Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
Uploaded new attachment "image-20231231203439-3.png", version {1}
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 21 added, 0 removed)
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB User Manual 1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Edwin - Content
-
... ... @@ -1,8 +1,9 @@ 1 -[[image:image-20230511201248-1.png||height="403" width="489"]] 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 4 4 5 -**Table of Contents :**6 +**Table of Contents:** 6 6 7 7 {{toc/}} 8 8 ... ... @@ -15,23 +15,20 @@ 15 15 16 16 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 17 17 19 + 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 20 20 21 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 - 23 - 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 - 27 27 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 28 28 29 - 30 30 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 31 31 32 - 33 33 == 1.2 Features == 34 34 32 + 35 35 * LoRaWAN 1.0.3 Class A 36 36 * Ultra-low power consumption 37 37 * Open-Source hardware/software ... ... @@ -44,6 +44,7 @@ 44 44 45 45 == 1.3 Specification == 46 46 45 + 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -80,6 +80,7 @@ 80 80 81 81 == 1.4 Sleep mode and working mode == 82 82 82 + 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -88,7 +88,7 @@ 88 88 == 1.5 Button & LEDs == 89 89 90 90 91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]] 92 92 93 93 94 94 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 511203450-2.png||height="443" width="785"]]125 +[[image:image-20230610163213-1.png||height="404" width="699"]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,8 +135,9 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 138 +== 1.9 Hole Option == 139 139 140 + 140 140 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 141 141 142 142 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -149,7 +149,7 @@ 149 149 == 2.1 How it works == 150 150 151 151 152 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 153 153 154 154 155 155 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -157,7 +157,7 @@ 157 157 158 158 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 159 159 160 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.161 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 161 161 162 162 163 163 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -206,7 +206,7 @@ 206 206 === 2.3.1 Device Status, FPORT~=5 === 207 207 208 208 209 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 210 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 210 210 211 211 The Payload format is as below. 212 212 ... ... @@ -214,44 +214,44 @@ 214 214 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 215 215 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 216 216 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 217 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT218 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 218 218 219 219 Example parse in TTNv3 220 220 221 221 222 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 223 223 224 224 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 225 225 226 226 (% style="color:#037691" %)**Frequency Band**: 227 227 228 - *0x01: EU868229 +0x01: EU868 229 229 230 - *0x02: US915231 +0x02: US915 231 231 232 - *0x03: IN865233 +0x03: IN865 233 233 234 - *0x04: AU915235 +0x04: AU915 235 235 236 - *0x05: KZ865237 +0x05: KZ865 237 237 238 - *0x06: RU864239 +0x06: RU864 239 239 240 - *0x07: AS923241 +0x07: AS923 241 241 242 - *0x08: AS923-1243 +0x08: AS923-1 243 243 244 - *0x09: AS923-2245 +0x09: AS923-2 245 245 246 - *0x0a: AS923-3247 +0x0a: AS923-3 247 247 248 - *0x0b: CN470249 +0x0b: CN470 249 249 250 - *0x0c: EU433251 +0x0c: EU433 251 251 252 - *0x0d: KR920253 +0x0d: KR920 253 253 254 - *0x0e: MA869255 +0x0e: MA869 255 255 256 256 257 257 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -275,186 +275,199 @@ 275 275 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 276 276 277 277 278 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 279 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 279 279 280 280 For example: 281 281 282 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 283 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 283 283 284 284 285 285 (% style="color:red" %) **Important Notice:** 286 286 287 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 -1. All modes share the same Payload Explanation from HERE. 289 -1. By default, the device will send an uplink message every 20 minutes. 288 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 290 290 291 - ====2.3.2.1MOD~=1(DefaultMode)====290 +2. All modes share the same Payload Explanation from HERE. 292 292 293 - Inthismode,uplinkpayloadincludesin total11 bytes.UplinkpacketsuseFPORT=2.292 +3. By default, the device will send an uplink message every 20 minutes. 