<
From version < 35.1 >
edited by Saxer Lin
on 2023/05/13 11:12
To version < 87.1 >
edited by Xiaoling
on 2024/01/03 09:57
>
Change comment: Uploaded new attachment "image-20240103095714-2.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Saxer
1 +XWiki.Xiaoling
Content
... ... @@ -1,8 +1,9 @@
1 -[[image:image-20230511201248-1.png||height="403" width="489"]]
1 +(% style="text-align:center" %)
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
2 2  
3 3  
4 4  
5 -**Table of Contents**
6 +**Table of Contents:**
6 6  
7 7  {{toc/}}
8 8  
... ... @@ -15,23 +15,20 @@
15 15  
16 16  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
19 +
18 18  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
19 19  
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
20 20  
21 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 -
23 -
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 -
27 27  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -
30 30  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
31 31  
32 -
33 33  == 1.2 ​Features ==
34 34  
32 +
35 35  * LoRaWAN 1.0.3 Class A
36 36  * Ultra-low power consumption
37 37  * Open-Source hardware/software
... ... @@ -44,6 +44,7 @@
44 44  
45 45  == 1.3 Specification ==
46 46  
45 +
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 49  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -80,6 +80,7 @@
80 80  
81 81  == 1.4 Sleep mode and working mode ==
82 82  
82 +
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -88,7 +88,7 @@
88 88  == 1.5 Button & LEDs ==
89 89  
90 90  
91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
92 92  
93 93  
94 94  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -122,21 +122,27 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230511203450-2.png||height="443" width="785"]]
125 +[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
129 129  
130 +=== 1.8.1 for LB version ===
130 130  
131 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132 132  
133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134 134  
135 +
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
138 +=== 1.8.2 for LS version ===
137 137  
138 -== Hole Option ==
140 +[[image:image-20231231203439-3.png||height="385" width="886"]]
139 139  
142 +
143 +== 1.9 Hole Option ==
144 +
145 +
140 140  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
141 141  
142 142  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -149,7 +149,7 @@
149 149  == 2.1 How it works ==
150 150  
151 151  
152 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
153 153  
154 154  
155 155  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -157,7 +157,7 @@
157 157  
158 158  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
159 159  
160 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
161 161  
162 162  
163 163  (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
... ... @@ -206,7 +206,7 @@
206 206  === 2.3.1 Device Status, FPORT~=5 ===
207 207  
208 208  
209 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
215 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
210 210  
211 211  The Payload format is as below.
212 212  
... ... @@ -214,44 +214,44 @@
214 214  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
215 215  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
216 216  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
217 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
218 218  
219 219  Example parse in TTNv3
220 220  
221 221  
222 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
228 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
223 223  
224 224  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
225 225  
226 226  (% style="color:#037691" %)**Frequency Band**:
227 227  
228 -*0x01: EU868
234 +0x01: EU868
229 229  
230 -*0x02: US915
236 +0x02: US915
231 231  
232 -*0x03: IN865
238 +0x03: IN865
233 233  
234 -*0x04: AU915
240 +0x04: AU915
235 235  
236 -*0x05: KZ865
242 +0x05: KZ865
237 237  
238 -*0x06: RU864
244 +0x06: RU864
239 239  
240 -*0x07: AS923
246 +0x07: AS923
241 241  
242 -*0x08: AS923-1
248 +0x08: AS923-1
243 243  
244 -*0x09: AS923-2
250 +0x09: AS923-2
245 245  
246 -*0x0a: AS923-3
252 +0x0a: AS923-3
247 247  
248 -*0x0b: CN470
254 +0x0b: CN470
249 249  
250 -*0x0c: EU433
256 +0x0c: EU433
251 251  
252 -*0x0d: KR920
258 +0x0d: KR920
253 253  
254 -*0x0e: MA869
260 +0x0e: MA869
255 255  
256 256  
257 257  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -275,186 +275,199 @@
275 275  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
276 276  
277 277  
278 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
284 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
279 279  
280 280  For example:
281 281  
282 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
288 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283 283  
284 284  
285 285  (% style="color:red" %) **Important Notice:**
286 286  
287 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 -1. All modes share the same Payload Explanation from HERE.
289 -1. By default, the device will send an uplink message every 20 minutes.
