Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 2 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB User Manual 1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Saxer1 +XWiki.Xiaoling - Content
-
... ... @@ -1,4 +1,5 @@ 1 -[[image:image-20230511201248-1.png||height="403" width="489"]] 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 4 4 ... ... @@ -15,23 +15,21 @@ 15 15 16 16 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 17 17 19 + 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 20 - 21 21 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 22 23 - 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 - 27 27 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 28 28 29 - 30 30 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 31 31 32 32 33 33 == 1.2 Features == 34 34 33 + 35 35 * LoRaWAN 1.0.3 Class A 36 36 * Ultra-low power consumption 37 37 * Open-Source hardware/software ... ... @@ -42,8 +42,11 @@ 42 42 * Downlink to change configure 43 43 * 8500mAh Battery for long term use 44 44 44 + 45 + 45 45 == 1.3 Specification == 46 46 48 + 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -78,8 +78,11 @@ 78 78 * Sleep Mode: 5uA @ 3.3v 79 79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 80 80 83 + 84 + 81 81 == 1.4 Sleep mode and working mode == 82 82 87 + 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -104,6 +104,8 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 112 + 113 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-202305112034 50-2.png||height="443" width="785"]]132 +[[image:image-20230513102034-2.png]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -137,6 +137,7 @@ 137 137 138 138 == Hole Option == 139 139 147 + 140 140 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 141 141 142 142 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -288,130 +288,149 @@ 288 288 1. All modes share the same Payload Explanation from HERE. 289 289 1. By default, the device will send an uplink message every 20 minutes. 290 290 291 -==== 2.3.2.1 MOD~=1 (Default Mode) ==== 292 292 293 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 294 294 295 -|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2** 296 -|**Value**|Bat|((( 297 -Temperature(DS18B20) 301 +==== 2.3.2.1 MOD~=1 (Default Mode) ==== 298 298 299 -(PC13) 300 -)))|((( 301 -ADC 302 302 303 -(PA4) 304 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 305 + 306 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 307 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 308 +|**Value**|Bat|(% style="width:191px" %)((( 309 +Temperature(DS18B20)(PC13) 310 +)))|(% style="width:78px" %)((( 311 +ADC(PA4) 304 304 )))|(% style="width:216px" %)((( 305 -Digital in & Digital Interrupt 313 +Digital in(PB15)&Digital Interrupt(PA8) 314 +)))|(% style="width:308px" %)((( 315 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 316 +)))|(% style="width:154px" %)((( 317 +Humidity(SHT20 or SHT31) 318 +))) 306 306 307 - 308 -)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31) 309 - 310 310 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 311 311 312 312 323 + 313 313 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 314 314 326 + 315 315 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 316 316 317 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 318 -|**Value**|BAT|((( 319 -Temperature(DS18B20) 320 -)))|ADC|Digital in & Digital Interrupt|((( 321 -Distance measure by: 322 -1) LIDAR-Lite V3HP 323 -Or 329 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 +|**Value**|BAT|(% style="width:196px" %)((( 332 +Temperature(DS18B20)(PC13) 333 +)))|(% style="width:87px" %)((( 334 +ADC(PA4) 335 +)))|(% style="width:189px" %)((( 336 +Digital in(PB15) & Digital Interrupt(PA8) 337 +)))|(% style="width:208px" %)((( 338 +Distance measure by:1) LIDAR-Lite V3HP 339 +Or 324 324 2) Ultrasonic Sensor 325 -)))|Reserved 341 +)))|(% style="width:117px" %)Reserved 326 326 327 327 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 328 328 329 -**Connection of LIDAR-Lite V3HP:** 330 330 346 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 347 + 331 331 [[image:image-20230512173758-5.png||height="563" width="712"]] 332 332 333 -**Connection to Ultrasonic Sensor:** 334 334 351 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 352 + 353 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 354 + 335 335 [[image:image-20230512173903-6.png||height="596" width="715"]] 336 336 357 + 337 337 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 338 338 339 -|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 340 -|**Value**|BAT|((( 341 -Temperature(DS18B20) 342 -)))|Digital in & Digital Interrupt|ADC|((( 360 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 361 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 362 +|**Value**|BAT|(% style="width:183px" %)((( 363 +Temperature(DS18B20)(PC13) 364 +)))|(% style="width:173px" %)((( 365 +Digital in(PB15) & Digital Interrupt(PA8) 366 +)))|(% style="width:84px" %)((( 367 +ADC(PA4) 368 +)))|(% style="width:323px" %)((( 343 343 Distance measure by:1)TF-Mini plus LiDAR 344 344 Or 345 345 2) TF-Luna LiDAR 346 -)))|Distance