294 294 295 -|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 -|**Value**|Bat|((( 297 -Temperature(DS18B20) 298 298 299 -(PC13) 300 -)))|((( 301 -ADC 295 +==== 2.3.2.1 MOD~=1 (Default Mode) ==== 302 302 303 -(PA4) 304 -)))|(% style="width:216px" %)((( 305 -Digital in & Digital Interrupt 306 306 307 - 308 -)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31) 298 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 309 309 300 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 301 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 302 +|Value|Bat|(% style="width:191px" %)((( 303 +Temperature(DS18B20)(PC13) 304 +)))|(% style="width:78px" %)((( 305 +ADC(PA4) 306 +)))|(% style="width:216px" %)((( 307 +Digital in(PB15)&Digital Interrupt(PA8) 308 +)))|(% style="width:308px" %)((( 309 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 310 +)))|(% style="width:154px" %)((( 311 +Humidity(SHT20 or SHT31) 312 +))) 313 + 310 310 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 311 311 312 312 313 313 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 314 314 319 + 315 315 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 316 316 317 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 318 -|**Value**|BAT|((( 319 -Temperature(DS18B20) 320 -)))|ADC|Digital in & Digital Interrupt|((( 321 -Distance measure by: 322 -1) LIDAR-Lite V3HP 323 -Or 324 -2) Ultrasonic Sensor 325 -)))|Reserved 322 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 323 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 324 +|Value|BAT|(% style="width:196px" %)((( 325 +Temperature(DS18B20)(PC13) 326 +)))|(% style="width:87px" %)((( 327 +ADC(PA4) 328 +)))|(% style="width:189px" %)((( 329 +Digital in(PB15) & Digital Interrupt(PA8) 330 +)))|(% style="width:208px" %)((( 331 +Distance measure by: 1) LIDAR-Lite V3HP 332 +Or 2) Ultrasonic Sensor 333 +)))|(% style="width:117px" %)Reserved 326 326 327 327 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 328 328 329 -**Connection of LIDAR-Lite V3HP:** 330 330 338 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 339 + 331 331 [[image:image-20230512173758-5.png||height="563" width="712"]] 332 332 333 -**Connection to Ultrasonic Sensor:** 334 334 343 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 344 + 345 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 346 + 335 335 [[image:image-20230512173903-6.png||height="596" width="715"]] 336 336 349 + 337 337 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 338 338 339 -|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 340 -|**Value**|BAT|((( 341 -Temperature(DS18B20) 342 -)))|Digital in & Digital Interrupt|ADC|((( 352 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 353 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 354 +|Value|BAT|(% style="width:183px" %)((( 355 +Temperature(DS18B20)(PC13) 356 +)))|(% style="width:173px" %)((( 357 +Digital in(PB15) & Digital Interrupt(PA8) 358 +)))|(% style="width:84px" %)((( 359 +ADC(PA4) 360 +)))|(% style="width:323px" %)((( 343 343 Distance measure by:1)TF-Mini plus LiDAR 344 -Or 345 -2) TF-Luna LiDAR 346 -)))|Distance signal strength 362 +Or 2) TF-Luna LiDAR 363 +)))|(% style="width:188px" %)Distance signal strength 347 347 348 348 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 349 349 367 + 350 350 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 351 351 352 -Need to remove R3 and R4 resistors to get low power .370 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 353 353 354 354 [[image:image-20230512180609-7.png||height="555" width="802"]] 355 355 374 + 356 356 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 357 357 358 -Need to remove R3 and R4 resistors to get low power .377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 359 359 360 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]379 +[[image:image-20230610170047-1.png||height="452" width="799"]] 361 361 362 -Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 363 363 364 - 365 365 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 366 366 384 + 367 367 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 368 368 369 -|=((( 387 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 388 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 370 370 **Size(bytes)** 371 -)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1 372 -|**Value**|(% style="width:68px" %)((( 373 -ADC 374 - 375 -(PA0) 390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 391 +|Value|(% style="width:68px" %)((( 392 +ADC1(PA4) 376 376 )))|(% style="width:75px" %)((( 377 -ADC2 394 +ADC2(PA5) 395 +)))|((( 396 +ADC3(PA8) 397 +)))|((( 398 +Digital Interrupt(PB15) 399 +)))|(% style="width:304px" %)((( 400 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 401 +)))|(% style="width:163px" %)((( 402 +Humidity(SHT20 or SHT31) 403 +)))|(% style="width:53px" %)Bat 378 378 379 -(PA1) 380 -)))|ADC3 (PA4)|((( 381 -Digital in(PA12)&Digital Interrupt1(PB14) 382 -)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat 405 +[[image:image-20230513110214-6.png]] 383 383 384 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 385 385 386 - 387 387 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 388 388 389 -[[image:image-20230512170701-3.png||height="565" width="743"]] 390 390 391 391 This mode has total 11 bytes. As shown below: 392 392 393 -(% style="width:1017px" %) 394 -|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2** 395 -|**Value**|BAT|(% style="width:186px" %)((( 396 -Temperature1(DS18B20) 397 -(PC13) 413 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 415 +|Value|BAT|(% style="width:186px" %)((( 416 +Temperature1(DS18B20)(PC13) 398 398 )))|(% style="width:82px" %)((( 