293 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
290 290  
291 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
295 +2. All modes share the same Payload Explanation from HERE.
292 292  
293 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
297 +3. By default, the device will send an uplink message every 20 minutes.
294 294  
295 -|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 -|**Value**|Bat|(((
297 -Temperature(DS18B20)
298 298  
299 -(PC13)
300 -)))|(((
301 -ADC
300 +==== 2.3.2.1  MOD~=1 (Default Mode) ====
302 302  
303 -(PA4)
304 -)))|(% style="width:216px" %)(((
305 -Digital in & Digital Interrupt
306 306  
307 -
308 -)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31)
303 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
309 309  
305 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
306 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
307 +|Value|Bat|(% style="width:191px" %)(((
308 +Temperature(DS18B20)(PC13)
309 +)))|(% style="width:78px" %)(((
310 +ADC(PA4)
311 +)))|(% style="width:216px" %)(((
312 +Digital in(PB15)&Digital Interrupt(PA8)
313 +)))|(% style="width:308px" %)(((
314 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
315 +)))|(% style="width:154px" %)(((
316 +Humidity(SHT20 or SHT31)
317 +)))
318 +
310 310  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
311 311  
312 312  
313 313  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
314 314  
324 +
315 315  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
316 316  
317 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
318 -|**Value**|BAT|(((
319 -Temperature(DS18B20)
320 -)))|ADC|Digital in & Digital Interrupt|(((
321 -Distance measure by:
322 -1) LIDAR-Lite V3HP
323 -Or
324 -2) Ultrasonic Sensor
325 -)))|Reserved
327 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
328 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
329 +|Value|BAT|(% style="width:196px" %)(((
330 +Temperature(DS18B20)(PC13)
331 +)))|(% style="width:87px" %)(((
332 +ADC(PA4)
333 +)))|(% style="width:189px" %)(((
334 +Digital in(PB15) & Digital Interrupt(PA8)
335 +)))|(% style="width:208px" %)(((
336 +Distance measure by: 1) LIDAR-Lite V3HP
337 +Or 2) Ultrasonic Sensor
338 +)))|(% style="width:117px" %)Reserved
326 326  
327 327  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
328 328  
329 -**Connection of LIDAR-Lite V3HP:**
330 330  
343 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
344 +
331 331  [[image:image-20230512173758-5.png||height="563" width="712"]]
332 332  
333 -**Connection to Ultrasonic Sensor:**
334 334  
348 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
349 +
350 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
351 +
335 335  [[image:image-20230512173903-6.png||height="596" width="715"]]
336 336  
354 +
337 337  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
338 338  
339 -|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
340 -|**Value**|BAT|(((
341 -Temperature(DS18B20)
342 -)))|Digital in & Digital Interrupt|ADC|(((
357 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
358 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
359 +|Value|BAT|(% style="width:183px" %)(((
360 +Temperature(DS18B20)(PC13)
361 +)))|(% style="width:173px" %)(((
362 +Digital in(PB15) & Digital Interrupt(PA8)
363 +)))|(% style="width:84px" %)(((
364 +ADC(PA4)
365 +)))|(% style="width:323px" %)(((
343 343  Distance measure by:1)TF-Mini plus LiDAR
344 -Or 
345 -2) TF-Luna LiDAR
346 -)))|Distance signal  strength
367 +Or 2) TF-Luna LiDAR
368 +)))|(% style="width:188px" %)Distance signal  strength
347 347  
348 348  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
349 349  
372 +
350 350  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
351 351  
352 -Need to remove R3 and R4 resistors to get low power.
375 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
353 353  
354 354  [[image:image-20230512180609-7.png||height="555" width="802"]]
355 355  
379 +
356 356  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
357 357  
358 -Need to remove R3 and R4 resistors to get low power.
