<
From version < 38.1 >
edited by Saxer Lin
on 2023/05/13 13:40
To version < 44.2 >
edited by Xiaoling
on 2023/05/18 08:57
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -1,4 +1,5 @@
1 -[[image:image-20230511201248-1.png||height="403" width="489"]]
1 +(% style="text-align:center" %)
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
2 2  
3 3  
4 4  
... ... @@ -15,23 +15,21 @@
15 15  
16 16  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
19 +
18 18  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
19 19  
20 -
21 21  (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 22  
23 -
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 -
27 27  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -
30 30  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
31 31  
32 32  
33 33  == 1.2 ​Features ==
34 34  
33 +
35 35  * LoRaWAN 1.0.3 Class A
36 36  * Ultra-low power consumption
37 37  * Open-Source hardware/software
... ... @@ -44,6 +44,7 @@
44 44  
45 45  == 1.3 Specification ==
46 46  
46 +
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 49  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -80,6 +80,7 @@
80 80  
81 81  == 1.4 Sleep mode and working mode ==
82 82  
83 +
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -137,6 +137,7 @@
137 137  
138 138  == Hole Option ==
139 139  
141 +
140 140  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
141 141  
142 142  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -275,119 +275,108 @@
275 275  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
276 276  
277 277  
278 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
280 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
279 279  
280 280  For example:
281 281  
282 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
284 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283 283  
284 284  
285 285  (% style="color:red" %) **Important Notice:**
286 286  
287 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 -1. All modes share the same Payload Explanation from HERE.
289 -1. By default, the device will send an uplink message every 20 minutes.
289 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
290 290  
291 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
291 +2. All modes share the same Payload Explanation from HERE.
292 292  
293 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
293 +3. By default, the device will send an uplink message every 20 minutes.
294 294  
295 -|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 -|**Value**|Bat|(((
297 -Temperature(DS18B20)
298 298  
299 -(PC13)
300 -)))|(((
301 -ADC
296 +==== 2.3.2.1  MOD~=1 (Default Mode) ====
302 302  
303 -(PA4)
304 -)))|(% style="width:216px" %)(((
305 -Digital in(PB15) &
306 306  
307 -Digital Interrupt(PA8)
299 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
308 308  
309 -
310 -)))|(% style="width:342px" %)(((
311 -Temperature
312 -
313 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
314 -)))|(% style="width:171px" %)(((
315 -Humidity
316 -
317 -(SHT20 or SHT31)
301 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
302 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
303 +|**Value**|Bat|(% style="width:191px" %)(((
304 +Temperature(DS18B20)(PC13)
305 +)))|(% style="width:78px" %)(((
306 +ADC(PA4)
307 +)))|(% style="width:216px" %)(((
308 +Digital in(PB15)&Digital Interrupt(PA8)
309 +)))|(% style="width:308px" %)(((
310 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
311 +)))|(% style="width:154px" %)(((
312 +Humidity(SHT20 or SHT31)
318 318  )))
319 319  
320 320  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
321 321  
322 322  
318 +
323 323  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
324 324  
321 +
325 325  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
326 326  
327 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
328 -|**Value**|BAT|(((
329 -Temperature(DS18B20)
330 -
331 -(PC13)
332 -)))|(((
333 -ADC
334 -
335 -(PA4)
336 -)))|(((
337 -Digital in(PB15) &
338 -
339 -Digital Interrupt(PA8)
340 -)))|(((
341 -Distance measure by:
342 -1) LIDAR-Lite V3HP
324 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
325 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
326 +|**Value**|BAT|(% style="width:196px" %)(((
327 +Temperature(DS18B20)(PC13)
328 +)))|(% style="width:87px" %)(((
329 +ADC(PA4)
330 +)))|(% style="width:189px" %)(((
331 +Digital in(PB15) & Digital Interrupt(PA8)
332 +)))|(% style="width:208px" %)(((
333 +Distance measure by:1) LIDAR-Lite V3HP
343 343  Or
344 344  2) Ultrasonic Sensor
345 -)))|Reserved
336 +)))|(% style="width:117px" %)Reserved
346 346  
347 347  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
348 348  
349 -**Connection of LIDAR-Lite V3HP:**
350 350  
341 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