399 -ADC 400 - 401 -(PA4) 418 +ADC(PA4) 402 402 )))|(% style="width:210px" %)((( 403 -Digital in & Digital Interrupt 404 - 405 -(PB15) & (PA8) 420 +Digital in(PB15) & Digital Interrupt(PA8) 406 406 )))|(% style="width:191px" %)Temperature2(DS18B20) 407 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 408 -(PB8) 422 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 409 409 410 410 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 411 411 412 412 427 +[[image:image-20230513134006-1.png||height="559" width="736"]] 428 + 429 + 413 413 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 414 414 432 + 415 415 [[image:image-20230512164658-2.png||height="532" width="729"]] 416 416 417 417 Each HX711 need to be calibrated before used. User need to do below two steps: 418 418 419 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 420 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 437 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 438 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 421 421 1. ((( 422 422 Weight has 4 bytes, the unit is g. 441 + 442 + 443 + 423 423 ))) 424 424 425 425 For example: 426 426 427 -**AT+GETSENSORVALUE =0** 448 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 428 428 429 429 Response: Weight is 401 g 430 430 431 431 Check the response of this command and adjust the value to match the real value for thing. 432 432 433 -(% style="width: 982px" %)434 -|=((( 454 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 455 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 435 435 **Size(bytes)** 436 -)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 437 -|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)((( 438 -[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 457 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 458 +|Value|BAT|(% style="width:193px" %)((( 459 +Temperature(DS18B20)(PC13) 460 +)))|(% style="width:85px" %)((( 461 +ADC(PA4) 462 +)))|(% style="width:186px" %)((( 463 +Digital in(PB15) & Digital Interrupt(PA8) 464 +)))|(% style="width:100px" %)Weight 439 439 440 -(PC13) 441 - 442 - 443 -)))|(% style="width:119px" %)((( 444 -[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]] 445 - 446 -(PA4) 447 -)))|(% style="width:279px" %)((( 448 -[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]] 449 - 450 -(PB15) & (PA8) 451 -)))|(% style="width:106px" %)Weight 452 - 453 453 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 454 454 455 455 456 456 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 457 457 471 + 458 458 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 459 459 460 460 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -461,86 +461,211 @@ 461 461 462 462 [[image:image-20230512181814-9.png||height="543" width="697"]] 463 463 464 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 465 465 466 -|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 467 -|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 468 -[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 469 -)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 479 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 470 470 481 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 482 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 483 +|Value|BAT|(% style="width:256px" %)((( 484 +Temperature(DS18B20)(PC13) 485 +)))|(% style="width:108px" %)((( 486 +ADC(PA4) 487 +)))|(% style="width:126px" %)((( 488 +Digital in(PB15) 489 +)))|(% style="width:145px" %)((( 490 +Count(PA8) 491 +))) 492 + 471 471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 472 472 473 473 474 474 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 475 475 476 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 477 477 478 -|=((( 499 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 500 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 479 479 **Size(bytes)** 480 -)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 481 -|**Value**|BAT|Temperature(DS18B20)|ADC|((( 482 -Digital in(PA12)&Digital Interrupt1(PB14) 483 -)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 502 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 503 +|Value|BAT|(% style="width:188px" %)((( 504 +Temperature(DS18B20) 505 +(PC13) 506 +)))|(% style="width:83px" %)((( 507 +ADC(PA5) 508 +)))|(% style="width:184px" %)((( 509 +Digital Interrupt1(PA8) 510 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 484 484 512 +[[image:image-20230513111203-7.png||height="324" width="975"]] 513 + 514 + 485 485 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 486 486 487 -|=((( 517 + 518 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 519 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 488 488 **Size(bytes)** 489 -)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 490 -|**Value**|BAT|Temperature(DS18B20)|((( 491 -ADC1(PA0) 492 -)))|((( 493 -Digital in 494 -& Digital Interrupt(PB14) 495 -)))|((( 496 -ADC2(PA1) 497 -)))|((( 498 -ADC3(PA4) 521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 522 +|Value|BAT|(% style="width:207px" %)((( 523 +Temperature(DS18B20) 524 +(PC13) 525 +)))|(% style="width:94px" %)((( 526 +ADC1(PA4) 527 +)))|(% style="width:198px" %)((( 528 +Digital Interrupt(PB15) 529 +)))|(% style="width:84px" %)((( 530 +ADC2(PA5) 531 +)))|(% style="width:82px" %)((( 532 +ADC3(PA8) 499 499 ))) 500 500 501 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]535 +[[image:image-20230513111231-8.png||height="335" width="900"]] 502 502 503 503 504 504 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 505 505 506 -|=((( 540 + 541 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 542 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 507 507 **Size(bytes)** 508 -)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 509 -|**Value**|BAT|((( 510 -Temperature1(PB3) 544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 545 +|Value|BAT|((( 546 +Temperature 547 +(DS18B20)(PC13) 511 511 )))|((( 512 -Temperature2(PA9) 549 +Temperature2 550 +(DS18B20)(PB9) 513 513 )))|((( 514 -Digital in 515 -& Digital Interrupt(PA4) 516 -)))|((( 517 -Temperature3(PA10) 518 -)))|((( 519 -Count1(PB14) 520 -)))|((( 521 -Count2(PB15) 552 +Digital Interrupt 553 +(PB15) 554 +)))|(% style="width:193px" %)((( 555 +Temperature3 556 +(DS18B20)(PB8) 557 +)))|(% style="width:78px" %)((( 558 +Count1(PA8) 559 +)))|(% style="width:78px" %)((( 560 +Count2(PA4) 522 522 ))) 523 523 524 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]563 +[[image:image-20230513111255-9.png||height="341" width="899"]] 525 525 526 -**The newly added AT command is issued correspondingly:** 565 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 527 527 528 -** ~AT+INTMOD1****PB14** pin: Corresponding downlink: **06 00 00 xx**567 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 529 529 530 -** ~AT+INTMOD2** **PB15****06 00 01 xx**569 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 531 531 532 -** ~AT+INTMOD3****PA4**571 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 533 533 534 -**AT+SETCNT=aa,bb** 535 535 536 - WhenAA is1, settheuntof PB14 pin to BB Correspondingdownlink:09 01bbbb bb bb574 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 537 537 538 -When AA is 2, set the count of PB15pin to BB Corresponding downlink:09 02bb bb bb bb576 +When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 539 539 578 +When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 540 540 541 541 581 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 582 + 583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 584 + 585 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 586 + 587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 588 + 589 + 590 +===== 2.3.2.10.a Uplink, PWM input capture ===== 591 + 592 + 593 +[[image:image-20230817172209-2.png||height="439" width="683"]] 594 + 595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %) 596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2** 597 +|Value|Bat|(% style="width:191px" %)((( 598 +Temperature(DS18B20)(PC13) 599 +)))|(% style="width:78px" %)((( 600 +ADC(PA4) 601 +)))|(% style="width:135px" %)((( 602 +PWM_Setting 603 +&Digital Interrupt(PA8) 604 +)))|(% style="width:70px" %)((( 605 +Pulse period 606 +)))|(% style="width:89px" %)((( 607 +Duration of high level 608 +))) 609 + 610 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 611 + 612 + 613 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 614 + 615 +**Frequency:** 616 + 617 +(% class="MsoNormal" %) 618 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 619 + 620 +(% class="MsoNormal" %) 621 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 622 + 623 + 624 +(% class="MsoNormal" %) 625 +**Duty cycle:** 626 + 627 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 628 + 629 +[[image:image-20230818092200-1.png||height="344" width="627"]] 630 + 631 +===== 2.3.2.10.b Uplink, PWM output ===== 632 + 633 +[[image:image-20230817172209-2.png||height="439" width="683"]] 634 + 635 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 636 + 637 +a is the time delay of the output, the unit is ms. 638 + 639 +b is the output frequency, the unit is HZ. 640 + 641 +c is the duty cycle of the output, the unit is %. 642 + 643 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 644 + 645 +aa is the time delay of the output, the unit is ms. 646 + 647 +bb is the output frequency, the unit is HZ. 648 + 649 +cc is the duty cycle of the output, the unit is %. 650 + 651 + 652 +For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 653 + 654 +The oscilloscope displays as follows: 655 + 656 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]] 657 + 658 + 659 +===== 2.3.2.10.c Downlink, PWM output ===== 660 + 661 + 662 +[[image:image-20230817173800-3.png||height="412" width="685"]] 663 + 664 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 665 + 666 + xx xx xx is the output frequency, the unit is HZ. 667 + 668 + yy is the duty cycle of the output, the unit is %. 669 + 670 + zz zz is the time delay of the output, the unit is ms. 671 + 672 + 673 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 674 + 675 +The oscilloscope displays as follows: 676 + 677 +[[image:image-20230817173858-5.png||height="694" width="921"]] 678 + 679 + 542 542 === 2.3.3 Decode payload === 543 543 682 + 544 544 While using TTN V3 network, you can add the payload format to decode the payload. 545 545 546 546 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -547,13 +547,14 @@ 547 547 548 548 The payload decoder function for TTN V3 are here: 549 549 550 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 689 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 551 551 552 552 553 553 ==== 2.3.3.1 Battery Info ==== 554 554 555 -Check the battery voltage for SN50v3. 