382 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
359 359  
360 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
384 +[[image:image-20230610170047-1.png||height="452" width="799"]]
361 361  
362 -Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
363 363  
364 -
365 365  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
366 366  
389 +
367 367  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
368 368  
369 -|=(((
392 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
393 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
370 370  **Size(bytes)**
371 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1
372 -|**Value**|(% style="width:68px" %)(((
373 -ADC
374 -
375 -(PA0)
395 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
396 +|Value|(% style="width:68px" %)(((
397 +ADC1(PA4)
376 376  )))|(% style="width:75px" %)(((
377 -ADC2
399 +ADC2(PA5)
400 +)))|(((
401 +ADC3(PA8)
402 +)))|(((
403 +Digital Interrupt(PB15)
404 +)))|(% style="width:304px" %)(((
405 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
406 +)))|(% style="width:163px" %)(((
407 +Humidity(SHT20 or SHT31)
408 +)))|(% style="width:53px" %)Bat
378 378  
379 -(PA1)
380 -)))|ADC3 (PA4)|(((
381 -Digital in(PA12)&Digital Interrupt1(PB14)
382 -)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat
410 +[[image:image-20230513110214-6.png]]
383 383  
384 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
385 385  
386 -
387 387  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
388 388  
389 -[[image:image-20230512170701-3.png||height="565" width="743"]]
390 390  
391 391  This mode has total 11 bytes. As shown below:
392 392  
393 -(% style="width:1017px" %)
394 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
395 -|**Value**|BAT|(% style="width:186px" %)(((
396 -Temperature1(DS18B20)
397 -(PC13)
418 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
419 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
420 +|Value|BAT|(% style="width:186px" %)(((
421 +Temperature1(DS18B20)(PC13)
398 398  )))|(% style="width:82px" %)(((
399 -ADC
400 -
401 -(PA4)
423 +ADC(PA4)
402 402  )))|(% style="width:210px" %)(((
403 -Digital in & Digital Interrupt
404 -
405 -(PB15)  &  (PA8) 
425 +Digital in(PB15) & Digital Interrupt(PA8) 
406 406  )))|(% style="width:191px" %)Temperature2(DS18B20)
407 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
408 -(PB8)
427 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
409 409  
410 410  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
411 411  
412 412  
432 +[[image:image-20230513134006-1.png||height="559" width="736"]]
433 +
434 +
413 413  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
414 414  
437 +
415 415  [[image:image-20230512164658-2.png||height="532" width="729"]]
416 416  
417 417  Each HX711 need to be calibrated before used. User need to do below two steps:
418 418  
419 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
420 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
442 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
443 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
421 421  1. (((
422 422  Weight has 4 bytes, the unit is g.
446 +
447 +
448 +
423 423  )))
424 424  
425 425  For example:
426 426  
427 -**AT+GETSENSORVALUE =0**
453 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
428 428  
429 429  Response:  Weight is 401 g
430 430  
431 431  Check the response of this command and adjust the value to match the real value for thing.
432 432  
433 -(% style="width:982px" %)
434 -|=(((
459 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
460 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
435 435  **Size(bytes)**
436 -)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
437 -|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)(((
438 -[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
462 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
463 +|Value|BAT|(% style="width:193px" %)(((
464 +Temperature(DS18B20)(PC13)
465 +)))|(% style="width:85px" %)(((
466 +ADC(PA4)
467 +)))|(% style="width:186px" %)(((
468 +Digital in(PB15) & Digital Interrupt(PA8)
469 +)))|(% style="width:100px" %)Weight
439 439  
440 -(PC13)
441 -
442 -
443 -)))|(% style="width:119px" %)(((
444 -[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]
445 -
446 -(PA4)
447 -)))|(% style="width:279px" %)(((
448 -[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]
449 -
450 -(PB15)  &  (PA8)
451 -)))|(% style="width:106px" %)Weight
452 -
453 453  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
454 454  
455 455  
456 456  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
457 457  
476 +
458 458  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
459 459  
460 460  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -461,86 +461,211 @@
461 461  
462 462  [[image:image-20230512181814-9.png||height="543" width="697"]]
463 463  
464 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
465 465  
466 -|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
467 -|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
468 -[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
469 -)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
484 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
470 470  
486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 +|Value|BAT|(% style="width:256px" %)(((
489 +Temperature(DS18B20)(PC13)
490 +)))|(% style="width:108px" %)(((
491 +ADC(PA4)
492 +)))|(% style="width:126px" %)(((
493 +Digital in(PB15)
494 +)))|(% style="width:145px" %)(((
495 +Count(PA8)
