Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB User Manual 1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Xiaoling - Content
-
... ... @@ -1,4 +1,5 @@ 1 -[[image:image-20230511201248-1.png||height="403" width="489"]] 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 4 4 ... ... @@ -15,23 +15,21 @@ 15 15 16 16 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 17 17 19 + 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 20 - 21 21 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 22 23 - 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 - 27 27 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 28 28 29 - 30 30 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 31 31 32 32 33 33 == 1.2 Features == 34 34 33 + 35 35 * LoRaWAN 1.0.3 Class A 36 36 * Ultra-low power consumption 37 37 * Open-Source hardware/software ... ... @@ -42,8 +42,11 @@ 42 42 * Downlink to change configure 43 43 * 8500mAh Battery for long term use 44 44 44 + 45 + 45 45 == 1.3 Specification == 46 46 48 + 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -78,8 +78,11 @@ 78 78 * Sleep Mode: 5uA @ 3.3v 79 79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 80 80 83 + 84 + 81 81 == 1.4 Sleep mode and working mode == 82 82 87 + 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -104,6 +104,8 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 112 + 113 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -137,6 +137,7 @@ 137 137 138 138 == Hole Option == 139 139 147 + 140 140 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 141 141 142 142 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -288,97 +288,84 @@ 288 288 1. All modes share the same Payload Explanation from HERE. 289 289 1. By default, the device will send an uplink message every 20 minutes. 290 290 291 -==== 2.3.2.1 MOD~=1 (Default Mode) ==== 292 292 293 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 294 294 295 -|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 -|**Value**|Bat|((( 297 -Temperature(DS18B20) 301 +==== 2.3.2.1 MOD~=1 (Default Mode) ==== 298 298 299 -(PC13) 300 -)))|((( 301 -ADC 302 302 303 -(PA4) 304 -)))|(% style="width:216px" %)((( 305 -Digital in(PB15) & 304 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 306 306 307 -Digital Interrupt(PA8) 308 - 309 - 310 -)))|(% style="width:342px" %)((( 311 -Temperature 312 - 313 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 314 -)))|(% style="width:171px" %)((( 315 -Humidity 316 - 317 -(SHT20 or SHT31) 306 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 307 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 308 +|**Value**|Bat|(% style="width:191px" %)((( 309 +Temperature(DS18B20)(PC13) 310 +)))|(% style="width:78px" %)((( 311 +ADC(PA4) 312 +)))|(% style="width:216px" %)((( 313 +Digital in(PB15)&Digital Interrupt(PA8) 314 +)))|(% style="width:308px" %)((( 315 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 316 +)))|(% style="width:154px" %)((( 317 +Humidity(SHT20 or SHT31) 318 318 ))) 319 319 320 320 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 321 321 322 322 323 + 323 323 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 324 324 326 + 325 325 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 326 326 327 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 328 -|**Value**|BAT|((( 329 -Temperature(DS18B20) 330 - 331 -(PC13) 332 -)))|((( 333 -ADC 334 - 335 -(PA4) 336 -)))|((( 337 -Digital in(PB15) & 338 - 339 -Digital Interrupt(PA8) 340 -)))|((( 341 -Distance measure by: 342 -1) LIDAR-Lite V3HP 343 -Or 329 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 +|**Value**|BAT|(% style="width:196px" %)((( 332 +Temperature(DS18B20)(PC13) 333 +)))|(% style="width:87px" %)((( 334 +ADC(PA4) 335 +)))|(% style="width:189px" %)((( 336 +Digital in(PB15) & Digital Interrupt(PA8) 337 +)))|(% style="width:208px" %)((( 338 +Distance measure by:1) LIDAR-Lite V3HP 339 +Or 344 344 2) Ultrasonic Sensor 345 -)))|Reserved 341 +)))|(% style="width:117px" %)Reserved 346 346 347 347 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 348 348 349 -**Connection of LIDAR-Lite V3HP:** 350 350 346 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 347 + 351 351 [[image:image-20230512173758-5.png||height="563" width="712"]] 352 352 353 -**Connection to Ultrasonic Sensor:** 354 354 351 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 352 + 355 355 Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 356 356 357 