556 556 695 +Check the battery voltage for SN50v3-LB. 696 + 557 557 Ex1: 0x0B45 = 2885mV 558 558 559 559 Ex2: 0x0B49 = 2889mV ... ... @@ -561,16 +561,18 @@ 561 561 562 562 ==== 2.3.3.2 Temperature (DS18B20) ==== 563 563 564 -If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 565 565 566 - More DS18B20 cancheckthe[[3DS18B20mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]705 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 567 567 568 - **Connection:**707 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 569 569 709 +(% style="color:blue" %)**Connection:** 710 + 570 570 [[image:image-20230512180718-8.png||height="538" width="647"]] 571 571 572 -**Example**: 573 573 714 +(% style="color:blue" %)**Example**: 715 + 574 574 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 575 575 576 576 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -580,6 +580,7 @@ 580 580 581 581 ==== 2.3.3.3 Digital Input ==== 582 582 725 + 583 583 The digital input for pin PB15, 584 584 585 585 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -587,51 +587,65 @@ 587 587 588 588 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 589 589 ((( 590 -Note:The maximum voltage input supports 3.6V. 733 +When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 734 + 735 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 736 + 737 + 591 591 ))) 592 592 593 -(% class="wikigeneratedid" %) 594 594 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 595 595 596 -The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 597 597 743 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 744 + 598 598 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 599 599 600 600 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 601 601 602 602 750 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 751 + 752 + 753 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 754 + 755 +[[image:image-20230811113449-1.png||height="370" width="608"]] 756 + 603 603 ==== 2.3.3.5 Digital Interrupt ==== 604 604 605 -Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 606 606 607 - **~Interruptconnection method:**760 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 608 608 609 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]762 +(% style="color:blue" %)** Interrupt connection method:** 610 610 611 - **Exampleousewithdoor sensor :**764 +[[image:image-20230513105351-5.png||height="147" width="485"]] 612 612 766 + 767 +(% style="color:blue" %)**Example to use with door sensor :** 768 + 613 613 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 614 614 615 615 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 616 616 617 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.773 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 618 618 619 -**~ Below is the installation example:** 620 620 621 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso LSN50as follows:776 +(% style="color:blue" %)**Below is the installation example:** 622 622 778 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 779 + 623 623 * ((( 624 -One pin to LSN50's PB14pin781 +One pin to SN50v3-LB's PA8 pin 625 625 ))) 626 626 * ((( 627 -The other pin to LSN50's VCCpin784 +The other pin to SN50v3-LB's VDD pin 628 628 ))) 629 629 630 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P B14will be at the VCC voltage.787 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 631 631 632 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 789 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 633 633 634 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 2/1Mohm =0.3uA which can be ignored.791 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 635 635 636 636 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 637 637 ... ... @@ -641,29 +641,33 @@ 641 641 642 642 The command is: 643 643 644 -**AT+INTMOD=1 801 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 645 645 646 646 Below shows some screen captures in TTN V3: 647 647 648 648 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 649 649 650 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 651 651 808 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 809 + 652 652 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 653 653 654 654 655 655 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 656 656 815 + 657 657 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 658 658 659 -We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 818 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 660 660 661 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50 _v3 will be a good reference.820 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 662 662 822 + 663 663 Below is the connection to SHT20/ SHT31. The connection is as below: 664 664 665 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]825 +[[image:image-20230610170152-2.png||height="501" width="846"]] 666 666 827 + 667 667 The device will be able to get the I2C sensor data now and upload to IoT Server. 