496 +)))
497 +
471 471  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
472 472  
473 473  
474 474  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
475 475  
476 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
477 477  
478 -|=(((
504 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
505 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
479 479  **Size(bytes)**
480 -)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
481 -|**Value**|BAT|Temperature(DS18B20)|ADC|(((
482 -Digital in(PA12)&Digital Interrupt1(PB14)
483 -)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
507 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
508 +|Value|BAT|(% style="width:188px" %)(((
509 +Temperature(DS18B20)
510 +(PC13)
511 +)))|(% style="width:83px" %)(((
512 +ADC(PA5)
513 +)))|(% style="width:184px" %)(((
514 +Digital Interrupt1(PA8)
515 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
484 484  
517 +[[image:image-20230513111203-7.png||height="324" width="975"]]
518 +
519 +
485 485  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
486 486  
487 -|=(((
522 +
523 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
488 488  **Size(bytes)**
489 -)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
490 -|**Value**|BAT|Temperature(DS18B20)|(((
491 -ADC1(PA0)
492 -)))|(((
493 -Digital in
494 -& Digital Interrupt(PB14)
495 -)))|(((
496 -ADC2(PA1)
497 -)))|(((
498 -ADC3(PA4)
526 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
527 +|Value|BAT|(% style="width:207px" %)(((
528 +Temperature(DS18B20)
529 +(PC13)
530 +)))|(% style="width:94px" %)(((
531 +ADC1(PA4)
532 +)))|(% style="width:198px" %)(((
533 +Digital Interrupt(PB15)
534 +)))|(% style="width:84px" %)(((
535 +ADC2(PA5)
536 +)))|(% style="width:82px" %)(((
537 +ADC3(PA8)
499 499  )))
500 500  
501 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
540 +[[image:image-20230513111231-8.png||height="335" width="900"]]
502 502  
503 503  
504 504  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
505 505  
506 -|=(((
545 +
546 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
547 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
507 507  **Size(bytes)**
508 -)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
509 -|**Value**|BAT|(((
510 -Temperature1(PB3)
549 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
550 +|Value|BAT|(((
551 +Temperature
552 +(DS18B20)(PC13)
511 511  )))|(((
512 -Temperature2(PA9)
554 +Temperature2
555 +(DS18B20)(PB9)
513 513  )))|(((
514 -Digital in
515 -& Digital Interrupt(PA4)
516 -)))|(((
517 -Temperature3(PA10)
518 -)))|(((
519 -Count1(PB14)
520 -)))|(((
521 -Count2(PB15)
557 +Digital Interrupt
558 +(PB15)
559 +)))|(% style="width:193px" %)(((
560 +Temperature3
561 +(DS18B20)(PB8)
562 +)))|(% style="width:78px" %)(((
563 +Count1(PA8)
564 +)))|(% style="width:78px" %)(((
565 +Count2(PA4)
522 522  )))
523 523  
524 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
568 +[[image:image-20230513111255-9.png||height="341" width="899"]]
525 525  
526 -**The newly added AT command is issued correspondingly:**
570 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
527 527  
528 -**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
572 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
529 529  
530 -**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
574 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
531 531  
532 -**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
576 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
533 533  
534 -**AT+SETCNT=aa,bb** 
535 535  
536 -When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
579 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
537 537  
538 -When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
581 +When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
539 539  
583 +When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
540 540  
541 541  
586 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
587 +
588 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
589 +
590 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
591 +
592 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
593 +
594 +
595 +===== 2.3.2.10.a  Uplink, PWM input capture =====
596 +
597 +
598 +[[image:image-20230817172209-2.png||height="439" width="683"]]
599 +
600 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
601 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
602 +|Value|Bat|(% style="width:191px" %)(((
603 +Temperature(DS18B20)(PC13)
604 +)))|(% style="width:78px" %)(((
605 +ADC(PA4)
606 +)))|(% style="width:135px" %)(((
607 +PWM_Setting
608 +&Digital Interrupt(PA8)
609 +)))|(% style="width:70px" %)(((
610 +Pulse period
611 +)))|(% style="width:89px" %)(((
612 +Duration of high level
613 +)))
614 +
615 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
616 +
617 +
618 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
619 +
620 +**Frequency:**
621 +
622 +(% class="MsoNormal" %)
623 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
624 +
625 +(% class="MsoNormal" %)
626 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
627 +
628 +
629 +(% class="MsoNormal" %)
630 +**Duty cycle:**
631 +
632 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
633 +
634 +[[image:image-20230818092200-1.png||height="344" width="627"]]
635 +
636 +===== 2.3.2.10.b  Uplink, PWM output =====
637 +
638 +[[image:image-20230817172209-2.png||height="439" width="683"]]
639 +
640 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
641 +
642 +a is the time delay of the output, the unit is ms.