342 +
351 351  [[image:image-20230512173758-5.png||height="563" width="712"]]
352 352  
353 -**Connection to Ultrasonic Sensor:**
354 354  
355 -Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
346 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
356 356  
348 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
349 +
357 357  [[image:image-20230512173903-6.png||height="596" width="715"]]
358 358  
352 +
359 359  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
360 360  
361 -|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
362 -|**Value**|BAT|(((
363 -Temperature(DS18B20)
364 -
365 -(PC13)
366 -)))|(((
367 -Digital in(PB15) &
368 -
369 -Digital Interrupt(PA8)
370 -)))|(((
371 -ADC
372 -
373 -(PA4)
374 -)))|(((
355 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
356 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
357 +|**Value**|BAT|(% style="width:183px" %)(((
358 +Temperature(DS18B20)(PC13)
359 +)))|(% style="width:173px" %)(((
360 +Digital in(PB15) & Digital Interrupt(PA8)
361 +)))|(% style="width:84px" %)(((
362 +ADC(PA4)
363 +)))|(% style="width:323px" %)(((
375 375  Distance measure by:1)TF-Mini plus LiDAR
376 376  Or 
377 377  2) TF-Luna LiDAR
378 -)))|Distance signal  strength
367 +)))|(% style="width:188px" %)Distance signal  strength
379 379  
380 380  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
381 381  
371 +
382 382  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
383 383  
384 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
374 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
385 385  
386 386  [[image:image-20230512180609-7.png||height="555" width="802"]]
387 387  
378 +
388 388  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
389 389  
390 -Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
391 391  
392 392  [[image:image-20230513105207-4.png||height="469" width="802"]]
393 393  
... ... @@ -394,34 +394,25 @@
394 394  
395 395  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
396 396  
388 +
397 397  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
398 398  
399 -(% style="width:1031px" %)
400 -|=(((
391 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
392 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
401 401  **Size(bytes)**
402 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
394 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
403 403  |**Value**|(% style="width:68px" %)(((
404 -ADC1
405 -
406 -(PA4)
396 +ADC1(PA4)
407 407  )))|(% style="width:75px" %)(((
408 -ADC2
409 -
410 -(PA5)
398 +ADC2(PA5)
411 411  )))|(((
412 -ADC3
413 -
414 -(PA8)
400 +ADC3(PA8)
415 415  )))|(((
416 416  Digital Interrupt(PB15)
417 417  )))|(% style="width:304px" %)(((
418 -Temperature
419 -
420 -(SHT20 or SHT31 or BH1750 Illumination Sensor)
404 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
421 421  )))|(% style="width:163px" %)(((
422 -Humidity
423 -
424 -(SHT20 or SHT31)
406 +Humidity(SHT20 or SHT31)
425 425  )))|(% style="width:53px" %)Bat
426 426  
427 427  [[image:image-20230513110214-6.png]]
... ... @@ -429,75 +429,69 @@
429 429  
430 430  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
431 431  
432 -[[image:image-20230512170701-3.png||height="565" width="743"]]
433 433  
434 434  This mode has total 11 bytes. As shown below:
435 435  
436 -(% style="width:1017px" %)
437 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
417 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
418 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
438 438  |**Value**|BAT|(% style="width:186px" %)(((
439 -Temperature1(DS18B20)
440 -(PC13)
420 +Temperature1(DS18B20)(PC13)
441 441  )))|(% style="width:82px" %)(((
442 -ADC
443 -
444 -(PA4)
422 +ADC(PA4)
445 445  )))|(% style="width:210px" %)(((
446 -Digital in(PB15) &
447 -
448 -Digital Interrupt(PA8) 
424 +Digital in(PB15) & Digital Interrupt(PA8) 
449 449  )))|(% style="width:191px" %)Temperature2(DS18B20)
450 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
451 -(PB8)
426 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
452 452  
453 453  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
454 454  
430 +[[image:image-20230513134006-1.png||height="559" width="736"]]
455 455  
432 +
433 +
456 456  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
457 457  
436 +
458 458  [[image:image-20230512164658-2.png||height="532" width="729"]]
459 459  
460 460  Each HX711 need to be calibrated before used. User need to do below two steps:
461 461  
462 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
463 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
441 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
442 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
464 464  1. (((
465 465  Weight has 4 bytes, the unit is g.
