Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB User Manual 1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Xiaoling - Content
-
... ... @@ -1,4 +1,5 @@ 1 -[[image:image-20230511201248-1.png||height="403" width="489"]] 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 4 4 ... ... @@ -15,23 +15,21 @@ 15 15 16 16 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 17 17 19 + 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 20 - 21 21 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 22 23 - 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 - 27 27 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 28 28 29 - 30 30 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 31 31 32 32 33 33 == 1.2 Features == 34 34 33 + 35 35 * LoRaWAN 1.0.3 Class A 36 36 * Ultra-low power consumption 37 37 * Open-Source hardware/software ... ... @@ -44,6 +44,7 @@ 44 44 45 45 == 1.3 Specification == 46 46 46 + 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -80,6 +80,7 @@ 80 80 81 81 == 1.4 Sleep mode and working mode == 82 82 83 + 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -137,6 +137,7 @@ 137 137 138 138 == Hole Option == 139 139 141 + 140 140 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 141 141 142 142 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -290,95 +290,79 @@ 290 290 291 291 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 292 292 295 + 293 293 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 294 294 295 -|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 -|**Value**|Bat|((( 297 -Temperature(DS18B20) 298 - 299 -(PC13) 300 -)))|((( 301 -ADC 302 - 303 -(PA4) 298 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 299 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 300 +|**Value**|Bat|(% style="width:191px" %)((( 301 +Temperature(DS18B20)(PC13) 302 +)))|(% style="width:78px" %)((( 303 +ADC(PA4) 304 304 )))|(% style="width:216px" %)((( 305 -Digital in(PB15) & 306 - 307 -Digital Interrupt(PA8) 308 - 309 - 310 -)))|(% style="width:342px" %)((( 311 -Temperature 312 - 313 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 314 -)))|(% style="width:171px" %)((( 315 -Humidity 316 - 317 -(SHT20 or SHT31) 305 +Digital in(PB15)&Digital Interrupt(PA8) 306 +)))|(% style="width:308px" %)((( 307 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 308 +)))|(% style="width:154px" %)((( 309 +Humidity(SHT20 or SHT31) 318 318 ))) 319 319 320 320 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 321 321 322 322 315 + 323 323 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 324 324 318 + 325 325 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 326 326 327 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 328 -|**Value**|BAT|((( 329 -Temperature(DS18B20) 321 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 322 +|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 323 +|**Value**|BAT|(% style="width:196px" %)((( 324 +Temperature(DS18B20)(PC13) 325 +)))|(% style="width:87px" %)((( 326 +ADC(PA4) 327 +)))|(% style="width:189px" %)((( 328 +Digital in(PB15) & Digital Interrupt(PA8) 329 +)))|(% style="width:208px" %)((( 330 +Distance measure by:1) LIDAR-Lite V3HP 331 +Or 2) Ultrasonic Sensor 332 +)))|(% style="width:117px" %)Reserved 330 330 331 -(PC13) 332 -)))|((( 333 -ADC 334 - 335 -(PA4) 336 -)))|((( 337 -Digital in(PB15) & 338 - 339 -Digital Interrupt(PA8) 340 -)))|((( 341 -Distance measure by: 342 -1) LIDAR-Lite V3HP 343 -Or 344 -2) Ultrasonic Sensor 345 -)))|Reserved 346 - 347 347 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 348 348 349 -**Connection of LIDAR-Lite V3HP:** 350 350 337 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 338 + 351 351 [[image:image-20230512173758-5.png||height="563" width="712"]] 352 352 353 -**Connection to Ultrasonic Sensor:** 354 354 342 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 343 + 355 355 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 356 356 357 357 [[image:image-20230512173903-6.png||height="596" width="715"]] 358 358 348 + 359 359 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 360 360 361 -|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 362 -|**Value**|BAT|((( 363 -Temperature(DS18B20) 364 - 365 -(PC13) 366 -)))|((( 367 -Digital in(PB15) & 368 - 369 -Digital Interrupt(PA8) 370 -)))|((( 371 -ADC 372 - 373 -(PA4) 374 -)))|((( 351 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 352 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 353 +|**Value**|BAT|(% style="width:183px" %)((( 354 +Temperature(DS18B20)(PC13) 355 +)))|(% style="width:173px" %)((( 