:1) LIDAR-Lite V3HP 343 343 Or 344 344 2) Ultrasonic Sensor 345 -)))|Reserved 335 +)))|(% style="width:117px" %)Reserved 346 346 347 347 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 348 348 349 -**Connection of LIDAR-Lite V3HP:** 350 350 340 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 341 + 351 351 [[image:image-20230512173758-5.png||height="563" width="712"]] 352 352 353 -**Connection to Ultrasonic Sensor:** 354 354 355 - NeedtomoveR1 and R2 resistorstogetlow power,otherwise there willbe240uA standby current.345 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 356 356 347 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 348 + 357 357 [[image:image-20230512173903-6.png||height="596" width="715"]] 358 358 351 + 359 359 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 360 360 361 -|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 362 -|**Value**|BAT|((( 363 -Temperature(DS18B20) 364 - 365 -(PC13) 366 -)))|((( 367 -Digital in(PB15) & 368 - 369 -Digital Interrupt(PA8) 370 -)))|((( 371 -ADC 372 - 373 -(PA4) 374 -)))|((( 354 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 355 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 356 +|**Value**|BAT|(% style="width:183px" %)((( 357 +Temperature(DS18B20)(PC13) 358 +)))|(% style="width:173px" %)((( 359 +Digital in(PB15) & Digital Interrupt(PA8) 360 +)))|(% style="width:84px" %)((( 361 +ADC(PA4) 362 +)))|(% style="width:323px" %)((( 375 375 Distance measure by:1)TF-Mini plus LiDAR 376 376 Or 377 377 2) TF-Luna LiDAR 378 -)))|Distance signal strength 366 +)))|(% style="width:188px" %)Distance signal strength 379 379 380 380 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 381 381 370 + 382 382 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 383 383 384 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 373 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 385 385 386 386 [[image:image-20230512180609-7.png||height="555" width="802"]] 387 387 377 + 388 388 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 389 389 390 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 380 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 391 391 392 392 [[image:image-20230513105207-4.png||height="469" width="802"]] 393 393 ... ... @@ -394,34 +394,25 @@ 394 394 395 395 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 396 396 387 + 397 397 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 398 398 399 -(% style="width: 1031px" %)400 -|=((( 390 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 391 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 401 401 **Size(bytes)** 402 -)))|=(% style="width: 68px;" %)**2**|=(% style="width:75px;" %)**2**|=**2**|=**1**|=(% style="width:304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width:53px;" %)1393 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 403 403 |**Value**|(% style="width:68px" %)((( 404 -ADC1 405 - 406 -(PA4) 395 +ADC1(PA4) 407 407 )))|(% style="width:75px" %)((( 408 -ADC2 409 - 410 -(PA5) 397 +ADC2(PA5) 411 411 )))|((( 412 -ADC3 413 - 414 -(PA8) 399 +ADC3(PA8) 415 415 )))|((( 416 416 Digital Interrupt(PB15) 417 417 )))|(% style="width:304px" %)((( 418 -Temperature 419 - 420 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 403 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 421 421 )))|(% style="width:163px" %)((( 422 -Humidity 423 - 424 -(SHT20 or SHT31) 405 +Humidity(SHT20 or SHT31) 425 425 )))|(% style="width:53px" %)Bat 426 426 427 427 [[image:image-20230513110214-6.png]] ... ... @@ -432,73 +432,66 @@ 432 432 433 433 This mode has total 11 bytes. As shown below: 434 434 435 -(% style="width: 1017px" %)436 -|**Size(bytes)**|**2**|(% style="width:1 86px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**416 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 417 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 437 437 |**Value**|BAT|(% style="width:186px" %)((( 438 -Temperature1(DS18B20) 439 -(PC13) 419 +Temperature1(DS18B20)(PC13) 440 440 )))|(% style="width:82px" %)((( 441 -ADC 442 - 443 -(PA4) 421 +ADC(PA4) 444 444 )))|(% style="width:210px" %)((( 445 -Digital in(PB15) & 446 - 447 -Digital Interrupt(PA8) 423 +Digital in(PB15) & Digital Interrupt(PA8) 448 448 )))|(% style="width:191px" %)Temperature2(DS18B20) 449 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 450 -(PB8) 425 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 451 451 452 452 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 453 453 429 + 454 454 [[image:image-20230513134006-1.png||height="559" width="736"]] 455 455 456 456 457 457 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 458 458 435 + 459 459 [[image:image-20230512164658-2.png||height="532" width="729"]] 460 460 461 461 Each HX711 need to be calibrated before used. User need to do below two steps: 462 462 463 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 464 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 440 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 441 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 465 465 1. ((( 466 466 Weight has 4 bytes, the unit is g. 444 + 445 + 446 + 467 467 ))) 468 468 469 469 For example: 470 470 471 -**AT+GETSENSORVALUE =0** 451 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 472 472 473 473 Response: Weight is 401 g 474 474 475 475 Check the response of this command and adjust the value to match the real value for thing. 