<
From version < 2.1 >
edited by Edwin Chen
on 2023/05/11 20:14
To version < 32.1 >
edited by Saxer Lin
on 2023/05/13 11:02
>
Change comment: Uploaded new attachment "image-20230513110214-6.png", version {1}

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Saxer
Content
... ... @@ -1,9 +1,7 @@
1 -(% style="text-align:center" %)
2 -[[image:S31-B.jpg]]
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
3 3  
4 4  
5 5  
6 -
7 7  **Table of Contents:**
8 8  
9 9  {{toc/}}
... ... @@ -15,32 +15,28 @@
15 15  
16 16  = 1. Introduction =
17 17  
18 -== 1.1 What is S31x-LB LoRaWAN Temperature & Humidity Sensor ==
16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
19 19  
20 -The Dragino S31x-LB is a (% style="color:blue" %)**LoRaWAN Temperature and Humidity Sensor**(%%) for Internet of Things solution. It is used to measure the (% style="color:blue" %)**surrounding environment temperature and relative air humidity precisely**(%%), and then upload to IoT server via LoRaWAN wireless protocol.
18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
21 21  
22 -The temperature & humidity sensor used in S31x-LB is SHT31, which is fully calibrated, linearized, and temperature compensated digital output from Sensirion, it provides a strong reliability and long-term stability. The SHT31 is fixed in a (% style="color:blue" %)**waterproof anti-condensation casing**(%%) for long term use.
23 23  
24 -The LoRa wireless technology used in S31x-LB allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
25 25  
26 -S31x-LB supports (% style="color:blue" %)**Temperature & Humdity alarm feature**(%%), user can set temperature alarm for instant notice. S31x-LB supports Datalog feature, it can save the data when there is no LoRaWAN network and uplink when network recover.
27 27  
28 -S31x-LB has max 3 probes which measure maximum 3 temperature points.
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
29 29  
30 -S31x-LB (% style="color:blue" %)**supports BLE configure**(%%) and (% style="color:blue" %)**wireless OTA update**(%%) which make user easy to use.
31 31  
32 -S31x-LB is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), it is designed for long term use up to 5 years.
27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
33 33  
34 -Each S31x-LB is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
35 35  
30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
36 36  
32 +
37 37  == 1.2 ​Features ==
38 38  
39 39  * LoRaWAN 1.0.3 Class A
40 40  * Ultra-low power consumption
41 -* External 3 meters SHT31 probe (For S31-LB)
42 -* Measure range -55°C ~~ 125°C
43 -* Temperature & Humidity alarm
37 +* Open-Source hardware/software
44 44  * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
45 45  * Support Bluetooth v5.1 and LoRaWAN remote configure
46 46  * Support wireless OTA update firmware
... ... @@ -50,26 +50,20 @@
50 50  
51 51  == 1.3 Specification ==
52 52  
53 -
54 54  (% style="color:#037691" %)**Common DC Characteristics:**
55 55  
56 56  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
57 57  * Operating Temperature: -40 ~~ 85°C
58 58  
59 -(% style="color:#037691" %)**Temperature Sensor:**
52 +(% style="color:#037691" %)**I/O Interface:**
60 60  
61 -* Range: -40 to + 80°C
62 -* Accuracy: ±0.2 @ 0-90 °C
63 -* Resolution: 0.1°C
64 -* Long Term Shift: <0.03 °C/yr
54 +* Battery output (2.6v ~~ 3.6v depends on battery)
55 +* +5v controllable output
56 +* 3 x Interrupt or Digital IN/OUT pins
57 +* 3 x one-wire interfaces
58 +* 1 x UART Interface
59 +* 1 x I2C Interface
65 65  
66 -(% style="color:#037691" %)**Humidity Sensor: **
67 -
68 -* Range: 0 ~~ 99.9% RH
69 -* Accuracy: ± 2%RH ( 0 ~~ 100%RH)
70 -* Resolution: 0.01% RH
71 -* Long Term Shift: <0.25 %RH/yr
72 -
73 73  (% style="color:#037691" %)**LoRa Spec:**
74 74  
75 75  * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
... ... @@ -92,7 +92,6 @@
92 92  
93 93  == 1.4 Sleep mode and working mode ==
94 94  
95 -
96 96  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
97 97  
98 98  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -120,7 +120,7 @@
120 120  == 1.6 BLE connection ==
121 121  
122 122  
123 -S31x-LB support BLE remote configure.