445 +
446 +
447 +
466 466  )))
467 467  
468 468  For example:
469 469  
470 -**AT+GETSENSORVALUE =0**
452 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
471 471  
472 472  Response:  Weight is 401 g
473 473  
474 474  Check the response of this command and adjust the value to match the real value for thing.
475 475  
476 -(% style="width:982px" %)
477 -|=(((
458 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
459 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
478 478  **Size(bytes)**
479 -)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
480 -|**Value**|BAT|(% style="width:282px" %)(((
481 -Temperature(DS18B20)
461 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
462 +|**Value**|BAT|(% style="width:193px" %)(((
463 +Temperature(DS18B20)(PC13)
464 +)))|(% style="width:85px" %)(((
465 +ADC(PA4)
466 +)))|(% style="width:186px" %)(((
467 +Digital in(PB15) & Digital Interrupt(PA8)
468 +)))|(% style="width:100px" %)Weight
482 482  
483 -(PC13)
484 -
485 -
486 -)))|(% style="width:119px" %)(((
487 -ADC
488 -
489 -(PA4)
490 -)))|(% style="width:279px" %)(((
491 -Digital in(PB15) &
492 -
493 -Digital Interrupt(PA8)
494 -)))|(% style="width:106px" %)Weight
495 -
496 496  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
497 497  
498 498  
473 +
499 499  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
500 500  
476 +
501 501  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
502 502  
503 503  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -504,74 +504,62 @@
504 504  
505 505  [[image:image-20230512181814-9.png||height="543" width="697"]]
506 506  
507 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
508 508  
509 -(% style="width:961px" %)
510 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
511 -|**Value**|BAT|(% style="width:256px" %)(((
512 -Temperature(DS18B20)
484 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
513 513  
514 -(PC13)
486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 +|**Value**|BAT|(% style="width:256px" %)(((
489 +Temperature(DS18B20)(PC13)
515 515  )))|(% style="width:108px" %)(((
516 -ADC
517 -
518 -(PA4)
491 +ADC(PA4)
519 519  )))|(% style="width:126px" %)(((
520 -Digital in
521 -
522 -(PB15)
493 +Digital in(PB15)
523 523  )))|(% style="width:145px" %)(((
524 -Count
525 -
526 -(PA8)
495 +Count(PA8)
527 527  )))
528 528  
529 529  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
530 530  
531 531  
501 +
532 532  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
533 533  
534 -|=(((
504 +
505 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
506 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
535 535  **Size(bytes)**
536 -)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
537 -|**Value**|BAT|(((
508 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
509 +|**Value**|BAT|(% style="width:188px" %)(((
538 538  Temperature(DS18B20)
539 -
540 540  (PC13)
541 -)))|(((
542 -ADC
543 -
544 -(PA5)
545 -)))|(((
512 +)))|(% style="width:83px" %)(((
513 +ADC(PA5)
514 +)))|(% style="width:184px" %)(((
546 546  Digital Interrupt1(PA8)
547 -)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved
516 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
548 548  
549 549  [[image:image-20230513111203-7.png||height="324" width="975"]]
550 550  
520 +
551 551  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
552 552  
553 -(% style="width:917px" %)
554 -|=(((
523 +
524 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
525 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
555 555  **Size(bytes)**
556 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 79px;" %)2
527 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
557 557  |**Value**|BAT|(% style="width:207px" %)(((
558 558  Temperature(DS18B20)
559 -
560 560  (PC13)
561 561  )))|(% style="width:94px" %)(((
562 -ADC1
563 -
564 -(PA4)
532 +ADC1(PA4)
565 565  )))|(% style="width:198px" %)(((