476 476 477 -(% style="width: 982px" %)478 -|=((( 457 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 458 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 479 479 **Size(bytes)** 480 -)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 481 -|**Value**|BAT|(% style="width:282px" %)((( 482 -Temperature(DS18B20) 460 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 461 +|**Value**|BAT|(% style="width:193px" %)((( 462 +Temperature(DS18B20)(PC13) 463 +)))|(% style="width:85px" %)((( 464 +ADC(PA4) 465 +)))|(% style="width:186px" %)((( 466 +Digital in(PB15) & Digital Interrupt(PA8) 467 +)))|(% style="width:100px" %)Weight 483 483 484 -(PC13) 485 - 486 - 487 -)))|(% style="width:119px" %)((( 488 -ADC 489 - 490 -(PA4) 491 -)))|(% style="width:279px" %)((( 492 -Digital in(PB15) & 493 - 494 -Digital Interrupt(PA8) 495 -)))|(% style="width:106px" %)Weight 496 - 497 497 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 498 498 499 499 472 + 500 500 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 501 501 475 + 502 502 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 503 503 504 504 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -505,26 +505,19 @@ 505 505 506 506 [[image:image-20230512181814-9.png||height="543" width="697"]] 507 507 508 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 509 509 510 -(% style="width:961px" %) 511 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 512 -|**Value**|BAT|(% style="width:256px" %)((( 513 -Temperature(DS18B20) 483 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 514 514 515 -(PC13) 485 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 486 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 487 +|**Value**|BAT|(% style="width:256px" %)((( 488 +Temperature(DS18B20)(PC13) 516 516 )))|(% style="width:108px" %)((( 517 -ADC 518 - 519 -(PA4) 490 +ADC(PA4) 520 520 )))|(% style="width:126px" %)((( 521 -Digital in 522 - 523 -(PB15) 492 +Digital in(PB15) 524 524 )))|(% style="width:145px" %)((( 525 -Count 526 - 527 -(PA8) 494 +Count(PA8) 528 528 ))) 529 529 530 530 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] ... ... @@ -532,47 +532,41 @@ 532 532 533 533 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 534 534 535 -|=((( 502 + 503 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 504 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 536 536 **Size(bytes)** 537 -)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 538 -|**Value**|BAT|((( 506 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 507 +|**Value**|BAT|(% style="width:188px" %)((( 539 539 Temperature(DS18B20) 540 - 541 541 (PC13) 542 -)))|((( 543 -ADC 544 - 545 -(PA5) 546 -)))|((( 510 +)))|(% style="width:83px" %)((( 511 +ADC(PA5) 512 +)))|(% style="width:184px" %)((( 547 547 Digital Interrupt1(PA8) 548 -)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved 514 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 549 549 550 550 [[image:image-20230513111203-7.png||height="324" width="975"]] 551 551 518 + 552 552 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 553 553 554 -(% style="width:917px" %) 555 -|=((( 521 + 522 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 523 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 556 556 **Size(bytes)** 557 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width: 79px;" %)2525 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 558 558 |**Value**|BAT|(% style="width:207px" %)((( 559 559 Temperature(DS18B20) 560 - 561 561 (PC13) 562 562 )))|(% style="width:94px" %)((( 563 -ADC1 564 - 565 -(PA4) 530 +ADC1(PA4) 566 566 )))|(% style="width:198px" %)((( 567 567 Digital Interrupt(PB15) 568 568 )))|(% style="width:84px" %)((( 569 -ADC2 570 - 571 -(PA5) 572 -)))|(% style="width:79px" %)((( 573 -ADC3 574 - 575 -(PA8) 534 +ADC2(PA5) 535 +)))|(% style="width:82px" %)((( 536 +ADC3(PA8) 576 576 ))) 577 577 578 578 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -580,56 +580,50 @@ 580 580 581 581 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 582 582 583 -(% style="width:1010px" %) 584 -|=((( 544 + 545 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 546 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 585 585 **Size(bytes)** 586 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4548 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 587 587 |**Value**|BAT|((( 588 -Temperature1(DS18B20) 589 - 590 -(PC13) 550 +Temperature 551 +(DS18B20)(PC13) 591 591 )))|((( 592 -Temperature2(DS18B20) 593 - 594 -(PB9) 553 +Temperature2 554 +(DS18B20)(PB9) 595 595 )))|((( 596 596 Digital Interrupt 597 - 598 598 (PB15) 599 599 )))|(% style="width:193px" %)((( 600 -Temperature3(DS18B20) 601 - 602 -(PB8) 559 +Temperature3 560 +(DS18B20)(PB8) 603 603 )))|(% style="width:78px" %)((( 