<
From version < 39.1 >
edited by Saxer Lin
on 2023/05/13 13:40
To version < 43.54 >
edited by Xiaoling
on 2023/05/16 16:22
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -1,4 +1,5 @@
1 -[[image:image-20230511201248-1.png||height="403" width="489"]]
1 +(% style="text-align:center" %)
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
2 2  
3 3  
4 4  
... ... @@ -15,23 +15,21 @@
15 15  
16 16  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
19 +
18 18  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
19 19  
20 -
21 21  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 22  
23 -
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 -
27 27  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -
30 30  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
31 31  
32 32  
33 33  == 1.2 ​Features ==
34 34  
33 +
35 35  * LoRaWAN 1.0.3 Class A
36 36  * Ultra-low power consumption
37 37  * Open-Source hardware/software
... ... @@ -42,8 +42,11 @@
42 42  * Downlink to change configure
43 43  * 8500mAh Battery for long term use
44 44  
44 +
45 +
45 45  == 1.3 Specification ==
46 46  
48 +
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 49  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -78,8 +78,11 @@
78 78  * Sleep Mode: 5uA @ 3.3v
79 79  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80 80  
83 +
84 +
81 81  == 1.4 Sleep mode and working mode ==
82 82  
87 +
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -104,6 +104,8 @@
104 104  )))
105 105  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 106  
112 +
113 +
107 107  == 1.6 BLE connection ==
108 108  
109 109  
... ... @@ -137,6 +137,7 @@
137 137  
138 138  == Hole Option ==
139 139  
147 +
140 140  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
141 141  
142 142  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -288,97 +288,84 @@
288 288  1. All modes share the same Payload Explanation from HERE.
289 289  1. By default, the device will send an uplink message every 20 minutes.
290 290  
291 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
292 292  
293 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
294 294  
295 -|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 -|**Value**|Bat|(((
297 -Temperature(DS18B20)
301 +==== 2.3.2.1  MOD~=1 (Default Mode) ====
298 298  
299 -(PC13)
300 -)))|(((
301 -ADC
302 302  
303 -(PA4)
304 -)))|(% style="width:216px" %)(((
305 -Digital in(PB15) &
304 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306 306  
307 -Digital Interrupt(PA8)
308 -
309 -
310 -)))|(% style="width:342px" %)(((
311 -Temperature
312 -
313 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
314 -)))|(% style="width:171px" %)(((
315 -Humidity
316 -
317 -(SHT20 or SHT31)
306 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
307 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
308 +|**Value**|Bat|(% style="width:191px" %)(((
309 +Temperature(DS18B20)(PC13)
310 +)))|(% style="width:78px" %)(((
311 +ADC(PA4)
312 +)))|(% style="width:216px" %)(((
313 +Digital in(PB15)&Digital Interrupt(PA8)
314 +)))|(% style="width:308px" %)(((
315 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
316 +)))|(% style="width:154px" %)(((
317 +Humidity(SHT20 or SHT31)
318 318  )))
319 319  
320 320  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
321 321  
322 322  
323 +
323 323  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
324 324  
326 +
325 325  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
326 326  
327 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
328 -|**Value**|BAT|(((
329 -Temperature(DS18B20)
330 -
331 -(PC13)
332 -)))|(((
333 -ADC
334 -
335 -(PA4)
336 -)))|(((
337 -Digital in(PB15) &
338 -
339 -Digital Interrupt(PA8)
340 -)))|(((
341 -Distance measure by:
342 -1) LIDAR-Lite V3HP
343 -Or
329 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
331 +|**Value**|BAT|(% style="width:196px" %)(((
332 +Temperature(DS18B20)(PC13)
333 +)))|(% style="width:87px" %)(((
334 +ADC(PA4)
335 +)))|(% style="width:189px" %)(((
336 +Digital in(PB15) & Digital Interrupt(PA8)
337 +)))|(% style="width:208px" %)(((
338 +Distance measure by:1) LIDAR-Lite V3HP
339 +Or
344 344  2) Ultrasonic Sensor
345 -)))|Reserved
341 +)))|(% style="width:117px" %)Reserved
346 346  
347 347  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
348 348  
349 -**Connection of LIDAR-Lite V3HP:**
350 350  