110 +SN50v3-LB supports BLE remote configure.
124 124  
125 125  
126 126  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -132,46 +132,37 @@
132 132  If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
133 133  
134 134  
135 -== 1.7  Hardware Variant ==
122 +== 1.7 Pin Definitions ==
136 136  
137 137  
138 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
139 -|=(% style="width: 102px;background-color:#D9E2F3;color:#0070C0" %)Model|=(% style="width: 190px;background-color:#D9E2F3;color:#0070C0" %)Photo|=(% style="width: 218px;background-color:#D9E2F3;color:#0070C0" %)Probe Info
140 -|(% style="width:102px" %)S31-LB|(% style="width:190px" %)[[image:S31.jpg]]|(% style="width:297px" %)(((
141 -1 x SHT31 Probe
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
142 142  
143 -Cable Length : 2 meters
144 144  
145 -
146 -)))
147 -|(% style="width:102px" %)S31B-LB|(% style="width:190px" %)[[image:S31B.jpg]]|(% style="width:297px" %)(((
148 -1 x SHT31 Probe
128 +== 1.8 Mechanical ==
149 149  
150 -Installed in device.
151 -)))
152 152  
153 -(% style="display:none" %)
131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
154 154  
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
155 155  
135 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
156 156  
157 -== 1.8 Mechanical ==
158 158  
138 +== Hole Option ==
159 159  
160 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
140 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
161 161  
142 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
162 162  
163 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
144 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
164 164  
165 165  
166 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
147 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
167 167  
168 -
169 -= 2. Configure S31x-LB to connect to LoRaWAN network =
170 -
171 171  == 2.1 How it works ==
172 172  
173 173  
174 -The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
175 175  
176 176  
177 177  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -182,11 +182,11 @@
182 182  The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
183 183  
184 184  
185 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
186 186  
187 -Each S31x-LB is shipped with a sticker with the default device EUI as below:
165 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
188 188  
189 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
167 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
190 190  
191 191  
192 192  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -213,10 +213,10 @@
213 213  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
214 214  
215 215  
216 -(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
194 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
217 217  
218 218  
219 -Press the button for 5 seconds to activate the S31x-LB.
197 +Press the button for 5 seconds to activate the SN50v3-LB.
220 220  
221 221  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
222 222  
... ... @@ -228,7 +228,7 @@
228 228  === 2.3.1 Device Status, FPORT~=5 ===
229 229  
230 230  
231 -Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
232 232  
233 233  The Payload format is as below.
234 234  
... ... @@ -240,11 +240,9 @@
240 240  
241 241  Example parse in TTNv3
242 242  
243 -[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
244 244  
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
245 245  
246 -(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
247 -
248 248  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
249 249  
250 250  (% style="color:#037691" %)**Frequency Band**:
... ... @@ -296,39 +296,303 @@
296 296  Ex2: 0x0B49 = 2889mV
297 297  
298 298  
299 -=== 2.3.2  Sensor Data. FPORT~=2 ===
275 +=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
300 300  
301 301  
302 -Sensor Data is uplink via FPORT=2
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
303 303  
304 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
305 -|=(% style="width: 90px;background-color:#D9E2F3" %)(((
280 +For example:
281 +
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283 +
284 +
285 +(% style="color:red" %) **Important Notice:**
286 +
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
290 +
291 +==== 2.3.2.1  MOD~=1 (Default Mode) ====
292 +
293 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
294 +
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
298 +
299 +(PC13)
300 +)))|(((
301 +ADC
302 +
303 +(PA4)
304 +)))|(% style="width:216px" %)(((
305 +Digital in & Digital Interrupt
306 +
307 +
308 +)))|(% style="width:342px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|(% style="width:171px" %)Humidity(SHT20 or SHT31)
309 +
310 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
311 +
312 +
313 +==== 2.3.2.2  MOD~=2 (Distance Mode) ====
314 +
315 +This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
316 +
317 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
318 +|**Value**|BAT|(((
319 +Temperature(DS18B20)
320 +)))|ADC|Digital in & Digital Interrupt|(((
321 +Distance measure by:
322 +1) LIDAR-Lite V3HP
323 +Or
324 +2) Ultrasonic Sensor
325 +)))|Reserved
326 +
327 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
328 +
329 +**Connection of LIDAR-Lite V3HP:**
330 +
331 +[[image:image-20230512173758-5.png||height="563" width="712"]]
332 +
333 +**Connection to Ultrasonic Sensor:**
334 +
335 +[[image:image-20230512173903-6.png||height="596" width="715"]]
336 +
337 +For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
338 +
339 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
340 +|**Value**|BAT|(((
341 +Temperature(DS18B20)
342 +)))|Digital in & Digital Interrupt|ADC|(((
343 +Distance measure by:1)TF-Mini plus LiDAR
344 +Or 
345 +2) TF-Luna LiDAR
346 +)))|Distance signal  strength
347 +
348 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
349 +
350 +**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
351 +
352 +Need to remove R3 and R4 resistors to get low power.