357 [[image:image-20230512173903-6.png||height="596" width="715"]] 358 358 357 + 359 359 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 360 360 361 -|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 362 -|**Value**|BAT|((( 363 -Temperature(DS18B20) 364 - 365 -(PC13) 366 -)))|((( 367 -Digital in(PB15) & 368 - 369 -Digital Interrupt(PA8) 370 -)))|((( 371 -ADC 372 - 373 -(PA4) 374 -)))|((( 360 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 361 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 362 +|**Value**|BAT|(% style="width:183px" %)((( 363 +Temperature(DS18B20)(PC13) 364 +)))|(% style="width:173px" %)((( 365 +Digital in(PB15) & Digital Interrupt(PA8) 366 +)))|(% style="width:84px" %)((( 367 +ADC(PA4) 368 +)))|(% style="width:323px" %)((( 375 375 Distance measure by:1)TF-Mini plus LiDAR 376 376 Or 377 377 2) TF-Luna LiDAR 378 -)))|Distance signal strength 372 +)))|(% style="width:188px" %)Distance signal strength 379 379 380 380 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 381 381 376 + 382 382 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 383 383 384 384 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. ... ... @@ -385,6 +385,7 @@ 385 385 386 386 [[image:image-20230512180609-7.png||height="555" width="802"]] 387 387 383 + 388 388 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 389 389 390 390 Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. ... ... @@ -394,34 +394,25 @@ 394 394 395 395 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 396 396 393 + 397 397 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 398 398 399 -(% style="width: 1031px" %)400 -|=((( 396 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 397 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 401 401 **Size(bytes)** 402 -)))|=(% style="width: 68px;" %)**2**|=(% style="width:75px;" %)**2**|=**2**|=**1**|=(% style="width:304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width:53px;" %)1399 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 403 403 |**Value**|(% style="width:68px" %)((( 404 -ADC1 405 - 406 -(PA4) 401 +ADC1(PA4) 407 407 )))|(% style="width:75px" %)((( 408 -ADC2 409 - 410 -(PA5) 403 +ADC2(PA5) 411 411 )))|((( 412 -ADC3 413 - 414 -(PA8) 405 +ADC3(PA8) 415 415 )))|((( 416 416 Digital Interrupt(PB15) 417 417 )))|(% style="width:304px" %)((( 418 -Temperature 419 - 420 -(SHT20 or SHT31 or BH1750 Illumination Sensor) 409 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 421 421 )))|(% style="width:163px" %)((( 422 -Humidity 423 - 424 -(SHT20 or SHT31) 411 +Humidity(SHT20 or SHT31) 425 425 )))|(% style="width:53px" %)Bat 426 426 427 427 [[image:image-20230513110214-6.png]] ... ... @@ -429,32 +429,29 @@ 429 429 430 430 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 431 431 432 -[[image:image-20230512170701-3.png||height="565" width="743"]] 433 433 434 434 This mode has total 11 bytes. As shown below: 435 435 436 -(% style="width: 1017px" %)437 -|**Size(bytes)**|**2**|(% style="width:1 86px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**422 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 423 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 438 438 |**Value**|BAT|(% style="width:186px" %)((( 439 -Temperature1(DS18B20) 440 -(PC13) 425 +Temperature1(DS18B20)(PC13) 441 441 )))|(% style="width:82px" %)((( 442 -ADC 443 - 444 -(PA4) 427 +ADC(PA4) 445 445 )))|(% style="width:210px" %)((( 446 -Digital in(PB15) & 447 - 448 -Digital Interrupt(PA8) 429 +Digital in(PB15) & Digital Interrupt(PA8) 449 449 )))|(% style="width:191px" %)Temperature2(DS18B20) 450 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 451 -(PB8) 431 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 452 452 453 453 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 454 454 435 +[[image:image-20230513134006-1.png||height="559" width="736"]] 455 455 437 + 438 + 456 456 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 457 457 441 + 458 458 [[image:image-20230512164658-2.png||height="532" width="729"]] 459 459 460 460 Each HX711 need to be calibrated before used. User need to do below two steps: ... ... @@ -463,6 +463,9 @@ 463 463 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 464 464 1. ((( 465 465 Weight has 4 bytes, the unit is g. 450 + 451 + 452 + 466 466 ))) 467 467 468 468 For example: ... ... @@ -473,31 +473,25 @@ 473 473 474 474 Check the response of this command and adjust the value to match the real value for thing. 