346 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
347 +
351 351  [[image:image-20230512173758-5.png||height="563" width="712"]]
352 352  
353 -**Connection to Ultrasonic Sensor:**
354 354  
351 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
352 +
355 355  Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
356 356  
357 357  [[image:image-20230512173903-6.png||height="596" width="715"]]
358 358  
357 +
359 359  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
360 360  
361 -|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
362 -|**Value**|BAT|(((
363 -Temperature(DS18B20)
364 -
365 -(PC13)
366 -)))|(((
367 -Digital in(PB15) &
368 -
369 -Digital Interrupt(PA8)
370 -)))|(((
371 -ADC
372 -
373 -(PA4)
374 -)))|(((
360 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
361 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
362 +|**Value**|BAT|(% style="width:183px" %)(((
363 +Temperature(DS18B20)(PC13)
364 +)))|(% style="width:173px" %)(((
365 +Digital in(PB15) & Digital Interrupt(PA8)
366 +)))|(% style="width:84px" %)(((
367 +ADC(PA4)
368 +)))|(% style="width:323px" %)(((
375 375  Distance measure by:1)TF-Mini plus LiDAR
376 376  Or 
377 377  2) TF-Luna LiDAR
378 -)))|Distance signal  strength
372 +)))|(% style="width:188px" %)Distance signal  strength
379 379  
380 380  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
381 381  
376 +
382 382  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
383 383  
384 384  Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
... ... @@ -385,6 +385,7 @@
385 385  
386 386  [[image:image-20230512180609-7.png||height="555" width="802"]]
387 387  
383 +
388 388  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
389 389  
390 390  Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
... ... @@ -394,34 +394,25 @@
394 394  
395 395  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
396 396  
393 +
397 397  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
398 398  
399 -(% style="width:1031px" %)
400 -|=(((
396 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
397 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
401 401  **Size(bytes)**
402 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
399 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
403 403  |**Value**|(% style="width:68px" %)(((
404 -ADC1
405 -
406 -(PA4)
401 +ADC1(PA4)
407 407  )))|(% style="width:75px" %)(((
408 -ADC2
409 -
410 -(PA5)
403 +ADC2(PA5)
411 411  )))|(((
412 -ADC3
413 -
414 -(PA8)
405 +ADC3(PA8)
415 415  )))|(((
416 416  Digital Interrupt(PB15)
417 417  )))|(% style="width:304px" %)(((
418 -Temperature
419 -
420 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
409 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
421 421  )))|(% style="width:163px" %)(((
422 -Humidity
423 -
424 -(SHT20 or SHT31)
411 +Humidity(SHT20 or SHT31)
425 425  )))|(% style="width:53px" %)Bat
426 426  
427 427  [[image:image-20230513110214-6.png]]
... ... @@ -432,30 +432,26 @@
432 432  
433 433  This mode has total 11 bytes. As shown below:
434 434  
435 -(% style="width:1017px" %)
436 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
422 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
423 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
437 437  |**Value**|BAT|(% style="width:186px" %)(((
438 -Temperature1(DS18B20)
439 -(PC13)
425 +Temperature1(DS18B20)(PC13)
440 440  )))|(% style="width:82px" %)(((
441 -ADC
442 -
443 -(PA4)
427 +ADC(PA4)
444 444  )))|(% style="width:210px" %)(((
445 -Digital in(PB15) &
446 -
447 -Digital Interrupt(PA8) 
429 +Digital in(PB15) & Digital Interrupt(PA8) 
448 448  )))|(% style="width:191px" %)Temperature2(DS18B20)
449 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
450 -(PB8)
431 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
451 451  
452 452  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
453 453  
454 -[[image:image-20230513134006-1.png||height="743" width="978"]]
435 +[[image:image-20230513134006-1.png||height="559" width="736"]]
455 455  
456 456  
438 +
457 457  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
458 458  
441 +
459 459  [[image:image-20230512164658-2.png||height="532" width="729"]]
460 460  
461 461  Each HX711 need to be calibrated before used. User need to do below two steps:
... ... @@ -464,6 +464,9 @@
464 464  1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
465 465  1. (((
466 466  Weight has 4 bytes, the unit is g.