668 668 669 669 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -681,20 +681,26 @@ 681 681 682 682 ==== 2.3.3.7 Distance Reading ==== 683 683 684 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 685 685 846 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 686 686 848 + 687 687 ==== 2.3.3.8 Ultrasonic Sensor ==== 688 688 851 + 689 689 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 690 690 691 -The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.854 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 692 692 856 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 857 + 693 693 The picture below shows the connection: 694 694 860 +[[image:image-20230512173903-6.png||height="596" width="715"]] 695 695 696 -Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 697 697 863 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 864 + 698 698 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 699 699 700 700 **Example:** ... ... @@ -701,50 +701,72 @@ 701 701 702 702 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 703 703 704 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 705 705 706 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]872 +==== 2.3.3.9 Battery Output - BAT pin ==== 707 707 708 -You can see the serial output in ULT mode as below: 709 709 710 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]875 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 711 711 712 -**In TTN V3 server:** 713 713 714 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]878 +==== 2.3.3.10 +5V Output ==== 715 715 716 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 717 717 718 - ==== 2.3.3.9BatteryOutput-BATpin====881 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 719 719 720 -The BAT pin of SN50v3is connected to the Battery directly. Ifusers want to use BAT pin to poweran externalsensor. Userneedto make sure the external sensor is oflow powerconsumption.Because the BATpin is alwaysopen. If the external sensor is of high power consumption. the battery of SN50v3-LB will runout very soon.883 +The 5V output time can be controlled by AT Command. 721 721 885 +(% style="color:blue" %)**AT+5VT=1000** 722 722 723 - ====2.3.3.10+5VOutput====887 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 724 724 725 - SN50v3willenable +5Voutputbefore allsamplinganddisable the+5vafterallsampling.889 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 726 726 727 -The 5V output time can be controlled by AT Command. 728 728 729 - **AT+5VT=1000**892 +==== 2.3.3.11 BH1750 Illumination Sensor ==== 730 730 731 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 732 732 733 - Bydefault theAT+5VT=500. If the externalsensorwhich require5v and require moretime to get stable state,usercan use thiscommandto increasethepower ON durationforthissensor.895 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 734 734 897 +[[image:image-20230512172447-4.png||height="416" width="712"]] 735 735 736 736 737 - ==== 2.3.3.11 BH1750 Illumination900 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 738 738 739 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 740 740 741 - [[image:image-20230512172447-4.png||height="593"width="1015"]]903 +==== 2.3.3.12 PWM MOD ==== 742 742 743 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 744 744 906 +* ((( 907 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 908 +))) 909 +* ((( 910 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 911 +))) 745 745 746 - ====2.3.3.12WorkingMOD====913 + [[image:image-20230817183249-3.png||height="320" width="417"]] 747 747 915 +* ((( 916 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 917 +))) 918 +* ((( 919 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 920 +))) 921 +* ((( 922 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low. 923 + 924 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 925 + 926 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used. 927 + 928 +b) If the output duration is more than 30 seconds, better to use external power source. 929 + 930 + 931 + 932 +))) 933 + 934 +==== 2.3.3.13 Working MOD ==== 935 + 936 + 748 748 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 749 749 750 750 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -757,6 +757,10 @@ 757 757 * 3: MOD4 758 758 * 4: MOD5 759 759 * 5: MOD6 949 +* 6: MOD7 950 +* 7: MOD8 951 +* 8: MOD9 952 +* 9: MOD10 760 760 761 761 == 2.4 Payload Decoder file == 762 762 ... ... @@ -765,10 +765,9 @@ 765 765 766 766 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 767 767 768 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/ LSN50v2-S31%26S31BLSN50v2-S31%26S31B]]961 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 769 769 770 770 771 - 772 772 == 2.5 Frequency Plans == 773 773 774 774 ... ... @@ -804,7 +804,7 @@ 804 804 == 3.3 Commands special design for SN50v3-LB == 805 805 806 806 807 -These commands only valid for S3 1x-LB, as below:999 +These commands only valid for SN50v3-LB, as below: 808 808 809 809 810 810 === 3.3.1 Set Transmit Interval Time === ... ... @@ -815,7 +815,7 @@ 815 815 (% style="color:blue" %)**AT Command: AT+TDC** 816 816 817 817 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 818 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 1010 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 819 819 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 820 820 30000 821 821 OK ... ... @@ -837,28 +837,29 @@ 837 837 838 838 === 3.3.2 Get Device Status === 839 839 840 -Send a LoRaWAN downlink to ask device send Alarm settings. 