604 -Count1 605 - 606 -(PA8) 562 +Count1(PA8) 607 607 )))|(% style="width:78px" %)((( 608 -Count2 609 - 610 -(PA4) 564 +Count2(PA4) 611 611 ))) 612 612 613 613 [[image:image-20230513111255-9.png||height="341" width="899"]] 614 614 615 -**The newly added AT command is issued correspondingly:** 569 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 616 616 617 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**571 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 618 618 619 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**573 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 620 620 621 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**575 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 622 622 623 -**AT+SETCNT=aa,bb** 624 624 578 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 579 + 625 625 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 626 626 627 627 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 628 628 629 629 630 - 631 631 === 2.3.3 Decode payload === 632 632 587 + 633 633 While using TTN V3 network, you can add the payload format to decode the payload. 634 634 635 635 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -636,13 +636,14 @@ 636 636 637 637 The payload decoder function for TTN V3 are here: 638 638 639 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 594 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 640 640 641 641 642 642 ==== 2.3.3.1 Battery Info ==== 643 643 644 -Check the battery voltage for SN50v3. 645 645 600 +Check the battery voltage for SN50v3-LB. 601 + 646 646 Ex1: 0x0B45 = 2885mV 647 647 648 648 Ex2: 0x0B49 = 2889mV ... ... @@ -650,16 +650,18 @@ 650 650 651 651 ==== 2.3.3.2 Temperature (DS18B20) ==== 652 652 653 -If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 654 654 655 - More DS18B20 cancheckthe[[3DS18B20mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]610 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 656 656 657 - **Connection:**612 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 658 658 614 +(% style="color:blue" %)**Connection:** 615 + 659 659 [[image:image-20230512180718-8.png||height="538" width="647"]] 660 660 661 -**Example**: 662 662 619 +(% style="color:blue" %)**Example**: 620 + 663 663 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 664 664 665 665 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -669,6 +669,7 @@ 669 669 670 670 ==== 2.3.3.3 Digital Input ==== 671 671 630 + 672 672 The digital input for pin PB15, 673 673 674 674 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -678,11 +678,14 @@ 678 678 ((( 679 679 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 680 680 681 -**Note:**The maximum voltage input supports 3.6V. 640 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 641 + 642 + 682 682 ))) 683 683 684 684 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 685 685 647 + 686 686 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 687 687 688 688 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -689,38 +689,43 @@ 689 689 690 690 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 691 691 692 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD. 693 693 655 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 656 + 657 + 694 694 ==== 2.3.3.5 Digital Interrupt ==== 695 695 696 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 697 697 698 - **~Interruptconnection method:**661 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 699 699 663 +(% style="color:blue" %)** Interrupt connection method:** 664 + 700 700 [[image:image-20230513105351-5.png||height="147" width="485"]] 701 701 702 -**Example to use with door sensor :** 703 703 668 +(% style="color:blue" %)**Example to use with door sensor :** 669 + 704 704 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 705 705 706 706 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 707 707 708 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50 _v3 interrupt interface to detect the status for the door or window.674 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 709 709 710 -**~ Below is the installation example:** 711 711 712 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso SN50_v3as follows:677 +(% style="color:blue" %)**Below is the installation example:** 713 713 679 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 680 + 714 714 * ((( 715 -One pin to SN50 _v3's PA8 pin682 +One pin to SN50v3-LB's PA8 pin 716 716 ))) 717 717 * ((( 718 -The other pin to SN50 _v3's VDD pin685 +The other pin to SN50v3-LB's VDD pin 719 719 ))) 720 720 721 721 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 722 722 723 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 690 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 724 724 725 725 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 726 726 ... ... @@ -732,29 +732,32 @@ 732 732 733 733 The command is: 734 734 735 -**AT+INTMOD1=1 702 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 736 736 737 737 Below shows some screen captures in TTN V3: 738 738 739 739 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 