643 +
644 +b is the output frequency, the unit is HZ.
645 +
646 +c is the duty cycle of the output, the unit is %.
647 +
648 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
649 +
650 +aa is the time delay of the output, the unit is ms.
651 +
652 +bb is the output frequency, the unit is HZ.
653 +
654 +cc is the duty cycle of the output, the unit is %.
655 +
656 +
657 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
658 +
659 +The oscilloscope displays as follows:
660 +
661 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
662 +
663 +
664 +===== 2.3.2.10.c  Downlink, PWM output =====
665 +
666 +
667 +[[image:image-20230817173800-3.png||height="412" width="685"]]
668 +
669 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
670 +
671 + xx xx xx is the output frequency, the unit is HZ.
672 +
673 + yy is the duty cycle of the output, the unit is %.
674 +
675 + zz zz is the time delay of the output, the unit is ms.
676 +
677 +
678 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
679 +
680 +The oscilloscope displays as follows:
681 +
682 +[[image:image-20230817173858-5.png||height="694" width="921"]]
683 +
684 +
542 542  === 2.3.3  ​Decode payload ===
543 543  
687 +
544 544  While using TTN V3 network, you can add the payload format to decode the payload.
545 545  
546 546  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -547,13 +547,14 @@
547 547  
548 548  The payload decoder function for TTN V3 are here:
549 549  
550 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
694 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
551 551  
552 552  
553 553  ==== 2.3.3.1 Battery Info ====
554 554  
555 -Check the battery voltage for SN50v3.
556 556  
700 +Check the battery voltage for SN50v3-LB.
701 +
557 557  Ex1: 0x0B45 = 2885mV
558 558  
559 559  Ex2: 0x0B49 = 2889mV
... ... @@ -561,16 +561,18 @@
561 561  
562 562  ==== 2.3.3.2  Temperature (DS18B20) ====
563 563  
564 -If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
565 565  
566 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
710 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
567 567  
568 -**Connection:**
712 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
569 569  
714 +(% style="color:blue" %)**Connection:**
715 +
570 570  [[image:image-20230512180718-8.png||height="538" width="647"]]
571 571  
572 -**Example**:
573 573  
719 +(% style="color:blue" %)**Example**:
720 +
574 574  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
575 575  
576 576  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -580,6 +580,7 @@
580 580  
581 581  ==== 2.3.3.3 Digital Input ====
582 582  
730 +
583 583  The digital input for pin PB15,
584 584  
585 585  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -587,51 +587,65 @@
587 587  
588 588  (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
589 589  (((
590 -Note:The maximum voltage input supports 3.6V.