356 +Digital in(PB15) & Digital Interrupt(PA8) 357 +)))|(% style="width:84px" %)((( 358 +ADC(PA4) 359 +)))|(% style="width:323px" %)((( 375 375 Distance measure by:1)TF-Mini plus LiDAR 376 376 Or 377 377 2) TF-Luna LiDAR 378 -)))|Distance signal strength 363 +)))|(% style="width:188px" %)Distance signal strength 379 379 380 380 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 381 381 367 + 382 382 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 383 383 384 384 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. ... ... @@ -385,6 +385,7 @@ 385 385 386 386 [[image:image-20230512180609-7.png||height="555" width="802"]] 387 387 374 + 388 388 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 389 389 390 390 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. ... ... @@ -394,34 +394,25 @@ 394 394 395 395 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 396 396 384 + 397 397 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 398 398 399 -(% style="width: 1031px" %)400 -|=((( 387 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 388 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 401 401 **Size(bytes)** 402 -)))|=(% style="width: 68px;" %)**2**|=(% style="width:75px;" %)**2**|=**2**|=**1**|=(% style="width:304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width:53px;" %)1390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 140px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 403 403 |**Value**|(% style="width:68px" %)((( 404 -ADC1 405 - 406 -(PA4) 392 +ADC1(PA4) 407 407 )))|(% style="width:75px" %)((( 408 -ADC2 409 - 410 -(PA5) 394 +ADC2(PA5) 411 411 )))|((( 412 -ADC3 413 - 414 -(PA8) 396 +ADC3(PA8) 415 415 )))|((( 416 416 Digital Interrupt(PB15) 417 417 )))|(% style="width:304px" %)((( 418 -Temperature 419 - 420 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 400 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 421 421 )))|(% style="width:163px" %)((( 422 -Humidity 423 - 424 -(SHT20 or SHT31) 402 +Humidity(SHT20 or SHT31) 425 425 )))|(% style="width:53px" %)Bat 426 426 427 427 [[image:image-20230513110214-6.png]] ... ... @@ -432,22 +432,16 @@ 432 432 433 433 This mode has total 11 bytes. As shown below: 434 434 435 -(% style="width: 1017px" %)436 -|**Size(bytes)**|**2**|(% style="width:1 86px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**413 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 437 437 |**Value**|BAT|(% style="width:186px" %)((( 438 -Temperature1(DS18B20) 439 -(PC13) 416 +Temperature1(DS18B20)(PC13) 440 440 )))|(% style="width:82px" %)((( 441 -ADC 442 - 443 -(PA4) 418 +ADC(PA4) 444 444 )))|(% style="width:210px" %)((( 445 -Digital in(PB15) & 446 - 447 -Digital Interrupt(PA8) 420 +Digital in(PB15) & Digital Interrupt(PA8) 448 448 )))|(% style="width:191px" %)Temperature2(DS18B20) 449 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 450 -(PB8) 422 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 451 451 452 452 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 453 453 ... ... @@ -454,8 +454,10 @@ 454 454 [[image:image-20230513134006-1.png||height="559" width="736"]] 455 455 456 456 429 + 457 457 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 458 458 432 + 459 459 [[image:image-20230512164658-2.png||height="532" width="729"]] 460 460 461 461 Each HX711 need to be calibrated before used. User need to do below two steps: ... ... @@ -474,31 +474,27 @@ 474 474 475 475 Check the response of this command and adjust the value to match the real value for thing. 476 476 477 -(% style="width: 982px" %)478 -|=((( 451 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 452 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 479 479 **Size(bytes)** 480 -)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width:119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width:106px;" %)**4**481 -|**Value**|BAT|(% style="width: 282px" %)(((454 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 455 +|**Value**|BAT|(% style="width:193px" %)((( 482 482 Temperature(DS18B20) 483 - 484 484 (PC13) 485 - 486 - 487 -)))|(% style="width:119px" %)((( 488 -ADC 489 - 490 -(PA4) 491 -)))|(% style="width:279px" %)((( 458 +)))|(% style="width:85px" %)((( 459 +ADC(PA4) 460 +)))|(% style="width:186px" %)((( 492 492 Digital in(PB15) & 493 - 494 494 Digital Interrupt(PA8) 495 -)))|(% style="width:10 6px" %)Weight463 +)))|(% style="width:100px" %)Weight 496 496 497 497 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 498 498 499 499 468 + 500 500 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 501 501 471 + 502 502 