signal strength 372 +)))|(% style="width:188px" %)Distance signal strength 347 347 348 348 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 349 349 376 + 350 350 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 351 351 352 -Need to remove R3 and R4 resistors to get low power .379 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 353 353 354 354 [[image:image-20230512180609-7.png||height="555" width="802"]] 355 355 383 + 356 356 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 357 357 358 -Need to remove R3 and R4 resistors to get low power .386 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 359 359 360 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]388 +[[image:image-20230513105207-4.png||height="469" width="802"]] 361 361 362 -Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 363 363 364 - 365 365 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 366 366 393 + 367 367 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 368 368 369 -|=((( 396 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 397 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 370 370 **Size(bytes)** 371 -)))|=(% style="width: 68px;" %)**2**|=(% style="width:75px;" %)**2**|=**2**|=**1**|=(% style="width:318px;" %)2|=(% style="width: 172px;" %)2|=1399 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 372 372 |**Value**|(% style="width:68px" %)((( 373 -ADC 374 - 375 -(PA0) 401 +ADC1(PA4) 376 376 )))|(% style="width:75px" %)((( 377 -ADC2 403 +ADC2(PA5) 404 +)))|((( 405 +ADC3(PA8) 406 +)))|((( 407 +Digital Interrupt(PB15) 408 +)))|(% style="width:304px" %)((( 409 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 410 +)))|(% style="width:163px" %)((( 411 +Humidity(SHT20 or SHT31) 412 +)))|(% style="width:53px" %)Bat 378 378 379 -(PA1) 380 -)))|ADC3 (PA4)|((( 381 -Digital in(PA12)&Digital Interrupt1(PB14) 382 -)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat 414 +[[image:image-20230513110214-6.png]] 383 383 384 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]] 385 385 386 - 387 387 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 388 388 389 -[[image:image-20230512170701-3.png||height="565" width="743"]] 390 390 391 391 This mode has total 11 bytes. As shown below: 392 392 393 -(% style="width: 1017px" %)394 -|**Size(bytes)**|**2**|(% style="width:1 86px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**422 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 423 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 395 395 |**Value**|BAT|(% style="width:186px" %)((( 396 -Temperature1(DS18B20) 397 -(PC13) 425 +Temperature1(DS18B20)(PC13) 398 398 )))|(% style="width:82px" %)((( 399 -ADC 400 - 401 -(PA4) 427 +ADC(PA4) 402 402 )))|(% style="width:210px" %)((( 403 -Digital in & Digital Interrupt 404 - 405 -(PB15) & (PA8) 429 +Digital in(PB15) & Digital Interrupt(PA8) 406 406 )))|(% style="width:191px" %)Temperature2(DS18B20) 407 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20) 408 -(PB8) 431 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 409 409 410 410 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 411 411 435 +[[image:image-20230513134006-1.png||height="559" width="736"]] 412 412 437 + 438 + 413 413 ==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 414 414 441 + 415 415 [[image:image-20230512164658-2.png||height="532" width="729"]] 416 416 417 417 Each HX711 need to be calibrated before used. User need to do below two steps: ... ... @@ -420,6 +420,9 @@ 420 420 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 421 421 1. ((( 422 422 Weight has 4 bytes, the unit is g. 450 + 451 + 452 + 423 423 ))) 424 424 425 425 For example: ... ... @@ -430,31 +430,25 @@ 430 430 431 431 Check the response of this command and adjust the value to match the real value for thing. 432 432 433 -(% style="width: 982px" %)434 -|=((( 463 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 464 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 435 435 **Size(bytes)** 436 -)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4** 437 -|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)((( 438 -[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 466 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 467 +|**Value**|BAT|(% style="width:193px" %)((( 468 +Temperature(DS18B20)(PC13) 469 +)))|(% style="width:85px" %)((( 470 +ADC(PA4) 471 +)))|(% style="width:186px" %)((( 472 +Digital in(PB15) & Digital Interrupt(PA8) 473 +)))|(% style="width:100px" %)Weight 439 439 440 -(PC13) 441 - 442 - 443 -)))|(% style="width:119px" %)((( 444 -[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]] 445 - 446 -(PA4) 447 -)))|(% style="width:279px" %)((( 448 -[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]] 449 - 450 -(PB15) & (PA8) 451 -)))|(% style="width:106px" %)Weight 452 - 453 453 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 454 454 455 455 478 + 456 456 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 457 457 481 + 458 458 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 459 459 460 460 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. ... ... @@ -461,86 +461,113 @@ 461 461 462 462 [[image:image-20230512181814-9.png||height="543" width="697"]] 463 463 464 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 465 465 466 -|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 467 -|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 468 -[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 469 -)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 489 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 470 470 491 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 492 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 493 +|**Value**|BAT|(% style="width:256px" %)((( 494 +Temperature(DS18B20)(PC13) 495 +)))|(% style="width:108px" %)((( 496 +ADC(PA4) 497 +)))|(% style="width:126px" %)((( 498 +Digital in(PB15) 499 +)))|(% style="width:145px" %)((( 500 +Count(PA8) 501 +))) 502 + 471 471 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 472 472 473 473 506 + 474 474 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 475 475 476 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 477 477 478 -|=((( 510 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 511 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 479 479 **Size(bytes)** 480 -)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 481 -|**Value**|BAT|Temperature(DS18B20)|ADC|((( 482 -Digital in(PA12)&Digital Interrupt1(PB14) 483 -)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 513 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 514 +|**Value**|BAT|(% style="width:188px" %)((( 515 +Temperature(DS18B20) 516 +(PC13) 517 +)))|(% style="width:83px" %)((( 518 +ADC(PA5) 519 +)))|(% style="width:184px" %)((( 520 +Digital Interrupt1(PA8) 521 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 484 484 523 +[[image:image-20230513111203-7.png||height="324" width="975"]] 524 + 525 + 485 485 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 486 486 487 -|=((( 528 + 529 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 530 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 488 488 **Size(bytes)** 489 -)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 490 -|**Value**|BAT|Temperature(DS18B20)|((( 491 -ADC1(PA0) 492 -)))|((( 493 -Digital in 494 -& Digital Interrupt(PB14) 495 -)))|((( 496 -ADC2(PA1) 497 -)))|((( 498 -ADC3(PA4) 532 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 533 +|**Value**|BAT|(% style="width:207px" %)((( 534 +Temperature(DS18B20) 535 +(PC13) 536 +)))|(% style="width:94px" %)((( 537 +ADC1(PA4) 538 +)))|(% style="width:198px" %)((( 539 +Digital Interrupt(PB15) 540 +)))|(% style="width:84px" %)((( 541 +ADC2(PA5) 542 +)))|(% style="width:82px" %)((( 543 +ADC3(PA8) 499 499 ))) 500 500 501 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]546 +[[image:image-20230513111231-8.png||height="335" width="900"]] 502 502 503 503 504 504 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 505 505 506 -|=((( 551 + 552 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 553 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 507 507 **Size(bytes)** 508 -)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 555 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 509 509 |**Value**|BAT|((( 510 -Temperature1(PB3) 557 +Temperature1(DS18B20) 558 +(PC13) 511 511 )))|((( 512 -Temperature2(PA9) 560 +Temperature2(DS18B20) 561 +(PB9) 513 513 )))|((( 514 -Digital in 515 -& Digital Interrupt(PA4) 516 -)))|((( 517 -Temperature3(PA10) 518 -)))|((( 519 -Count1(PB14) 520 -)))|((( 521 -Count2(PB15) 563 +Digital Interrupt 564 +(PB15) 565 +)))|(% style="width:193px" %)((( 566 +Temperature3(DS18B20) 567 +(PB8) 568 +)))|(% style="width:78px" %)((( 569 +Count1(PA8) 570 +)))|(% style="width:78px" %)((( 571 +Count2(PA4) 522 522 ))) 523 523 524 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]574 +[[image:image-20230513111255-9.png||height="341" width="899"]] 525 525 526 -**The newly added AT command is issued correspondingly:** 576 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 527 527 528 -** ~AT+INTMOD1****PB14** pin: Corresponding downlink: **06 00 00 xx**578 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 529 529 530 -** ~AT+INTMOD2** **PB15****06 00 01 xx**580 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 531 531 532 -** ~AT+INTMOD3****PA4**582 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 533 533 534 -**AT+SETCNT=aa,bb** 535 535 536 - WhenAA is1, settheuntof PB14 pin to BB Correspondingdownlink:09 01bbbb bb bb585 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 537 537 538 -When AA is 2, set the count of PB15pin to BB Corresponding downlink:09 02bb bb bb bb587 +When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 539 539 589 +When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 540 540 541 541 542 542 === 2.3.3 Decode payload === 543 543 594 + 544 544 While using TTN V3 network, you can add the payload format to decode the payload. 545 545 546 546 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -552,6 +552,7 @@ 552 552 553 553 ==== 2.3.3.1 Battery Info ==== 554 554 606 + 555 555 Check the battery voltage for SN50v3. 