566 566  Digital Interrupt(PB15)
567 567  )))|(% style="width:84px" %)(((
568 -ADC2
569 -
570 -(PA5)
571 -)))|(% style="width:79px" %)(((
572 -ADC3
573 -
574 -(PA8)
536 +ADC2(PA5)
537 +)))|(% style="width:82px" %)(((
538 +ADC3(PA8)
575 575  )))
576 576  
577 577  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -579,56 +579,50 @@
579 579  
580 580  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
581 581  
582 -(% style="width:1010px" %)
583 -|=(((
546 +
547 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
548 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
584 584  **Size(bytes)**
585 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
550 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
586 586  |**Value**|BAT|(((
587 -Temperature1(DS18B20)
588 -
589 -(PC13)
552 +Temperature
553 +(DS18B20)(PC13)
590 590  )))|(((
591 -Temperature2(DS18B20)
592 -
593 -(PB9)
555 +Temperature2
556 +(DS18B20)(PB9)
594 594  )))|(((
595 595  Digital Interrupt
596 -
597 597  (PB15)
598 598  )))|(% style="width:193px" %)(((
599 -Temperature3(DS18B20)
600 -
601 -(PB8)
561 +Temperature3
562 +(DS18B20)(PB8)
602 602  )))|(% style="width:78px" %)(((
603 -Count1
604 -
605 -(PA8)
564 +Count1(PA8)
606 606  )))|(% style="width:78px" %)(((
607 -Count2
608 -
609 -(PA4)
566 +Count2(PA4)
610 610  )))
611 611  
612 612  [[image:image-20230513111255-9.png||height="341" width="899"]]
613 613  
614 -**The newly added AT command is issued correspondingly:**
571 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
615 615  
616 -**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
573 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
617 617  
618 -**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
575 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
619 619  
620 -**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
577 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
621 621  
622 -**AT+SETCNT=aa,bb** 
623 623  
580 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
581 +
624 624  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
625 625  
626 626  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
627 627  
628 628  
629 -
630 630  === 2.3.3  ​Decode payload ===
631 631  
589 +
632 632  While using TTN V3 network, you can add the payload format to decode the payload.
633 633  
634 634  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -635,13 +635,14 @@
635 635  
636 636  The payload decoder function for TTN V3 are here:
637 637  
638 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
596 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
639 639  
640 640  
641 641  ==== 2.3.3.1 Battery Info ====
642 642  
643 -Check the battery voltage for SN50v3.
644 644  
602 +Check the battery voltage for SN50v3-LB.
603 +
645 645  Ex1: 0x0B45 = 2885mV
646 646  
647 647  Ex2: 0x0B49 = 2889mV
... ... @@ -649,16 +649,18 @@
649 649  
650 650  ==== 2.3.3.2  Temperature (DS18B20) ====
651 651  
652 -If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
653 653  
654 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
612 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
655 655  
656 -**Connection:**
614 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
657 657  
616 +(% style="color:blue" %)**Connection:**
617 +
658 658  [[image:image-20230512180718-8.png||height="538" width="647"]]
659 659  
660 -**Example**:
661 661  
621 +(% style="color:blue" %)**Example**:
622 +
662 662  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
663 663  
664 664  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -668,6 +668,7 @@
668 668  
669 669  ==== 2.3.3.3 Digital Input ====
670 670  
632 +
671 671  The digital input for pin PB15,
672 672  
673 673  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -677,11 +677,14 @@
677 677  (((
678 678  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
679 679  
680 -**Note:**The maximum voltage input supports 3.6V.