450 +
451 +
452 +
467 467  )))
468 468  
469 469  For example:
... ... @@ -474,31 +474,27 @@
474 474  
475 475  Check the response of this command and adjust the value to match the real value for thing.
476 476  
477 -(% style="width:982px" %)
478 -|=(((
463 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
464 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
479 479  **Size(bytes)**
480 -)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
481 -|**Value**|BAT|(% style="width:282px" %)(((
466 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
467 +|**Value**|BAT|(% style="width:193px" %)(((
482 482  Temperature(DS18B20)
483 -
484 484  (PC13)
485 -
486 -
487 -)))|(% style="width:119px" %)(((
488 -ADC
489 -
490 -(PA4)
491 -)))|(% style="width:279px" %)(((
470 +)))|(% style="width:85px" %)(((
471 +ADC(PA4)
472 +)))|(% style="width:186px" %)(((
492 492  Digital in(PB15) &
493 -
494 494  Digital Interrupt(PA8)
495 -)))|(% style="width:106px" %)Weight
475 +)))|(% style="width:100px" %)Weight
496 496  
497 497  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
498 498  
499 499  
480 +
500 500  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
501 501  
483 +
502 502  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
503 503  
504 504  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -505,74 +505,62 @@
505 505  
506 506  [[image:image-20230512181814-9.png||height="543" width="697"]]
507 507  
508 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
509 509  
510 -(% style="width:961px" %)
511 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
512 -|**Value**|BAT|(% style="width:256px" %)(((
513 -Temperature(DS18B20)
491 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
514 514  
515 -(PC13)
493 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
494 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
495 +|**Value**|BAT|(% style="width:256px" %)(((
496 +Temperature(DS18B20)(PC13)
516 516  )))|(% style="width:108px" %)(((
517 -ADC
518 -
519 -(PA4)
498 +ADC(PA4)
520 520  )))|(% style="width:126px" %)(((
521 -Digital in
522 -
523 -(PB15)
500 +Digital in(PB15)
524 524  )))|(% style="width:145px" %)(((
525 -Count
526 -
527 -(PA8)
502 +Count(PA8)
528 528  )))
529 529  
530 530  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
531 531  
532 532  
508 +
533 533  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
534 534  
535 -|=(((
511 +
512 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
513 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
536 536  **Size(bytes)**
537 -)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
538 -|**Value**|BAT|(((
515 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
516 +|**Value**|BAT|(% style="width:188px" %)(((
539 539  Temperature(DS18B20)
540 -
541 541  (PC13)
542 -)))|(((
543 -ADC
544 -
545 -(PA5)
546 -)))|(((
519 +)))|(% style="width:83px" %)(((
520 +ADC(PA5)
521 +)))|(% style="width:184px" %)(((
547 547  Digital Interrupt1(PA8)
548 -)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved
523 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
549 549  
550 550  [[image:image-20230513111203-7.png||height="324" width="975"]]
551 551  
527 +
552 552  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
553 553  
554 -(% style="width:917px" %)
555 -|=(((
530 +
531 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
532 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
556 556  **Size(bytes)**
557 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 79px;" %)2
534 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
558 558  |**Value**|BAT|(% style="width:207px" %)(((
559 559  Temperature(DS18B20)
560 -
561 561  (PC13)