841 841 842 - (% style="color:blue"%)**DownlinkPayload:**(%%)0x26011033 +Send a LoRaWAN downlink to ask the device to send its status. 843 843 844 - SensorwilluploadDeviceStatus via FPORT=5. See payloadsectionfor detail.1035 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 845 845 1037 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 846 846 847 -=== 3.3.7 Set Interrupt Mode === 848 848 1040 +=== 3.3.3 Set Interrupt Mode === 849 849 1042 + 850 850 Feature, Set Interrupt mode for GPIO_EXIT. 851 851 852 -(% style="color:blue" %)**AT Command: AT+INTMOD** 1045 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 853 853 854 854 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 855 -|=(% style="width: 15 4px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**856 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1048 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1049 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 857 857 0 858 858 OK 859 859 the mode is 0 =Disable Interrupt 860 860 ))) 861 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 1054 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 862 862 Set Transmit Interval 863 863 0. (Disable Interrupt), 864 864 ~1. (Trigger by rising and falling edge) ... ... @@ -865,6 +865,11 @@ 865 865 2. (Trigger by falling edge) 866 866 3. (Trigger by rising edge) 867 867 )))|(% style="width:157px" %)OK 1061 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 1062 +Set Transmit Interval 1063 +trigger by rising edge. 1064 +)))|(% style="width:157px" %)OK 1065 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 868 868 869 869 (% style="color:blue" %)**Downlink Command: 0x06** 870 870 ... ... @@ -872,12 +872,210 @@ 872 872 873 873 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 874 874 875 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 876 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1073 +* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 1074 +* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 1075 +* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1076 +* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 877 877 878 -= 4.Battery&PowerConsumption =1078 +=== 3.3.4 Set Power Output Duration === 879 879 880 880 1081 +Control the output duration 5V . Before each sampling, device will 1082 + 1083 +~1. first enable the power output to external sensor, 1084 + 1085 +2. keep it on as per duration, read sensor value and construct uplink payload 1086 + 1087 +3. final, close the power output. 1088 + 1089 +(% style="color:blue" %)**AT Command: AT+5VT** 1090 + 1091 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1092 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1093 +|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1094 +500(default) 1095 +OK 1096 +))) 1097 +|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 1098 +Close after a delay of 1000 milliseconds. 1099 +)))|(% style="width:157px" %)OK 1100 + 1101 +(% style="color:blue" %)**Downlink Command: 0x07** 1102 + 1103 +Format: Command Code (0x07) followed by 2 bytes. 1104 + 1105 +The first and second bytes are the time to turn on. 1106 + 1107 +* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1108 +* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1109 + 1110 +=== 3.3.5 Set Weighing parameters === 1111 + 1112 + 1113 +Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1114 + 1115 +(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1116 + 1117 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1118 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1119 +|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1120 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1121 +|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1122 + 1123 +(% style="color:blue" %)**Downlink Command: 0x08** 1124 + 1125 +Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1126 + 1127 +Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1128 + 1129 +The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 1130 + 1131 +* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1132 +* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1133 +* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1134 + 1135 +=== 3.3.6 Set Digital pulse count value === 1136 + 1137 + 1138 +Feature: Set the pulse count value. 1139 + 1140 +Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1141 + 1142 +(% style="color:blue" %)**AT Command: AT+SETCNT** 1143 + 1144 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1145 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1146 +|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1147 +|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1148 + 1149 +(% style="color:blue" %)**Downlink Command: 0x09** 1150 + 1151 +Format: Command Code (0x09) followed by 5 bytes. 1152 + 1153 +The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1154 + 1155 +* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1156 +* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1157 + 1158 +=== 3.3.7 Set Workmode === 1159 + 1160 + 1161 +Feature: Switch working mode. 1162 + 1163 +(% style="color:blue" %)**AT Command: AT+MOD** 1164 + 1165 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1166 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1167 +|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1168 +OK 1169 +))) 1170 +|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1171 +OK 1172 +Attention:Take effect after ATZ 1173 +))) 1174 + 1175 +(% style="color:blue" %)**Downlink Command: 0x0A** 1176 + 1177 +Format: Command Code (0x0A) followed by 1 bytes. 