642 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
643 +
644 +
681 681  )))
682 682  
683 683  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
684 684  
649 +
685 685  The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
686 686  
687 687  When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
... ... @@ -688,38 +688,43 @@
688 688  
689 689  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
690 690  
691 -**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
692 692  
657 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
658 +
659 +
693 693  ==== 2.3.3.5 Digital Interrupt ====
694 694  
695 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
696 696  
697 -**~ Interrupt connection method:**
663 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
698 698  
665 +(% style="color:blue" %)** Interrupt connection method:**
666 +
699 699  [[image:image-20230513105351-5.png||height="147" width="485"]]
700 700  
701 -**Example to use with door sensor :**
702 702  
670 +(% style="color:blue" %)**Example to use with door sensor :**
671 +
703 703  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
704 704  
705 705  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
706 706  
707 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
676 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
708 708  
709 -**~ Below is the installation example:**
710 710  
711 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
679 +(% style="color:blue" %)**Below is the installation example:**
712 712  
681 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
682 +
713 713  * (((
714 -One pin to SN50_v3's PA8 pin
684 +One pin to SN50v3-LB's PA8 pin
715 715  )))
716 716  * (((
717 -The other pin to SN50_v3's VDD pin
687 +The other pin to SN50v3-LB's VDD pin
718 718  )))
719 719  
720 720  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
721 721  
722 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
692 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
723 723  
724 724  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
725 725  
... ... @@ -731,12 +731,13 @@
731 731  
732 732  The command is:
733 733  
734 -**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
704 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
735 735  
736 736  Below shows some screen captures in TTN V3:
737 737  
738 738  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
739 739  
710 +
740 740  In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
741 741  
742 742  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
... ... @@ -744,17 +744,18 @@
744 744  
745 745  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
746 746  
718 +
747 747  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
748 748  
749 -We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
721 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
750 750  
751 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
723 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
752 752  
725 +
753 753  Below is the connection to SHT20/ SHT31. The connection is as below:
754 754  
728 +[[image:image-20230513103633-3.png||height="448" width="716"]]
755 755  
756 -[[image:image-20230513103633-3.png||height="636" width="1017"]]
757 -
758 758  The device will be able to get the I2C sensor data now and upload to IoT Server.
759 759  
760 760  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -772,23 +772,26 @@
772 772  
773 773  ==== 2.3.3.7  ​Distance Reading ====
774 774  
775 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
776 776  
748 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
777 777  
750 +
778 778  ==== 2.3.3.8 Ultrasonic Sensor ====
779 779  
753 +
780 780  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
781 781  
782 -The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
756 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
783 783  
784 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
758 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
785 785  
786 786  The picture below shows the connection:
787 787  
788 788  [[image:image-20230512173903-6.png||height="596" width="715"]]
789 789  
790 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
791 791  
765 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
766 +
792 792  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
793 793  
794 794  **Example:**
... ... @@ -796,19 +796,20 @@
796 796  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
797 797  
798 798  
799 -
800 800  ==== 2.3.3.9  Battery Output - BAT pin ====
801 801  
776 +
802 802  The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
803 803  
804 804  
805 805  ==== 2.3.3.10  +5V Output ====
806 806  
807 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
808 808  
783 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
784 +
809 809  The 5V output time can be controlled by AT Command.
810 810  
811 -**AT+5VT=1000**
787 +(% style="color:blue" %)**AT+5VT=1000**
812 812  
813 813  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
814 814  
... ... @@ -815,18 +815,20 @@
815 815  By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
816 816  
817 817  
818 -
819 819  ==== 2.3.3.11  BH1750 Illumination Sensor ====
820 820  
796 +
821 821  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
822 822  
823 -[[image:image-20230512172447-4.png||height="593" width="1015"]]
799 +[[image:image-20230512172447-4.png||height="416" width="712"]]
824 824  
825 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
826 826  
802 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
827 827  
804 +
828 828  ==== 2.3.3.12  Working MOD ====
829 829  
807 +
830 830  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
831 831  
832 832  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -850,10 +850,9 @@
850 850  
851 851  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
852 852  
853 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
831 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
854 854  
855 855  
856 -
857 857  == 2.5 Frequency Plans ==
858 858  
859 859  
... ... @@ -889,7 +889,7 @@
889 889  == 3.3 Commands special design for SN50v3-LB ==
890 890  
891 891  
892 -These commands only valid for S31x-LB, as below:
869 +These commands only valid for SN50v3-LB, as below:
893 893  
894 894  
895 895  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -922,8 +922,9 @@
922 922  
923 923  === 3.3.2 Get Device Status ===
924 924  
925 -Send a LoRaWAN downlink to ask device send Alarm settings.