738 +When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
739 +
740 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
741 +
742 +
591 591  )))
592 592  
593 -(% class="wikigeneratedid" %)
594 594  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
595 595  
596 -The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
597 597  
748 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
749 +
598 598  When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
599 599  
600 600  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
601 601  
602 602  
755 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
756 +
757 +
758 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
759 +
760 +[[image:image-20230811113449-1.png||height="370" width="608"]]
761 +
603 603  ==== 2.3.3.5 Digital Interrupt ====
604 604  
605 -Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
606 606  
607 -**~ Interrupt connection method:**
765 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
608 608  
609 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
767 +(% style="color:blue" %)** Interrupt connection method:**
610 610  
611 -**Example to use with door sensor :**
769 +[[image:image-20230513105351-5.png||height="147" width="485"]]
612 612  
771 +
772 +(% style="color:blue" %)**Example to use with door sensor :**
773 +
613 613  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
614 614  
615 615  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
616 616  
617 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
778 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
618 618  
619 -**~ Below is the installation example:**
620 620  
621 -Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
781 +(% style="color:blue" %)**Below is the installation example:**
622 622  
783 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
784 +
623 623  * (((
624 -One pin to LSN50's PB14 pin
786 +One pin to SN50v3-LB's PA8 pin
625 625  )))
626 626  * (((
627 -The other pin to LSN50's VCC pin
789 +The other pin to SN50v3-LB's VDD pin
628 628  )))
629 629  
630 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
792 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
631 631  
632 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
794 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
633 633  
634 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
796 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
635 635  
636 636  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
637 637  
... ... @@ -641,29 +641,33 @@
641 641  
642 642  The command is:
643 643  
644 -**AT+INTMOD=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
806 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
645 645  
646 646  Below shows some screen captures in TTN V3:
647 647  
648 648  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
649 649  
650 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
651 651  
813 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
814 +
652 652  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
653 653  
654 654  
655 655  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
656 656  
820 +
657 657  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
658 658  
659 -We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
823 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
660 660  
661 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
825 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
662 662  
827 +
663 663  Below is the connection to SHT20/ SHT31. The connection is as below:
664 664  
665 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
830 +[[image:image-20230610170152-2.png||height="501" width="846"]]
666 666  
832 +
667 667  The device will be able to get the I2C sensor data now and upload to IoT Server.
668 668  
669 669  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -681,20 +681,26 @@
681 681  
682 682  ==== 2.3.3.7  ​Distance Reading ====
683 683  
684 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
685 685  
851 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
686 686  
853 +
687 687  ==== 2.3.3.8 Ultrasonic Sensor ====
688 688  
856 +
689 689  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
690 690  
691 -The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
859 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
692 692  
861 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
862 +
693 693  The picture below shows the connection:
694 694  
865 +[[image:image-20230512173903-6.png||height="596" width="715"]]
695 695  
696 -Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
697 697  
868 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
869 +
698 698  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
699 699  
700 700  **Example:**
... ... @@ -701,50 +701,72 @@
701 701  
702 702  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
703 703  
704 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
705 705  
706 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
877 +==== 2.3.3.9  Battery Output - BAT pin ====
707 707  
708 -You can see the serial output in ULT mode as below:
709 709  
710 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
880 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
711 711  
712 -**In TTN V3 server:**
713 713  
714 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
883 +==== 2.3.3.10  +5V Output ====
715 715  
716 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
717 717  
718 -==== 2.3.3.9  Battery Output - BAT pin ====
886 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
719 719  
720 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
888 +The 5V output time can be controlled by AT Command.
721 721  
890 +(% style="color:blue" %)**AT+5VT=1000**
722 722  
723 -==== 2.3.3.10  +5V Output ====
892 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
724 724  
725 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
894 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
726 726  
727 -The 5V output time can be controlled by AT Command.
728 728  
729 -**AT+5VT=1000**
897 +==== 2.3.3.11  BH1750 Illumination Sensor ====
730 730  
731 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
732 732  
733 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
900 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
734 734  
902 +[[image:image-20230512172447-4.png||height="416" width="712"]]
735 735  
736 736  
737 -==== 2.3.3.11  BH1750 Illumination Sensor ====
905 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
738 738  
739 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
740 740  
741 -[[image:image-20230512172447-4.png||height="593" width="1015"]]
908 +==== 2.3.3.12  PWM MOD ====
742 742  
743 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
744 744  
911 +* (((
912 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
913 +)))
914 +* (((
915 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
916 +)))
745 745  
746 -==== 2.3.3.12  Working MOD ====
918 + [[image:image-20230817183249-3.png||height="320" width="417"]]
747 747  
920 +* (((
921 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
922 +)))
923 +* (((
924 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
925 +)))
926 +* (((
927 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
928 +
929 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
930 +
931 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
932 +
933 +b) If the output duration is more than 30 seconds, better to use external power source. 