353 +
354 +[[image:image-20230512180609-7.png||height="555" width="802"]]
355 +
356 +**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
357 +
358 +Need to remove R3 and R4 resistors to get low power.
359 +
360 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
361 +
362 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
363 +
364 +
365 +==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
366 +
367 +This mode has total 12 bytes. Include 3 x ADC + 1x I2C
368 +
369 +|=(((
306 306  **Size(bytes)**
307 -)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
308 -|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
309 -[[Battery>>||anchor="HBattery:"]]
310 -)))|(% style="width:130px" %)(((
311 -[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
312 -)))|(% style="width:91px" %)(((
313 -[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
314 -)))|(% style="width:103px" %)(((
315 -[[Temperature>>||anchor="HTemperature:"]]
316 -)))|(% style="width:80px" %)(((
317 -[[Humidity>>||anchor="HHumidity:"]]
371 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 318px;" %)2|=(% style="width: 172px;" %)2|=1
372 +|**Value**|(% style="width:68px" %)(((
373 +ADC
374 +
375 +(PA0)
376 +)))|(% style="width:75px" %)(((
377 +ADC2
378 +
379 +(PA1)
380 +)))|ADC3 (PA4)|(((
381 +Digital in(PA12)&Digital Interrupt1(PB14)
382 +)))|(% style="width:318px" %)Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|(% style="width:172px" %)Humidity(SHT20 or SHT31)|Bat
383 +
384 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
385 +
386 +
387 +==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
388 +
389 +[[image:image-20230512170701-3.png||height="565" width="743"]]
390 +
391 +This mode has total 11 bytes. As shown below:
392 +
393 +(% style="width:1017px" %)
394 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
395 +|**Value**|BAT|(% style="width:186px" %)(((
396 +Temperature1(DS18B20)
397 +(PC13)
398 +)))|(% style="width:82px" %)(((
399 +ADC
400 +
401 +(PA4)
402 +)))|(% style="width:210px" %)(((
403 +Digital in & Digital Interrupt
404 +
405 +(PB15)  &  (PA8) 
406 +)))|(% style="width:191px" %)Temperature2(DS18B20)
407 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
408 +(PB8)
409 +
410 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
411 +
412 +
413 +==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
414 +
415 +[[image:image-20230512164658-2.png||height="532" width="729"]]
416 +
417 +Each HX711 need to be calibrated before used. User need to do below two steps:
418 +
419 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
420 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
421 +1. (((
422 +Weight has 4 bytes, the unit is g.
318 318  )))
319 319  
320 -==== (% style="color:#4472c4" %)**Battery**(%%) ====
425 +For example:
321 321  
322 -Sensor Battery Level.
427 +**AT+GETSENSORVALUE =0**
323 323  
429 +Response:  Weight is 401 g
430 +
431 +Check the response of this command and adjust the value to match the real value for thing.