1178 + 1179 +* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1180 +* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1181 + 1182 +(% id="H3.3.8PWMsetting" %) 1183 +=== 3.3.8 PWM setting === 1184 + 1185 + 1186 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture. 1187 + 1188 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1189 + 1190 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1191 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1192 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)((( 1193 +0(default) 1194 + 1195 +OK 1196 +))) 1197 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)((( 1198 +OK 1199 + 1200 +))) 1201 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK 1202 + 1203 +(% style="color:blue" %)**Downlink Command: 0x0C** 1204 + 1205 +Format: Command Code (0x0C) followed by 1 bytes. 1206 + 1207 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1208 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1209 + 1210 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle. 1211 + 1212 +(% style="color:blue" %)**AT Command: AT+PWMOUT** 1213 + 1214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1215 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response** 1216 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1217 +0,0,0(default) 1218 + 1219 +OK 1220 +))) 1221 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1222 +OK 1223 + 1224 +))) 1225 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1226 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1227 + 1228 + 1229 +)))|(% style="width:137px" %)((( 1230 +OK 1231 +))) 1232 + 1233 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1234 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters** 1235 +|(% colspan="1" rowspan="3" style="width:155px" %)((( 1236 +AT+PWMOUT=a,b,c 1237 + 1238 + 1239 +)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1240 +Set PWM output time, output frequency and output duty cycle. 1241 + 1242 +((( 1243 + 1244 +))) 1245 + 1246 +((( 1247 + 1248 +))) 1249 +)))|(% style="width:242px" %)((( 1250 +a: Output time (unit: seconds) 1251 + 1252 +The value ranges from 0 to 65535. 1253 + 1254 +When a=65535, PWM will always output. 1255 +))) 1256 +|(% style="width:242px" %)((( 1257 +b: Output frequency (unit: HZ) 1258 +))) 1259 +|(% style="width:242px" %)((( 1260 +c: Output duty cycle (unit: %) 1261 + 1262 +The value ranges from 0 to 100. 1263 +))) 1264 + 1265 +(% style="color:blue" %)**Downlink Command: 0x0B01** 1266 + 1267 +Format: Command Code (0x0B01) followed by 6 bytes. 1268 + 1269 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1270 + 1271 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1272 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1273 + 1274 += 4. Battery & Power Cons = 1275 + 1276 + 881 881 SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 882 882 883 883 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . ... ... @@ -887,28 +887,43 @@ 887 887 888 888 889 889 (% class="wikigeneratedid" %) 890 -User can change firmware SN50v3-LB to: 1286 +**User can change firmware SN50v3-LB to:** 891 891 892 892 * Change Frequency band/ region. 893 893 * Update with new features. 894 894 * Fix bugs. 895 895 896 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1292 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 897 897 1294 +**Methods to Update Firmware:** 898 898 899 -Methods to Update Firmware: 1296 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1297 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 900 900 901 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 902 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 903 - 904 904 = 6. FAQ = 905 905 906 906 == 6.1 Where can i find source code of SN50v3-LB? == 907 907 1303 + 908 908 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 909 909 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 910 910 1307 +== 6.2 How to generate PWM Output in SN50v3-LB? == 911 911 1309 + 1310 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1311 + 1312 + 1313 +== 6.3 How to put several sensors to a SN50v3-LB? == 1314 + 1315 + 1316 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1317 + 1318 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1319 + 1320 +[[image:image-20230810121434-1.png||height="242" width="656"]] 1321 + 1322 + 912 912 = 7. Order Info = 913 913 914 914 ... ... @@ -934,6 +934,7 @@ 934 934 935 935 = 8. Packing Info = 936 936 1348 + 937 937 (% style="color:#037691" %)**Package Includes**: 938 938 939 939 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -949,4 +949,5 @@ 949 949 950 950 951 951 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 952 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1364 + 1365 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.0 KB - Content
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.ting - Size
-
... ... @@ -1,0 +1,1 @@ 1 +4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +46.6 KB - Content