740 740 741 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 742 742 709 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 710 + 743 743 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 744 744 745 745 746 746 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 747 747 716 + 748 748 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 749 749 750 -We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 719 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 751 751 752 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50 _v3 will be a good reference.721 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 753 753 723 + 754 754 Below is the connection to SHT20/ SHT31. The connection is as below: 755 755 726 +[[image:image-20230513103633-3.png||height="448" width="716"]] 756 756 757 -[[image:image-20230513103633-3.png||height="636" width="1017"]] 758 758 759 759 The device will be able to get the I2C sensor data now and upload to IoT Server. 760 760 ... ... @@ -773,23 +773,26 @@ 773 773 774 774 ==== 2.3.3.7 Distance Reading ==== 775 775 776 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 777 777 747 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 778 778 749 + 779 779 ==== 2.3.3.8 Ultrasonic Sensor ==== 780 780 752 + 781 781 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 782 782 783 -The SN50 _v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.755 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 784 784 785 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 757 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 786 786 787 787 The picture below shows the connection: 788 788 789 789 [[image:image-20230512173903-6.png||height="596" width="715"]] 790 790 791 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 792 792 764 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 765 + 793 793 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 794 794 795 795 **Example:** ... ... @@ -797,37 +797,40 @@ 797 797 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 798 798 799 799 800 - 801 801 ==== 2.3.3.9 Battery Output - BAT pin ==== 802 802 803 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 804 804 776 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 805 805 778 + 806 806 ==== 2.3.3.10 +5V Output ==== 807 807 808 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 809 809 782 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 783 + 810 810 The 5V output time can be controlled by AT Command. 811 811 812 -**AT+5VT=1000** 786 +(% style="color:blue" %)**AT+5VT=1000** 813 813 814 814 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 815 815 816 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 790 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 817 817 818 818 819 - 820 820 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 821 821 795 + 822 822 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 823 823 824 -[[image:image-20230512172447-4.png||height=" 593" width="1015"]]798 +[[image:image-20230512172447-4.png||height="416" width="712"]] 825 825 826 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 827 827 801 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 828 828 803 + 829 829 ==== 2.3.3.12 Working MOD ==== 830 830 806 + 831 831 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 832 832 833 833 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -851,10 +851,9 @@ 851 851 852 852 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 853 853 854 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/ LSN50v2-S31%26S31BLSN50v2-S31%26S31B]]830 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 855 855 856 856 857 - 858 858 == 2.5 Frequency Plans == 859 859 860 860 ... ... @@ -890,7 +890,7 @@ 890 890 == 3.3 Commands special design for SN50v3-LB == 891 891 892 892 893 -These commands only valid for S3 1x-LB, as below:868 +These commands only valid for SN50v3-LB, as below: 894 894 895 895 896 896 === 3.3.1 Set Transmit Interval Time === ... ... @@ -923,13 +923,14 @@ 923 923 924 924 === 3.3.2 Get Device Status === 925 925 926 -Send a LoRaWAN downlink to ask device send Alarm settings. 927 927 928 - (% style="color:blue"%)**DownlinkPayload:**(%%)0x2601902 +Send a LoRaWAN downlink to ask the device to send its status. 929 929 930 - SensorwilluploadDeviceStatus via FPORT=5. See payloadsectionfor detail.904 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 931 931 906 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 932 932 908 + 933 933 === 3.3.3 Set Interrupt Mode === 934 934 935 935 ... ... @@ -938,7 +938,7 @@ 938 938 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 939 939 940 940 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 941 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**917 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 942 942 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 943 943 0 944 944 OK ... ... @@ -953,7 +953,6 @@ 953 953 )))|(% style="width:157px" %)OK 954 954 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 955 955 Set Transmit Interval 