562 562  )))|(% style="width:94px" %)(((
563 -ADC1
564 -
565 -(PA4)
539 +ADC1(PA4)
566 566  )))|(% style="width:198px" %)(((
567 567  Digital Interrupt(PB15)
568 568  )))|(% style="width:84px" %)(((
569 -ADC2
570 -
571 -(PA5)
572 -)))|(% style="width:79px" %)(((
573 -ADC3
574 -
575 -(PA8)
543 +ADC2(PA5)
544 +)))|(% style="width:82px" %)(((
545 +ADC3(PA8)
576 576  )))
577 577  
578 578  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -580,56 +580,50 @@
580 580  
581 581  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
582 582  
583 -(% style="width:1010px" %)
584 -|=(((
553 +
554 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
555 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
585 585  **Size(bytes)**
586 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
557 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
587 587  |**Value**|BAT|(((
588 588  Temperature1(DS18B20)
589 -
590 590  (PC13)
591 591  )))|(((
592 592  Temperature2(DS18B20)
593 -
594 594  (PB9)
595 595  )))|(((
596 596  Digital Interrupt
597 -
598 598  (PB15)
599 599  )))|(% style="width:193px" %)(((
600 600  Temperature3(DS18B20)
601 -
602 602  (PB8)
603 603  )))|(% style="width:78px" %)(((
604 -Count1
605 -
606 -(PA8)
571 +Count1(PA8)
607 607  )))|(% style="width:78px" %)(((
608 -Count2
609 -
610 -(PA4)
573 +Count2(PA4)
611 611  )))
612 612  
613 613  [[image:image-20230513111255-9.png||height="341" width="899"]]
614 614  
615 -**The newly added AT command is issued correspondingly:**
578 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
616 616  
617 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
580 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
618 618  
619 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
582 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
620 620  
621 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
584 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
622 622  
623 -**AT+SETCNT=aa,bb** 
624 624  
587 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
588 +
625 625  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
626 626  
627 627  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
628 628  
629 629  
630 -
631 631  === 2.3.3  ​Decode payload ===
632 632  
596 +
633 633  While using TTN V3 network, you can add the payload format to decode the payload.
634 634  
635 635  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -641,6 +641,7 @@
641 641  
642 642  ==== 2.3.3.1 Battery Info ====
643 643  
608 +
644 644  Check the battery voltage for SN50v3.
645 645  
646 646  Ex1: 0x0B45 = 2885mV
... ... @@ -650,16 +650,18 @@
650 650  
651 651  ==== 2.3.3.2  Temperature (DS18B20) ====
652 652  
653 -If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
654 654  
655 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
619 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
656 656  
657 -**Connection:**
621 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
658 658  
623 +(% style="color:blue" %)**Connection:**
624 +
659 659  [[image:image-20230512180718-8.png||height="538" width="647"]]
660 660  
661 -**Example**:
662 662  
628 +(% style="color:blue" %)**Example**:
629 +
663 663  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
664 664  
665 665  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -669,6 +669,7 @@
669 669  
670 670  ==== 2.3.3.3 Digital Input ====
671 671  
639 +
672 672  The digital input for pin PB15,
673 673  
674 674  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -678,11 +678,14 @@
678 678  (((
679 679  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
680 680  
681 -**Note:**The maximum voltage input supports 3.6V.