475 475 476 -(% style="width: 982px" %)477 -|=((( 463 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 464 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 478 478 **Size(bytes)** 479 -)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 480 -|**Value**|BAT|(% style="width:282px" %)((( 481 -Temperature(DS18B20) 466 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 467 +|**Value**|BAT|(% style="width:193px" %)((( 468 +Temperature(DS18B20)(PC13) 469 +)))|(% style="width:85px" %)((( 470 +ADC(PA4) 471 +)))|(% style="width:186px" %)((( 472 +Digital in(PB15) & Digital Interrupt(PA8) 473 +)))|(% style="width:100px" %)Weight 482 482 483 -(PC13) 484 - 485 - 486 -)))|(% style="width:119px" %)((( 487 -ADC 488 - 489 -(PA4) 490 -)))|(% style="width:279px" %)((( 491 -Digital in(PB15) & 492 - 493 -Digital Interrupt(PA8) 494 -)))|(% style="width:106px" %)Weight 495 - 496 496 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 497 497 498 498 478 + 499 499 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 500 500 481 + 501 501 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 502 502 503 503 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -504,74 +504,62 @@ 504 504 505 505 [[image:image-20230512181814-9.png||height="543" width="697"]] 506 506 507 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen. 508 508 509 -(% style="width:961px" %) 510 -|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4** 511 -|**Value**|BAT|(% style="width:256px" %)((( 512 -Temperature(DS18B20) 489 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 513 513 514 -(PC13) 491 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 492 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 493 +|**Value**|BAT|(% style="width:256px" %)((( 494 +Temperature(DS18B20)(PC13) 515 515 )))|(% style="width:108px" %)((( 516 -ADC 517 - 518 -(PA4) 496 +ADC(PA4) 519 519 )))|(% style="width:126px" %)((( 520 -Digital in 521 - 522 -(PB15) 498 +Digital in(PB15) 523 523 )))|(% style="width:145px" %)((( 524 -Count 525 - 526 -(PA8) 500 +Count(PA8) 527 527 ))) 528 528 529 529 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 530 530 531 531 506 + 532 532 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 533 533 534 -|=((( 509 + 510 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 511 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 535 535 **Size(bytes)** 536 -)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 537 -|**Value**|BAT|((( 513 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 514 +|**Value**|BAT|(% style="width:188px" %)((( 538 538 Temperature(DS18B20) 539 - 540 540 (PC13) 541 -)))|((( 542 -ADC 543 - 544 -(PA5) 545 -)))|((( 517 +)))|(% style="width:83px" %)((( 518 +ADC(PA5) 519 +)))|(% style="width:184px" %)((( 546 546 Digital Interrupt1(PA8) 547 -)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved 521 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 548 548 549 549 [[image:image-20230513111203-7.png||height="324" width="975"]] 550 550 525 + 551 551 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 552 552 553 -(% style="width:917px" %) 554 -|=((( 528 + 529 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 530 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 555 555 **Size(bytes)** 556 -)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width:94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width:84px;" %)**2**|=(% style="width: 79px;" %)2532 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 557 557 |**Value**|BAT|(% style="width:207px" %)((( 558 558 Temperature(DS18B20) 559 - 560 560 (PC13) 561 561 )))|(% style="width:94px" %)((( 562 -ADC1 563 - 564 -(PA4) 537 +ADC1(PA4) 565 565 )))|(% style="width:198px" %)((( 566 566 Digital Interrupt(PB15) 567 567 )))|(% style="width:84px" %)((( 568 -ADC2 569 - 570 -(PA5) 571 -)))|(% style="width:79px" %)((( 572 -ADC3 573 - 574 -(PA8) 541 +ADC2(PA5) 542 +)))|(% style="width:82px" %)((( 543 +ADC3(PA8) 575 575 ))) 576 576 577 577 [[image:image-20230513111231-8.png||height="335" width="900"]] ... ... @@ -579,56 +579,50 @@ 579 579 580 580 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 581 581 582 -(% style="width:1010px" %) 583 -|=((( 551 + 552 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 553 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 584 584 **Size(bytes)** 585 -)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width:78px;" %)4|=(% style="width:78px;" %)4555 