556 556 557 557 Ex1: 0x0B45 = 2885mV ... ... @@ -561,16 +561,18 @@ 561 561 562 562 ==== 2.3.3.2 Temperature (DS18B20) ==== 563 563 564 -If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 565 565 566 - More DS18B20 cancheckthe[[3DS18B20mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]617 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 567 567 568 - **Connection:**619 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 569 569 621 +(% style="color:blue" %)**Connection:** 622 + 570 570 [[image:image-20230512180718-8.png||height="538" width="647"]] 571 571 572 -**Example**: 573 573 626 +(% style="color:blue" %)**Example**: 627 + 574 574 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 575 575 576 576 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -580,6 +580,7 @@ 580 580 581 581 ==== 2.3.3.3 Digital Input ==== 582 582 637 + 583 583 The digital input for pin PB15, 584 584 585 585 * When PB15 is high, the bit 1 of payload byte 6 is 1. ... ... @@ -587,51 +587,60 @@ 587 587 588 588 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 589 589 ((( 590 -Note:The maximum voltage input supports 3.6V. 645 +When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 646 + 647 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 648 + 649 + 591 591 ))) 592 592 593 -(% class="wikigeneratedid" %) 594 594 ==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 595 595 596 -The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 597 597 598 - Whenthemeasuredoutput voltage of thesensorisnot withinthe rangeof0.1Vand1.1V,theoutputvoltageterminal of theensor shall be divided The example in the following figure istoreduce the output voltage of the sensorby three timesIf it is necessary toreduce moretimes,calculate according to the formula in the figure and connect the corresponding resistance in series.655 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 599 599 657 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 658 + 600 600 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 601 601 661 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 602 602 663 + 603 603 ==== 2.3.3.5 Digital Interrupt ==== 604 604 605 -Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 606 606 607 - **~Interruptconnection method:**667 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 608 608 609 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]669 +(% style="color:blue" %)** Interrupt connection method:** 610 610 611 - **Exampleousewithdoor sensor :**671 +[[image:image-20230513105351-5.png||height="147" width="485"]] 612 612 673 + 674 +(% style="color:blue" %)**Example to use with door sensor :** 675 + 613 613 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 614 614 615 615 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 616 616 617 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.680 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 618 618 619 -**~ Below is the installation example:** 620 620 621 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso LSN50as follows:683 +(% style="color:blue" %)**Below is the installation example:** 622 622 685 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 686 + 623 623 * ((( 624 -One pin to LSN50's PB14pin688 +One pin to SN50_v3's PA8 pin 625 625 ))) 626 626 * ((( 627 -The other pin to LSN50's VCCpin691 +The other pin to SN50_v3's VDD pin 628 628 ))) 629 629 630 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P B14will be at the VCC voltage.694 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 631 631 632 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 696 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 633 633 634 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 2/1Mohm =0.3uA which can be ignored.698 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 635 635 636 636 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 637 637 ... ... @@ -641,12 +641,13 @@ 641 641 642 642 The command is: 643 643 644 -**AT+INTMOD=1 708 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 645 645 646 646 Below shows some screen captures in TTN V3: 647 647 648 648 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 649 649 714 + 650 650 In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 651 651 652 652 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; ... ... @@ -654,16 +654,18 @@ 654 654 655 655 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 656 656 722 + 657 657 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 658 658 659 -We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. 725 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 660 660 661 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference. 727 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 662 662 663 663 Below is the connection to SHT20/ SHT31. The connection is as below: 664 664 665 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]] 666 666 732 +[[image:image-20230513103633-3.png||height="448" width="716"]] 733 + 667 667 The device will be able to get the I2C sensor data now and upload to IoT Server. 