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 503 503 504 504 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -505,74 +505,61 @@ 505 505 506 506 [[image:image-20230512181814-9.png||height="543" width="697"]] 507 507 508 -**Note:** 478 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 509 509 510 -(% style="width: 961px" %)511 -|=**Size(bytes)**|=**2**|=(% style="width: 2 56px;" %)**2**|=(% style="width:108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width:145px;" %)**4**480 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 481 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 512 512 |**Value**|BAT|(% style="width:256px" %)((( 513 -Temperature(DS18B20) 514 - 515 -(PC13) 483 +Temperature(DS18B20)(PC13) 516 516 )))|(% style="width:108px" %)((( 517 -ADC 518 - 519 -(PA4) 485 +ADC(PA4) 520 520 )))|(% style="width:126px" %)((( 521 -Digital in 522 - 523 -(PB15) 487 +Digital in(PB15) 524 524 )))|(% style="width:145px" %)((( 525 -Count 526 - 527 -(PA8) 489 +Count(PA8) 528 528 ))) 529 529 530 530 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 531 531 532 532 495 + 533 533 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 534 534 535 -|=((( 498 + 499 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 500 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 536 536 **Size(bytes)** 537 -)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 538 -|**Value**|BAT|((( 502 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 503 +|**Value**|BAT|(% style="width:188px" %)((( 539 539 Temperature(DS18B20) 540 - 541 541 (PC13) 542 -)))|((( 543 -ADC 544 - 545 -(PA5) 546 -)))|((( 506 +)))|(% style="width:83px" %)((( 507 +ADC(PA5) 508 +)))|(% style="width:184px" %)((( 547 547 Digital Interrupt1(PA8) 548 -)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved 510 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 549 549 550 550 [[image:image-20230513111203-7.png||height="324" width="975"]] 551 551 514 + 552 552 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 553 553 554 -(% style="width:917px" %) 555 -|=((( 517 + 518 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 519 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 556 556 **Size(bytes)** 557 -)))|=**2**|=(% style="width: 20 7px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width: 79px;" %)2521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 558 558 |**Value**|BAT|(% style="width:207px" %)((( 559 559 Temperature(DS18B20) 560 - 561 561 (PC13) 562 562 )))|(% style="width:94px" %)((( 563 -ADC1 564 - 565 -(PA4) 526 +ADC1(PA4) 566 566 )))|(% style="width:198px" %)((( 567 567 Digital Interrupt(PB15) 568 568 )))|(% style="width:84px" %)((( 569 -ADC2 570 - 571 -(PA5) 572 -)))|(% style="width:79px" %)((( 573 -ADC3 574 - 575 -(PA8) 530 +ADC2(PA5) 531 +)))|(% style="width:82px" %)((( 532 +ADC3(PA8) 576 576 ))) 577 577 578 578 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -580,56 +580,50 @@ 580 580 581 581 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 582 582 583 -(% style="width:1010px" %) 584 -|=((( 540 + 541 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 542 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 585 585 **Size(bytes)** 586 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 1 93px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 587 587 |**Value**|BAT|((( 588 588 Temperature1(DS18B20) 589 - 590 590 (PC13) 591 591 )))|((( 592 592 Temperature2(DS18B20) 593 - 594 594 (PB9) 595 595 )))|((( 596 596 Digital Interrupt 597 - 598 598 (PB15) 599 599 )))|(% style="width:193px" %)((( 600 600 Temperature3(DS18B20) 601 - 602 602 (PB8) 603 603 )))|(% style="width:78px" %)((( 604 -Count1 605 - 606 -(PA8) 558 +Count1(PA8) 607 607 )))|(% style="width:78px" %)((( 608 -Count2 609 - 610 -(PA4) 560 +Count2(PA4) 611 611 ))) 612 612 613 613 [[image:image-20230513111255-9.png||height="341" width="899"]] 614 614 615 -**The newly added AT command is issued correspondingly:** 565 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 616 616 617 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**567 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 618 618 619 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**569 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 620 620 621 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**571 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 622 622 623 -**AT+SETCNT=aa,bb** 624 624 574 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 575 + 625 625 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 626 626 627 627 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 628 628 629 629 630 - 631 631 === 2.3.3 Decode payload === 632 632 583 + 633 633 While using TTN V3 network, you can add the payload format to decode the payload. 