926 926  
903 +Send a LoRaWAN downlink to ask the device to send its status.
904 +
927 927  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
928 928  
929 929  Sensor will upload Device Status via FPORT=5. See payload section for detail.
... ... @@ -952,7 +952,6 @@
952 952  )))|(% style="width:157px" %)OK
953 953  |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
954 954  Set Transmit Interval
955 -
956 956  trigger by rising edge.
957 957  )))|(% style="width:157px" %)OK
958 958  |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
... ... @@ -970,6 +970,7 @@
970 970  
971 971  === 3.3.4 Set Power Output Duration ===
972 972  
950 +
973 973  Control the output duration 5V . Before each sampling, device will
974 974  
975 975  ~1. first enable the power output to external sensor,
... ... @@ -984,7 +984,6 @@
984 984  |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
985 985  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
986 986  500(default)
987 -
988 988  OK
989 989  )))
990 990  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -997,11 +997,12 @@
997 997  
998 998  The first and second bytes are the time to turn on.
999 999  
1000 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1001 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
977 +* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
978 +* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1002 1002  
1003 1003  === 3.3.5 Set Weighing parameters ===
1004 1004  
982 +
1005 1005  Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1006 1006  
1007 1007  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
... ... @@ -1014,7 +1014,6 @@
1014 1014  
1015 1015  (% style="color:blue" %)**Downlink Command: 0x08**
1016 1016  
1017 -
1018 1018  Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1019 1019  
1020 1020  Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
... ... @@ -1027,6 +1027,7 @@
1027 1027  
1028 1028  === 3.3.6 Set Digital pulse count value ===
1029 1029  
1007 +
1030 1030  Feature: Set the pulse count value.
1031 1031  
1032 1032  Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
... ... @@ -1040,7 +1040,6 @@
1040 1040  
1041 1041  (% style="color:blue" %)**Downlink Command: 0x09**
1042 1042  
1043 -
1044 1044  Format: Command Code (0x09) followed by 5 bytes.
1045 1045  
1046 1046  The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
... ... @@ -1050,6 +1050,7 @@
1050 1050  
1051 1051  === 3.3.7 Set Workmode ===
1052 1052  
1030 +
1053 1053  Feature: Switch working mode.
1054 1054  
1055 1055  (% style="color:blue" %)**AT Command: AT+MOD**
... ... @@ -1061,13 +1061,11 @@
1061 1061  )))
1062 1062  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1063 1063  OK
1064 -
1065 1065  Attention:Take effect after ATZ
1066 1066  )))
1067 1067  
1068 1068  (% style="color:blue" %)**Downlink Command: 0x0A**
1069 1069  
1070 -
1071 1071  Format: Command Code (0x0A) followed by 1 bytes.
1072 1072  
1073 1073  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
... ... @@ -1103,6 +1103,7 @@
1103 1103  
1104 1104  == 6.1 Where can i find source code of SN50v3-LB? ==
1105 1105  
1082 +
1106 1106  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1107 1107  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1108 1108  
... ... @@ -1131,6 +1131,7 @@
1131 1131  
1132 1132  = 8. ​Packing Info =
1133 1133  
1111 +
1134 1134  (% style="color:#037691" %)**Package Includes**:
1135 1135  
1136 1136  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -1146,4 +1146,5 @@
1146 1146  
1147 1147  
1148 1148  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1149 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1127 +
1128 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
image-20230515135611-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +948.0 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0