934 +
935 +
936 +
937 +)))
938 +
939 +==== 2.3.3.13  Working MOD ====
940 +
941 +
748 748  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
749 749  
750 750  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -757,6 +757,10 @@
757 757  * 3: MOD4
758 758  * 4: MOD5
759 759  * 5: MOD6
954 +* 6: MOD7
955 +* 7: MOD8
956 +* 8: MOD9
957 +* 9: MOD10
760 760  
761 761  == 2.4 Payload Decoder file ==
762 762  
... ... @@ -765,10 +765,9 @@
765 765  
766 766  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
767 767  
768 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
966 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
769 769  
770 770  
771 -
772 772  == 2.5 Frequency Plans ==
773 773  
774 774  
... ... @@ -804,7 +804,7 @@
804 804  == 3.3 Commands special design for SN50v3-LB ==
805 805  
806 806  
807 -These commands only valid for S31x-LB, as below:
1004 +These commands only valid for SN50v3-LB, as below:
808 808  
809 809  
810 810  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -815,7 +815,7 @@
815 815  (% style="color:blue" %)**AT Command: AT+TDC**
816 816  
817 817  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
818 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1015 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
819 819  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
820 820  30000
821 821  OK
... ... @@ -837,28 +837,29 @@
837 837  
838 838  === 3.3.2 Get Device Status ===
839 839  
840 -Send a LoRaWAN downlink to ask device send Alarm settings.
841 841  
842 -(% style="color:blue" %)**Downlink Payload **(%%)0x26 01
1038 +Send a LoRaWAN downlink to ask the device to send its status.
843 843  
844 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
1040 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
845 845  
1042 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
846 846  
847 -=== 3.3.7 Set Interrupt Mode ===
848 848  
1045 +=== 3.3.3 Set Interrupt Mode ===
849 849  
1047 +
850 850  Feature, Set Interrupt mode for GPIO_EXIT.
851 851  
852 -(% style="color:blue" %)**AT Command: AT+INTMOD**
1050 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
853 853  
854 854  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
855 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
856 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1053 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1054 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
857 857  0
858 858  OK
859 859  the mode is 0 =Disable Interrupt
860 860  )))
861 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
1059 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
862 862  Set Transmit Interval
863 863  0. (Disable Interrupt),
864 864  ~1. (Trigger by rising and falling edge)
... ... @@ -865,6 +865,11 @@
865 865  2. (Trigger by falling edge)
866 866  3. (Trigger by rising edge)
867 867  )))|(% style="width:157px" %)OK
1066 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1067 +Set Transmit Interval
1068 +trigger by rising edge.
1069 +)))|(% style="width:157px" %)OK
1070 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
868 868  
869 869  (% style="color:blue" %)**Downlink Command: 0x06**
870 870  
... ... @@ -872,12 +872,210 @@
872 872  
873 873  This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
874 874  
875 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
876 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1078 +* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1079 +* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1080 +* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1081 +* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
877 877  
878 -= 4. Battery & Power Consumption =
1083 +=== 3.3.4 Set Power Output Duration ===
879 879  
880 880  
1086 +Control the output duration 5V . Before each sampling, device will
1087 +
1088 +~1. first enable the power output to external sensor,
1089 +
1090 +2. keep it on as per duration, read sensor value and construct uplink payload
1091 +
1092 +3. final, close the power output.
1093 +
1094 +(% style="color:blue" %)**AT Command: AT+5VT**
1095 +
1096 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1097 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1098 +|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1099 +500(default)
1100 +OK
1101 +)))
1102 +|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1103 +Close after a delay of 1000 milliseconds.
1104 +)))|(% style="width:157px" %)OK
1105 +
1106 +(% style="color:blue" %)**Downlink Command: 0x07**
1107 +
1108 +Format: Command Code (0x07) followed by 2 bytes.
1109 +
1110 +The first and second bytes are the time to turn on.
1111 +
1112 +* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1113 +* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1114 +
1115 +=== 3.3.5 Set Weighing parameters ===
1116 +
1117 +
1118 +Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1119 +
1120 +(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1121 +
1122 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1123 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1124 +|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1125 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1126 +|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1127 +
1128 +(% style="color:blue" %)**Downlink Command: 0x08**
1129 +
1130 +Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1131 +
1132 +Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1133 +
1134 +The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1135 +
1136 +* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1137 +* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1138 +* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1139 +
1140 +=== 3.3.6 Set Digital pulse count value ===
1141 +
1142 +
1143 +Feature: Set the pulse count value.
1144 +
1145 +Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1146 +
1147 +(% style="color:blue" %)**AT Command: AT+SETCNT**
1148 +
1149 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1150 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1151 +|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1152 +|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1153 +
1154 +(% style="color:blue" %)**Downlink Command: 0x09**
1155 +
1156 +Format: Command Code (0x09) followed by 5 bytes.