634 634 635 635 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -641,6 +641,7 @@ 641 641 642 642 ==== 2.3.3.1 Battery Info ==== 643 643 595 + 644 644 Check the battery voltage for SN50v3. 645 645 646 646 Ex1: 0x0B45 = 2885mV ... ... @@ -650,16 +650,18 @@ 650 650 651 651 ==== 2.3.3.2 Temperature (DS18B20) ==== 652 652 653 -If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 654 654 655 - More DS18B20 cancheckthe[[3DS18B20mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]606 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 656 656 657 - **Connection:**608 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 658 658 610 +(% style="color:blue" %)**Connection:** 611 + 659 659 [[image:image-20230512180718-8.png||height="538" width="647"]] 660 660 661 -**Example**: 662 662 615 +(% style="color:blue" %)**Example**: 616 + 663 663 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 664 664 665 665 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -669,6 +669,7 @@ 669 669 670 670 ==== 2.3.3.3 Digital Input ==== 671 671 626 + 672 672 The digital input for pin PB15, 673 673 674 674 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -678,11 +678,14 @@ 678 678 ((( 679 679 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 680 680 681 -**Note:**The maximum voltage input supports 3.6V. 636 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 637 + 638 + 682 682 ))) 683 683 684 684 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 685 685 643 + 686 686 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 687 687 688 688 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -689,18 +689,21 @@ 689 689 690 690 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 691 691 692 -**Note: **If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.650 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 693 693 652 + 694 694 ==== 2.3.3.5 Digital Interrupt ==== 695 695 655 + 696 696 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 697 697 698 -** ~Interrupt connection method:**658 +(% style="color:blue" %)** Interrupt connection method:** 699 699 700 700 [[image:image-20230513105351-5.png||height="147" width="485"]] 701 701 702 -**Example to use with door sensor :** 703 703 663 +(% style="color:blue" %)**Example to use with door sensor :** 664 + 704 704 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 705 705 706 706 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] ... ... @@ -707,8 +707,9 @@ 707 707 708 708 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 709 709 710 -**~ Below is the installation example:** 711 711 672 +(% style="color:blue" %)**Below is the installation example:** 673 + 712 712 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 713 713 714 714 * ((( ... ... @@ -720,7 +720,7 @@ 720 720 721 721 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 722 722 723 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 685 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 724 724 725 725 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 726 726 ... ... @@ -732,12 +732,13 @@ 732 732 733 733 The command is: 734 734 735 -**AT+INTMOD1=1 697 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 736 736 737 737 Below shows some screen captures in TTN V3: 738 738 739 739 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 740 740 703 + 741 741 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 742 742 743 743 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -745,16 +745,17 @@ 745 745 746 746 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 747 747 711 + 748 748 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 749 749 750 -We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 714 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 751 751 752 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 716 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 753 753 754 754 Below is the connection to SHT20/ SHT31. The connection is as below: 755 755 756 756 757 -[[image:image-20230513103633-3.png||height=" 636" width="1017"]]721 +[[image:image-20230513103633-3.png||height="448" width="716"]] 758 758 759 759 The device will be able to get the I2C sensor data now and upload to IoT Server. 