649 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
650 +
651 +
682 682  )))
683 683  
684 684  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
685 685  
656 +
686 686  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
687 687  
688 688  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -689,18 +689,21 @@
689 689  
690 690  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
691 691  
692 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
663 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
693 693  
665 +
694 694  ==== 2.3.3.5 Digital Interrupt ====
695 695  
668 +
696 696  Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
697 697  
698 -**~ Interrupt connection method:**
671 +(% style="color:blue" %)** Interrupt connection method:**
699 699  
700 700  [[image:image-20230513105351-5.png||height="147" width="485"]]
701 701  
702 -**Example to use with door sensor :**
703 703  
676 +(% style="color:blue" %)**Example to use with door sensor :**
677 +
704 704  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
705 705  
706 706  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
... ... @@ -707,8 +707,9 @@
707 707  
708 708  When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
709 709  
710 -**~ Below is the installation example:**
711 711  
685 +(% style="color:blue" %)**Below is the installation example:**
686 +
712 712  Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
713 713  
714 714  * (((
... ... @@ -720,7 +720,7 @@
720 720  
721 721  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
722 722  
723 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
698 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
724 724  
725 725  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
726 726  
... ... @@ -732,12 +732,13 @@
732 732  
733 733  The command is:
734 734  
735 -**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
710 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
736 736  
737 737  Below shows some screen captures in TTN V3:
738 738  
739 739  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
740 740  
716 +
741 741  In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
742 742  
743 743  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
... ... @@ -745,16 +745,17 @@
745 745  
746 746  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
747 747  
724 +
748 748  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
749 749  
750 -We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
727 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
751 751  
752 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
729 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference.
753 753  
754 754  Below is the connection to SHT20/ SHT31. The connection is as below:
755 755  
756 756  
757 -[[image:image-20230513103633-3.png||height="636" width="1017"]]
734 +[[image:image-20230513103633-3.png||height="448" width="716"]]
758 758  
759 759  The device will be able to get the I2C sensor data now and upload to IoT Server.
760 760  
... ... @@ -773,23 +773,26 @@
773 773  
774 774  ==== 2.3.3.7  ​Distance Reading ====
775 775  
776 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
777 777  
754 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
778 778  
756 +
779 779  ==== 2.3.3.8 Ultrasonic Sensor ====
780 780  
759 +
781 781  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
782 782  
783 783  The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
784 784  
785 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
764 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
786 786  
787 787  The picture below shows the connection:
788 788  
789 789  [[image:image-20230512173903-6.png||height="596" width="715"]]
790 790  
791 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
792 792  
771 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
772 +
793 793  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
794 794  
795 795  **Example:**
... ... @@ -797,19 +797,20 @@
797 797  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
798 798  
799 799  
800 -
801 801  ==== 2.3.3.9  Battery Output - BAT pin ====
802 802  
782 +
803 803  The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
804 804  
805 805  
806 806  ==== 2.3.3.10  +5V Output ====
807 807  
788 +
808 808  SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
809 809  
810 810  The 5V output time can be controlled by AT Command.
811 811  
812 -**AT+5VT=1000**
793 +(% style="color:blue" %)**AT+5VT=1000**
813 813  
814 814  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
815 815  
... ... @@ -816,18 +816,20 @@
816 816  By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
817 817  
818 818  
819 -
820 820  ==== 2.3.3.11  BH1750 Illumination Sensor ====
821 821  
802 +
822 822  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
823 823  
824 -[[image:image-20230512172447-4.png||height="593" width="1015"]]
805 +[[image:image-20230512172447-4.png||height="416" width="712"]]
825 825  
826 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
827 827  
808 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
828 828  
810 +
829 829  ==== 2.3.3.12  Working MOD ====
830 830  
813 +
831 831  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
832 832  
833 833  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -844,6 +844,8 @@
844 844  * 7: MOD8
845 845  * 8: MOD9
846 846  
830 +
831 +
847 847  == 2.4 Payload Decoder file ==
848 848  
849 849  
... ... @@ -851,10 +851,9 @@
851 851  
852 852  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
853 853  
854 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
839 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
855 855  
856 856  
857 -
858 858  == 2.5 Frequency Plans ==
859 859  
860 860  
... ... @@ -874,6 +874,8 @@
874 874  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
875 875  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
876 876  
861 +
862 +
877 877  == 3.2 General Commands ==
878 878  
879 879  
... ... @@ -921,10 +921,13 @@
921 921  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
922 922  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
923 923  
910 +
911 +
924 924  === 3.3.2 Get Device Status ===
925 925  
926 -Send a LoRaWAN downlink to ask device send Alarm settings.