1157 +
1158 +The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1159 +
1160 +* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1161 +* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1162 +
1163 +=== 3.3.7 Set Workmode ===
1164 +
1165 +
1166 +Feature: Switch working mode.
1167 +
1168 +(% style="color:blue" %)**AT Command: AT+MOD**
1169 +
1170 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1171 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1172 +|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1173 +OK
1174 +)))
1175 +|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1176 +OK
1177 +Attention:Take effect after ATZ
1178 +)))
1179 +
1180 +(% style="color:blue" %)**Downlink Command: 0x0A**
1181 +
1182 +Format: Command Code (0x0A) followed by 1 bytes.
1183 +
1184 +* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1185 +* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1186 +
1187 +(% id="H3.3.8PWMsetting" %)
1188 +=== 3.3.8 PWM setting ===
1189 +
1190 +
1191 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1192 +
1193 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1194 +
1195 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1196 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1197 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1198 +0(default)
1199 +
1200 +OK
1201 +)))
1202 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1203 +OK
1204 +
1205 +)))
1206 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1207 +
1208 +(% style="color:blue" %)**Downlink Command: 0x0C**
1209 +
1210 +Format: Command Code (0x0C) followed by 1 bytes.
1211 +
1212 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1213 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1214 +
1215 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1216 +
1217 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1218 +
1219 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1220 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1221 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1222 +0,0,0(default)
1223 +
1224 +OK
1225 +)))
1226 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1227 +OK
1228 +
1229 +)))
1230 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1231 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1232 +
1233 +
1234 +)))|(% style="width:137px" %)(((
1235 +OK
1236 +)))
1237 +
1238 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1239 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1240 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1241 +AT+PWMOUT=a,b,c
1242 +
1243 +
1244 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1245 +Set PWM output time, output frequency and output duty cycle.
1246 +
1247 +(((
1248 +
1249 +)))
1250 +
1251 +(((
1252 +
1253 +)))
1254 +)))|(% style="width:242px" %)(((
1255 +a: Output time (unit: seconds)
1256 +
1257 +The value ranges from 0 to 65535.
1258 +
1259 +When a=65535, PWM will always output.
1260 +)))
1261 +|(% style="width:242px" %)(((
1262 +b: Output frequency (unit: HZ)
1263 +)))
1264 +|(% style="width:242px" %)(((
1265 +c: Output duty cycle (unit: %)
1266 +
1267 +The value ranges from 0 to 100.
1268 +)))
1269 +
1270 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1271 +
1272 +Format: Command Code (0x0B01) followed by 6 bytes.
1273 +
1274 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1275 +
1276 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1277 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1278 +
1279 += 4. Battery & Power Cons =
1280 +
1281 +
881 881  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
882 882  
883 883  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -887,28 +887,43 @@
887 887  
888 888  
889 889  (% class="wikigeneratedid" %)
890 -User can change firmware SN50v3-LB to:
1291 +**User can change firmware SN50v3-LB to:**
891 891  
892 892  * Change Frequency band/ region.
893 893  * Update with new features.
894 894  * Fix bugs.
895 895  
896 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1297 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
897 897  
1299 +**Methods to Update Firmware:**
898 898  
899 -Methods to Update Firmware:
1301 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1302 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
900 900  
901 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
902 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
903 -
904 904  = 6. FAQ =
905 905  
906 906  == 6.1 Where can i find source code of SN50v3-LB? ==
907 907  
1308 +
908 908  * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
909 909  * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
910 910  
1312 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
911 911  
1314 +
1315 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1316 +
1317 +
1318 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1319 +
1320 +
1321 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1322 +
1323 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1324 +
1325 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1326 +
1327 +
912 912  = 7. Order Info =
913 913  
914 914  
... ... @@ -934,6 +934,7 @@
934 934  
935 935  = 8. ​Packing Info =
936 936  
1353 +
937 937  (% style="color:#037691" %)**Package Includes**:
938 938  
939 939  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -949,4 +949,5 @@
949 949  
950 950  
951 951  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
952 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1369 +
1370 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
image-20230513134006-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0