956 - 957 957 trigger by rising edge. 958 958 )))|(% style="width:157px" %)OK 959 959 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK ... ... @@ -971,6 +971,7 @@ 971 971 972 972 === 3.3.4 Set Power Output Duration === 973 973 949 + 974 974 Control the output duration 5V . Before each sampling, device will 975 975 976 976 ~1. first enable the power output to external sensor, ... ... @@ -982,10 +982,9 @@ 982 982 (% style="color:blue" %)**AT Command: AT+5VT** 983 983 984 984 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 985 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**961 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 986 986 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 987 987 500(default) 988 - 989 989 OK 990 990 ))) 991 991 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( ... ... @@ -998,17 +998,18 @@ 998 998 999 999 The first and second bytes are the time to turn on. 1000 1000 1001 -* Example 1: Downlink Payload: 070000 1002 -* Example 2: Downlink Payload: 0701F4 976 +* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 977 +* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1003 1003 1004 1004 === 3.3.5 Set Weighing parameters === 1005 1005 981 + 1006 1006 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1007 1007 1008 1008 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1009 1009 1010 1010 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1011 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**987 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1012 1012 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1013 1013 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1014 1014 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK ... ... @@ -1015,7 +1015,6 @@ 1015 1015 1016 1016 (% style="color:blue" %)**Downlink Command: 0x08** 1017 1017 1018 - 1019 1019 Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1020 1020 1021 1021 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. ... ... @@ -1028,6 +1028,7 @@ 1028 1028 1029 1029 === 3.3.6 Set Digital pulse count value === 1030 1030 1006 + 1031 1031 Feature: Set the pulse count value. 1032 1032 1033 1033 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1035,13 +1035,12 @@ 1035 1035 (% style="color:blue" %)**AT Command: AT+SETCNT** 1036 1036 1037 1037 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1038 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1014 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1039 1039 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1040 1040 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1041 1041 1042 1042 (% style="color:blue" %)**Downlink Command: 0x09** 1043 1043 1044 - 1045 1045 Format: Command Code (0x09) followed by 5 bytes. 1046 1046 1047 1047 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. ... ... @@ -1051,24 +1051,23 @@ 1051 1051 1052 1052 === 3.3.7 Set Workmode === 1053 1053 1029 + 1054 1054 Feature: Switch working mode. 1055 1055 1056 1056 (% style="color:blue" %)**AT Command: AT+MOD** 1057 1057 1058 1058 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1059 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**1035 +|=(% style="width: 155px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3" %)**Response** 1060 1060 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1061 1061 OK 1062 1062 ))) 1063 1063 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1064 1064 OK 1065 - 1066 1066 Attention:Take effect after ATZ 1067 1067 ))) 1068 1068 1069 1069 (% style="color:blue" %)**Downlink Command: 0x0A** 1070 1070 1071 - 1072 1072 Format: Command Code (0x0A) followed by 1 bytes. 1073 1073 1074 1074 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 ... ... @@ -1086,17 +1086,16 @@ 1086 1086 1087 1087 1088 1088 (% class="wikigeneratedid" %) 1089 -User can change firmware SN50v3-LB to: 1063 +**User can change firmware SN50v3-LB to:** 1090 1090 1091 1091 * Change Frequency band/ region. 1092 1092 * Update with new features. 1093 1093 * Fix bugs. 1094 1094 1095 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1069 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1096 1096 1071 +**Methods to Update Firmware:** 1097 1097 1098 -Methods to Update Firmware: 1099 - 1100 1100 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1101 1101 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1102 1102 ... ... @@ -1104,6 +1104,7 @@ 1104 1104 1105 1105 == 6.1 Where can i find source code of SN50v3-LB? == 1106 1106 1080 + 1107 1107 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1108 1108 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1109 1109 ... ... @@ -1132,6 +1132,7 @@ 1132 1132 1133 1133 = 8. Packing Info = 1134 1134 1109 + 1135 1135 (% style="color:#037691" %)**Package Includes**: 1136 1136 1137 1137 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1147,4 +1147,5 @@ 1147 1147 1148 1148 1149 1149 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1150 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1125 + 1126 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.0 KB - Content