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 586 586 |**Value**|BAT|((( 587 587 Temperature1(DS18B20) 588 - 589 589 (PC13) 590 590 )))|((( 591 591 Temperature2(DS18B20) 592 - 593 593 (PB9) 594 594 )))|((( 595 595 Digital Interrupt 596 - 597 597 (PB15) 598 598 )))|(% style="width:193px" %)((( 599 599 Temperature3(DS18B20) 600 - 601 601 (PB8) 602 602 )))|(% style="width:78px" %)((( 603 -Count1 604 - 605 -(PA8) 569 +Count1(PA8) 606 606 )))|(% style="width:78px" %)((( 607 -Count2 608 - 609 -(PA4) 571 +Count2(PA4) 610 610 ))) 611 611 612 612 [[image:image-20230513111255-9.png||height="341" width="899"]] 613 613 614 -**The newly added AT command is issued correspondingly:** 576 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 615 615 616 -** ~AT+INTMOD1****PA8** pin: Corresponding downlink: **06 00 00 xx**578 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 617 617 618 -** ~AT+INTMOD2** **PA4** pin: Corresponding downlink:**06 00 01 xx**580 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 619 619 620 -** ~AT+INTMOD3****PB15** pin: Corresponding downlink: ** 06 00 02 xx**582 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 621 621 622 -**AT+SETCNT=aa,bb** 623 623 585 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 586 + 624 624 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 625 625 626 626 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 627 627 628 628 629 - 630 630 === 2.3.3 Decode payload === 631 631 594 + 632 632 While using TTN V3 network, you can add the payload format to decode the payload. 633 633 634 634 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -640,6 +640,7 @@ 640 640 641 641 ==== 2.3.3.1 Battery Info ==== 642 642 606 + 643 643 Check the battery voltage for SN50v3. 644 644 645 645 Ex1: 0x0B45 = 2885mV ... ... @@ -649,16 +649,18 @@ 649 649 650 650 ==== 2.3.3.2 Temperature (DS18B20) ==== 651 651 652 -If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 653 653 654 - More DS18B20 cancheckthe[[3DS18B20mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]617 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 655 655 656 - **Connection:**619 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 657 657 621 +(% style="color:blue" %)**Connection:** 622 + 658 658 [[image:image-20230512180718-8.png||height="538" width="647"]] 659 659 660 -**Example**: 661 661 626 +(% style="color:blue" %)**Example**: 627 + 662 662 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 663 663 664 664 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -668,6 +668,7 @@ 668 668 669 669 ==== 2.3.3.3 Digital Input ==== 670 670 637 + 671 671 The digital input for pin PB15, 672 672 673 673 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -677,11 +677,14 @@ 677 677 ((( 678 678 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 679 679 680 -**Note:**The maximum voltage input supports 3.6V. 647 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 648 + 649 + 681 681 ))) 682 682 683 683 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 684 684 654 + 685 685 The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 686 686 687 687 When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. ... ... @@ -688,18 +688,21 @@ 688 688 689 689 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 690 690 691 -**Note: **If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.661 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 692 692 663 + 693 693 ==== 2.3.3.5 Digital Interrupt ==== 694 694 666 + 695 695 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 696 696 697 -** ~Interrupt connection method:**669 +(% style="color:blue" %)** Interrupt connection method:** 698 698 699 699 [[image:image-20230513105351-5.png||height="147" width="485"]] 700 700 701 -**Example to use with door sensor :** 702 702 674 +(% style="color:blue" %)**Example to use with door sensor :** 675 + 703 703 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 704 704 705 705 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] ... ... @@ -706,8 +706,9 @@ 706 706 707 707 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 708 708 709 -**~ Below is the installation example:** 710 710 683 +(% style="color:blue" %)**Below is the installation example:** 684 + 711 711 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 712 712 713 713 * ((( ... ... @@ -719,7 +719,7 @@ 719 719 720 720 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 721 721 722 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 