927 927  
915 +Send a LoRaWAN downlink to ask the device to send its status.
916 +
928 928  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
929 929  
930 930  Sensor will upload Device Status via FPORT=5. See payload section for detail.
... ... @@ -969,8 +969,11 @@
969 969  * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
970 970  * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
971 971  
961 +
962 +
972 972  === 3.3.4 Set Power Output Duration ===
973 973  
965 +
974 974  Control the output duration 5V . Before each sampling, device will
975 975  
976 976  ~1. first enable the power output to external sensor,
... ... @@ -985,7 +985,6 @@
985 985  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
986 986  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
987 987  500(default)
988 -
989 989  OK
990 990  )))
991 991  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -998,11 +998,14 @@
998 998  
999 999  The first and second bytes are the time to turn on.
1000 1000  
1001 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1002 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
992 +* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
993 +* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1003 1003  
995 +
996 +
1004 1004  === 3.3.5 Set Weighing parameters ===
1005 1005  
999 +
1006 1006  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1007 1007  
1008 1008  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
... ... @@ -1015,7 +1015,6 @@
1015 1015  
1016 1016  (% style="color:blue" %)**Downlink Command: 0x08**
1017 1017  
1018 -
1019 1019  Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1020 1020  
1021 1021  Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
... ... @@ -1026,8 +1026,11 @@
1026 1026  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1027 1027  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1028 1028  
1022 +
1023 +
1029 1029  === 3.3.6 Set Digital pulse count value ===
1030 1030  
1026 +
1031 1031  Feature: Set the pulse count value.
1032 1032  
1033 1033  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1041,7 +1041,6 @@
1041 1041  
1042 1042  (% style="color:blue" %)**Downlink Command: 0x09**
1043 1043  
1044 -
1045 1045  Format: Command Code (0x09) followed by 5 bytes.
1046 1046  
1047 1047  The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
... ... @@ -1049,8 +1049,11 @@
1049 1049  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1050 1050  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1051 1051  
1047 +
1048 +
1052 1052  === 3.3.7 Set Workmode ===
1053 1053  
1051 +
1054 1054  Feature: Switch working mode.
1055 1055  
1056 1056  (% style="color:blue" %)**AT Command: AT+MOD**
... ... @@ -1062,18 +1062,18 @@
1062 1062  )))
1063 1063  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1064 1064  OK
1065 -
1066 1066  Attention:Take effect after ATZ
1067 1067  )))
1068 1068  
1069 1069  (% style="color:blue" %)**Downlink Command: 0x0A**
1070 1070  
1071 -
1072 1072  Format: Command Code (0x0A) followed by 1 bytes.
1073 1073  
1074 1074  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1075 1075  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1076 1076  
1073 +
1074 +
1077 1077  = 4. Battery & Power Consumption =
1078 1078  
1079 1079  
... ... @@ -1100,13 +1100,18 @@
1100 1100  * (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1101 1101  * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1102 1102  
1101 +
1102 +
1103 1103  = 6. FAQ =
1104 1104  
1105 1105  == 6.1 Where can i find source code of SN50v3-LB? ==
1106 1106  
1107 +
1107 1107  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1108 1108  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1109 1109  
1111 +
1112 +
1110 1110  = 7. Order Info =
1111 1111  
1112 1112  
... ... @@ -1130,8 +1130,11 @@
1130 1130  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1131 1131  * (% style="color:red" %)**NH**(%%): No Hole
1132 1132  
1136 +
1137 +
1133 1133  = 8. ​Packing Info =
1134 1134  
1140 +
1135 1135  (% style="color:#037691" %)**Package Includes**:
1136 1136  
1137 1137  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1143,8 +1143,11 @@
1143 1143  * Package Size / pcs : cm
1144 1144  * Weight / pcs : g
1145 1145  
1152 +
1153 +
1146 1146  = 9. Support =
1147 1147  
1148 1148  
1149 1149  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1150 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1158 +
1159 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
image-20230515135611-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0