668 668 669 669 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -681,20 +681,26 @@ 681 681 682 682 ==== 2.3.3.7 Distance Reading ==== 683 683 684 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 685 685 752 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 686 686 754 + 687 687 ==== 2.3.3.8 Ultrasonic Sensor ==== 688 688 757 + 689 689 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 690 690 691 -The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.760 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 692 692 762 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 763 + 693 693 The picture below shows the connection: 694 694 766 +[[image:image-20230512173903-6.png||height="596" width="715"]] 695 695 696 -Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 697 697 769 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 770 + 698 698 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 699 699 700 700 **Example:** ... ... @@ -701,32 +701,21 @@ 701 701 702 702 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 703 703 704 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 705 705 706 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 707 - 708 -You can see the serial output in ULT mode as below: 709 - 710 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 711 - 712 -**In TTN V3 server:** 713 - 714 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 715 - 716 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 717 - 718 718 ==== 2.3.3.9 Battery Output - BAT pin ==== 719 719 780 + 720 720 The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 721 721 722 722 723 723 ==== 2.3.3.10 +5V Output ==== 724 724 786 + 725 725 SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 726 726 727 727 The 5V output time can be controlled by AT Command. 728 728 729 -**AT+5VT=1000** 791 +(% style="color:blue" %)**AT+5VT=1000** 730 730 731 731 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 732 732 ... ... @@ -733,18 +733,20 @@ 733 733 By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 734 734 735 735 736 - 737 737 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 738 738 800 + 739 739 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 740 740 741 -[[image:image-20230512172447-4.png||height=" 593" width="1015"]]803 +[[image:image-20230512172447-4.png||height="416" width="712"]] 742 742 743 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 744 744 806 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 745 745 808 + 746 746 ==== 2.3.3.12 Working MOD ==== 747 747 811 + 748 748 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 749 749 750 750 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -757,7 +757,12 @@ 757 757 * 3: MOD4 758 758 * 4: MOD5 759 759 * 5: MOD6 824 +* 6: MOD7 825 +* 7: MOD8 826 +* 8: MOD9 760 760 828 + 829 + 761 761 == 2.4 Payload Decoder file == 762 762 763 763 ... ... @@ -765,10 +765,9 @@ 765 765 766 766 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 767 767 768 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/ LSN50v2-S31%26S31BLSN50v2-S31%26S31B]]837 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 769 769 770 770 771 - 772 772 == 2.5 Frequency Plans == 773 773 774 774 ... ... @@ -788,6 +788,8 @@ 788 788 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 789 789 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 790 790 859 + 860 + 791 791 == 3.2 General Commands == 792 792 793 793 ... ... @@ -835,30 +835,33 @@ 835 835 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 836 836 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 837 837 908 + 909 + 838 838 === 3.3.2 Get Device Status === 839 839 840 -Send a LoRaWAN downlink to ask device send Alarm settings. 841 841 913 +Send a LoRaWAN downlink to ask the device to send its status. 914 + 842 842 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 843 843 844 844 Sensor will upload Device Status via FPORT=5. See payload section for detail. 845 845 846 846 847 -=== 3.3. 7Set Interrupt Mode ===920 +=== 3.3.3 Set Interrupt Mode === 848 848 849 849 850 850 Feature, Set Interrupt mode for GPIO_EXIT. 851 851 852 -(% style="color:blue" %)**AT Command: AT+INTMOD** 925 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 853 853 854 854 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 855 855 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 856 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 929 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 857 857 0 858 858 OK 859 859 the mode is 0 =Disable Interrupt 860 860 ))) 861 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 934 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 862 862 Set Transmit Interval 863 863 0. (Disable Interrupt), 864 864 ~1. (Trigger by rising and falling edge) ... ... @@ -865,7 +865,13 @@ 865 865 2. (Trigger by falling edge) 866 866 3. (Trigger by rising edge) 867 867 )))|(% style="width:157px" %)OK 941 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 942 +Set Transmit Interval 868 868 944 +trigger by rising edge. 945 +)))|(% style="width:157px" %)OK 946 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 947 + 869 869 (% style="color:blue" %)**Downlink Command: 0x06** 870 870 871 871 Format: Command Code (0x06) followed by 3 bytes. ... ... @@ -872,9 +872,125 @@ 872 872 873 873 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 874 874 875 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 876 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 954 +* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 955 +* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 956 +* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 957 +* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 877 877 959 + 960 + 961 +=== 3.3.4 Set Power Output Duration === 962 + 963 + 964 +Control the output duration 5V . Before each sampling, device will 965 + 966 +~1. first enable the power output to external sensor, 967 + 968 +2. keep it on as per duration, read sensor value and construct uplink payload 969 + 970 +3. final, close the power output. 