696 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 723 723 724 724 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 725 725 ... ... @@ -731,12 +731,13 @@ 731 731 732 732 The command is: 733 733 734 -**AT+INTMOD1=1 708 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 735 735 736 736 Below shows some screen captures in TTN V3: 737 737 738 738 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 739 739 714 + 740 740 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 741 741 742 742 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -744,16 +744,17 @@ 744 744 745 745 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 746 746 722 + 747 747 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 748 748 749 -We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 725 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 750 750 751 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 727 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 752 752 753 753 Below is the connection to SHT20/ SHT31. The connection is as below: 754 754 755 755 756 -[[image:image-20230513103633-3.png||height=" 636" width="1017"]]732 +[[image:image-20230513103633-3.png||height="448" width="716"]] 757 757 758 758 The device will be able to get the I2C sensor data now and upload to IoT Server. 759 759 ... ... @@ -772,23 +772,26 @@ 772 772 773 773 ==== 2.3.3.7 Distance Reading ==== 774 774 775 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 776 776 752 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 777 777 754 + 778 778 ==== 2.3.3.8 Ultrasonic Sensor ==== 779 779 757 + 780 780 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 781 781 782 782 The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 783 783 784 -The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor. 762 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 785 785 786 786 The picture below shows the connection: 787 787 788 788 [[image:image-20230512173903-6.png||height="596" width="715"]] 789 789 790 -Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 791 791 769 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 770 + 792 792 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 793 793 794 794 **Example:** ... ... @@ -796,19 +796,20 @@ 796 796 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 797 797 798 798 799 - 800 800 ==== 2.3.3.9 Battery Output - BAT pin ==== 801 801 780 + 802 802 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 803 803 804 804 805 805 ==== 2.3.3.10 +5V Output ==== 806 806 786 + 807 807 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 808 808 809 809 The 5V output time can be controlled by AT Command. 810 810 811 -**AT+5VT=1000** 791 +(% style="color:blue" %)**AT+5VT=1000** 812 812 813 813 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 814 814 ... ... @@ -815,18 +815,20 @@ 815 815 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 816 816 817 817 818 - 819 819 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 820 820 800 + 821 821 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 822 822 823 -[[image:image-20230512172447-4.png||height=" 593" width="1015"]]803 +[[image:image-20230512172447-4.png||height="416" width="712"]] 824 824 825 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 826 826 806 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 827 827 808 + 828 828 ==== 2.3.3.12 Working MOD ==== 829 829 811 + 830 830 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 831 831 832 832 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -843,6 +843,8 @@ 843 843 * 7: MOD8 844 844 * 8: MOD9 845 845 828 + 829 + 846 846 == 2.4 Payload Decoder file == 847 847 848 848 ... ... @@ -850,10 +850,9 @@ 850 850 851 851 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 852 852 853 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/ LSN50v2-S31%26S31BLSN50v2-S31%26S31B]]837 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 854 854 855 855 856 - 857 857 == 2.5 Frequency Plans == 858 858 859 859 ... ... @@ -873,6 +873,8 @@ 873 873 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 874 874 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 875 875 859 + 860 + 876 876 == 3.2 General Commands == 877 877 878 878 ... ... @@ -920,10 +920,13 @@ 920 920 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 921 921 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 922 922 908 + 909 + 923 923 === 3.3.2 Get Device Status === 924 924 925 -Send a LoRaWAN downlink to ask device send Alarm settings. 