760 760 ... ... @@ -773,23 +773,26 @@ 773 773 774 774 ==== 2.3.3.7 Distance Reading ==== 775 775 776 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 777 777 741 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 778 778 743 + 779 779 ==== 2.3.3.8 Ultrasonic Sensor ==== 780 780 746 + 781 781 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 782 782 783 783 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 784 784 785 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 751 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 786 786 787 787 The picture below shows the connection: 788 788 789 789 [[image:image-20230512173903-6.png||height="596" width="715"]] 790 790 791 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 792 792 758 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 759 + 793 793 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 794 794 795 795 **Example:** ... ... @@ -800,16 +800,18 @@ 800 800 801 801 ==== 2.3.3.9 Battery Output - BAT pin ==== 802 802 770 + 803 803 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 804 804 805 805 806 806 ==== 2.3.3.10 +5V Output ==== 807 807 776 + 808 808 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 809 809 810 810 The 5V output time can be controlled by AT Command. 811 811 812 -**AT+5VT=1000** 781 +(% style="color:blue" %)**AT+5VT=1000** 813 813 814 814 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 815 815 ... ... @@ -819,11 +819,12 @@ 819 819 820 820 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 821 821 791 + 822 822 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 823 823 824 -[[image:image-20230512172447-4.png||height=" 593" width="1015"]]794 +[[image:image-20230512172447-4.png||height="416" width="712"]] 825 825 826 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 796 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 827 827 828 828 829 829 ==== 2.3.3.12 Working MOD ==== ... ... @@ -851,7 +851,7 @@ 851 851 852 852 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 853 853 854 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/ LSN50v2-S31%26S31BLSN50v2-S31%26S31B]]824 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 855 855 856 856 857 857 ... ... @@ -895,7 +895,6 @@ 895 895 896 896 === 3.3.1 Set Transmit Interval Time === 897 897 898 - 899 899 Feature: Change LoRaWAN End Node Transmit Interval. 900 900 901 901 (% style="color:blue" %)**AT Command: AT+TDC** ... ... @@ -923,7 +923,7 @@ 923 923 924 924 === 3.3.2 Get Device Status === 925 925 926 -Send a LoRaWAN downlink to ask device send Alarmsettings.895 +Send a LoRaWAN downlink to ask the device to send its status. 927 927 928 928 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 929 929 ... ... @@ -932,7 +932,6 @@ 932 932 933 933 === 3.3.3 Set Interrupt Mode === 934 934 935 - 936 936 Feature, Set Interrupt mode for GPIO_EXIT. 937 937 938 938 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** ... ... @@ -985,7 +985,6 @@ 985 985 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 986 986 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 987 987 500(default) 988 - 989 989 OK 990 990 ))) 991 991 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( ... ... @@ -998,8 +998,8 @@ 998 998 999 999 The first and second bytes are the time to turn on. 1000 1000 1001 -* Example 1: Downlink Payload: 070000 1002 -* Example 2: Downlink Payload: 0701F4 968 +* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 969 +* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1003 1003 1004 1004 === 3.3.5 Set Weighing parameters === 1005 1005 ... ... @@ -1015,7 +1015,6 @@ 1015 1015 1016 1016 (% style="color:blue" %)**Downlink Command: 0x08** 1017 1017 1018 - 1019 1019 Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1020 1020 1021 1021 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. ... ... @@ -1041,7 +1041,6 @@ 1041 1041 1042 1042 (% style="color:blue" %)**Downlink Command: 0x09** 1043 1043 1044 - 1045 1045 Format: Command Code (0x09) followed by 5 bytes. 1046 1046 1047 1047 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. ... ... @@ -1062,13 +1062,11 @@ 1062 1062 ))) 1063 1063 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1064 1064 OK 1065 - 1066 1066 Attention:Take effect after ATZ 1067 1067 ))) 1068 1068 1069 1069 (% style="color:blue" %)**Downlink Command: 0x0A** 1070 1070 1071 - 1072 1072 Format: Command Code (0x0A) followed by 1 bytes. 1073 1073 1074 1074 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 ... ... @@ -1147,4 +1147,5 @@ 1147 1147 1148 1148 1149 1149 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1150 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1113 + 1114 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.0 KB - Content