971 + 972 +(% style="color:blue" %)**AT Command: AT+5VT** 973 + 974 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 975 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 976 +|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 977 +500(default) 978 +OK 979 +))) 980 +|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 981 +Close after a delay of 1000 milliseconds. 982 +)))|(% style="width:157px" %)OK 983 + 984 +(% style="color:blue" %)**Downlink Command: 0x07** 985 + 986 +Format: Command Code (0x07) followed by 2 bytes. 987 + 988 +The first and second bytes are the time to turn on. 989 + 990 +* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 991 +* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 992 + 993 + 994 + 995 +=== 3.3.5 Set Weighing parameters === 996 + 997 + 998 +Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 999 + 1000 +(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1001 + 1002 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1003 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1004 +|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1005 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1006 +|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1007 + 1008 +(% style="color:blue" %)**Downlink Command: 0x08** 1009 + 1010 +Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1011 + 1012 +Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1013 + 1014 +The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 1015 + 1016 +* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1017 +* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1018 +* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1019 + 1020 + 1021 + 1022 +=== 3.3.6 Set Digital pulse count value === 1023 + 1024 + 1025 +Feature: Set the pulse count value. 1026 + 1027 +Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1028 + 1029 +(% style="color:blue" %)**AT Command: AT+SETCNT** 1030 + 1031 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1032 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1033 +|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1034 +|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1035 + 1036 +(% style="color:blue" %)**Downlink Command: 0x09** 1037 + 1038 +Format: Command Code (0x09) followed by 5 bytes. 1039 + 1040 +The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1041 + 1042 +* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1043 +* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1044 + 1045 + 1046 + 1047 +=== 3.3.7 Set Workmode === 1048 + 1049 + 1050 +Feature: Switch working mode. 1051 + 1052 +(% style="color:blue" %)**AT Command: AT+MOD** 1053 + 1054 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1055 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1056 +|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1057 +OK 1058 +))) 1059 +|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1060 +OK 1061 +Attention:Take effect after ATZ 1062 +))) 1063 + 1064 +(% style="color:blue" %)**Downlink Command: 0x0A** 1065 + 1066 +Format: Command Code (0x0A) followed by 1 bytes. 1067 + 1068 +* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1069 +* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1070 + 1071 + 1072 + 878 878 = 4. Battery & Power Consumption = 879 879 880 880 ... ... @@ -901,14 +901,18 @@ 901 901 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 902 902 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 903 903 1099 + 1100 + 904 904 = 6. FAQ = 905 905 906 906 == 6.1 Where can i find source code of SN50v3-LB? == 907 907 1105 + 908 908 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 909 909 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 910 910 911 911 1110 + 912 912 = 7. Order Info = 913 913 914 914 ... ... @@ -932,8 +932,11 @@ 932 932 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 933 933 * (% style="color:red" %)**NH**(%%): No Hole 934 934 1134 + 1135 + 935 935 = 8. Packing Info = 936 936 1138 + 937 937 (% style="color:#037691" %)**Package Includes**: 938 938 939 939 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -945,8 +945,11 @@ 945 945 * Package Size / pcs : cm 946 946 * Weight / pcs : g 947 947 1150 + 1151 + 948 948 = 9. Support = 949 949 950 950 951 951 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 952 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1156 + 1157 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.0 KB - Content