926 926 913 +Send a LoRaWAN downlink to ask the device to send its status. 914 + 927 927 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 928 928 929 929 Sensor will upload Device Status via FPORT=5. See payload section for detail. ... ... @@ -968,8 +968,11 @@ 968 968 * Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 969 969 * Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 970 970 959 + 960 + 971 971 === 3.3.4 Set Power Output Duration === 972 972 963 + 973 973 Control the output duration 5V . Before each sampling, device will 974 974 975 975 ~1. first enable the power output to external sensor, ... ... @@ -984,7 +984,6 @@ 984 984 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 985 985 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 986 986 500(default) 987 - 988 988 OK 989 989 ))) 990 990 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( ... ... @@ -997,11 +997,14 @@ 997 997 998 998 The first and second bytes are the time to turn on. 999 999 1000 -* Example 1: Downlink Payload: 070000 1001 -* Example 2: Downlink Payload: 0701F4 990 +* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 991 +* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1002 1002 993 + 994 + 1003 1003 === 3.3.5 Set Weighing parameters === 1004 1004 997 + 1005 1005 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1006 1006 1007 1007 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** ... ... @@ -1014,7 +1014,6 @@ 1014 1014 1015 1015 (% style="color:blue" %)**Downlink Command: 0x08** 1016 1016 1017 - 1018 1018 Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1019 1019 1020 1020 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. ... ... @@ -1025,8 +1025,11 @@ 1025 1025 * Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1026 1026 * Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1027 1027 1020 + 1021 + 1028 1028 === 3.3.6 Set Digital pulse count value === 1029 1029 1024 + 1030 1030 Feature: Set the pulse count value. 1031 1031 1032 1032 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. ... ... @@ -1040,7 +1040,6 @@ 1040 1040 1041 1041 (% style="color:blue" %)**Downlink Command: 0x09** 1042 1042 1043 - 1044 1044 Format: Command Code (0x09) followed by 5 bytes. 1045 1045 1046 1046 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. ... ... @@ -1048,8 +1048,11 @@ 1048 1048 * Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1049 1049 * Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1050 1050 1045 + 1046 + 1051 1051 === 3.3.7 Set Workmode === 1052 1052 1049 + 1053 1053 Feature: Switch working mode. 1054 1054 1055 1055 (% style="color:blue" %)**AT Command: AT+MOD** ... ... @@ -1061,18 +1061,18 @@ 1061 1061 ))) 1062 1062 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1063 1063 OK 1064 - 1065 1065 Attention:Take effect after ATZ 1066 1066 ))) 1067 1067 1068 1068 (% style="color:blue" %)**Downlink Command: 0x0A** 1069 1069 1070 - 1071 1071 Format: Command Code (0x0A) followed by 1 bytes. 1072 1072 1073 1073 * Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1074 1074 * Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1075 1075 1071 + 1072 + 1076 1076 = 4. Battery & Power Consumption = 1077 1077 1078 1078 ... ... @@ -1099,13 +1099,18 @@ 1099 1099 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1100 1100 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1101 1101 1099 + 1100 + 1102 1102 = 6. FAQ = 1103 1103 1104 1104 == 6.1 Where can i find source code of SN50v3-LB? == 1105 1105 1105 + 1106 1106 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1107 1107 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1108 1108 1109 + 1110 + 1109 1109 = 7. Order Info = 1110 1110 1111 1111 ... ... @@ -1129,8 +1129,11 @@ 1129 1129 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1130 1130 * (% style="color:red" %)**NH**(%%): No Hole 1131 1131 1134 + 1135 + 1132 1132 = 8. Packing Info = 1133 1133 1138 + 1134 1134 (% style="color:#037691" %)**Package Includes**: 1135 1135 1136 1136 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1142,8 +1142,11 @@ 1142 1142 * Package Size / pcs : cm 1143 1143 * Weight / pcs : g 1144 1144 1150 + 1151 + 1145 1145 = 9. Support = 1146 1146 1147 1147 1148 1148 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1149 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1156 + 1157 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.0 KB - Content