432 +
433 +(% style="width:982px" %)
434 +|=(((
435 +**Size(bytes)**
436 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
437 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(% style="width:282px" %)(((
438 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
439 +
440 +(PC13)
441 +
442 +
443 +)))|(% style="width:119px" %)(((
444 +[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]
445 +
446 +(PA4)
447 +)))|(% style="width:279px" %)(((
448 +[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]
449 +
450 +(PB15)  &  (PA8)
451 +)))|(% style="width:106px" %)Weight
452 +
453 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
454 +
455 +
456 +==== 2.3.2.6  MOD~=6 (Counting Mode) ====
457 +
458 +In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
459 +
460 +Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
461 +
462 +[[image:image-20230512181814-9.png||height="543" width="697"]]
463 +
464 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
465 +
466 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
467 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
468 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
469 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
470 +
471 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
472 +
473 +
474 +==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
475 +
476 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
477 +
478 +|=(((
479 +**Size(bytes)**
480 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
481 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
482 +Digital in(PA12)&Digital Interrupt1(PB14)
483 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
484 +
485 +==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
486 +
487 +|=(((
488 +**Size(bytes)**
489 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
490 +|**Value**|BAT|Temperature(DS18B20)|(((
491 +ADC1(PA0)
492 +)))|(((
493 +Digital in
494 +& Digital Interrupt(PB14)
495 +)))|(((
496 +ADC2(PA1)
497 +)))|(((
498 +ADC3(PA4)
499 +)))
500 +
501 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
502 +
503 +
504 +==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
505 +
506 +|=(((
507 +**Size(bytes)**
508 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
509 +|**Value**|BAT|(((
510 +Temperature1(PB3)
511 +)))|(((
512 +Temperature2(PA9)
513 +)))|(((
514 +Digital in
515 +& Digital Interrupt(PA4)
516 +)))|(((
517 +Temperature3(PA10)
518 +)))|(((
519 +Count1(PB14)
520 +)))|(((
521 +Count2(PB15)
522 +)))
523 +
524 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
525 +
526 +**The newly added AT command is issued correspondingly:**
527 +
528 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
529 +
530 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
531 +
532 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
533 +
534 +**AT+SETCNT=aa,bb** 
535 +
536 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
537 +
538 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
539 +
540 +
541 +
542 +=== 2.3.3  ​Decode payload ===
543 +
544 +While using TTN V3 network, you can add the payload format to decode the payload.
545 +
546 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
547 +
548 +The payload decoder function for TTN V3 are here:
549 +
550 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
551 +
552 +
553 +==== 2.3.3.1 Battery Info ====
554 +
555 +Check the battery voltage for SN50v3.
556 +
324 324  Ex1: 0x0B45 = 2885mV
325 325  
326 326  Ex2: 0x0B49 = 2889mV
327 327  
328 328  
562 +==== 2.3.3.2  Temperature (DS18B20) ====
329 329  
330 -==== (% style="color:#4472c4" %)**Temperature**(%%) ====
564 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
331 331  
566 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
567 +
568 +**Connection:**
569 +
570 +[[image:image-20230512180718-8.png||height="538" width="647"]]
571 +
332 332  **Example**:
333 333  
334 334  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
... ... @@ -338,195 +338,211 @@
338 338  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
339 339  
340 340  
341 -==== (% style="color:#4472c4" %)**Humidity**(%%) ====
581 +==== 2.3.3.3 Digital Input ====
342 342  
583 +The digital input for pin PB15,
343 343  
344 -Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
585 +* When PB15 is high, the bit 1 of payload byte 6 is 1.
586 +* When PB15 is low, the bit 1 of payload byte 6 is 0.
345 345  
588 +(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
589 +(((
590 +Note:The maximum voltage input supports 3.6V.
591 +)))
346 346  
347 -==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
593 +(% class="wikigeneratedid" %)
594 +==== 2.3.3.4  Analogue Digital Converter (ADC) ====
348 348  
596 +The measuring range of the node is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
349 349  
350 -**Example:**
598 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
351 351  
352 -If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
600 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
353 353  
354 -If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
355 355  
356 -If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
603 +==== 2.3.3.5 Digital Interrupt ====
357 357  
358 -If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settings. see [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
605 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
359 359  
607 +**~ Interrupt connection method:**
360 360  
361 -== 2.4 Payload Decoder file ==
609 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
362 362  
611 +**Example to use with door sensor :**
363 363  
364 -In TTN, use can add a custom payload so it shows friendly reading
613 +The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
365 365  
366 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
615 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
367 367  
368 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
617 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
369 369  
619 +**~ Below is the installation example:**
370 370  
371 -== 2.5 Datalog Feature ==
621 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
372 372  
623 +* (((
624 +One pin to LSN50's PB14 pin
625 +)))
626 +* (((
627 +The other pin to LSN50's VCC pin
628 +)))
373 373  
374 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
630 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
375 375  
632 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
376 376  
377 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
634 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
378 378  
636 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
379 379  
380 -Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
638 +The above photos shows the two parts of the magnetic switch fitted to a door.
381 381  
382 -* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
383 -* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
640 +The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
384 384  
385 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
642 +The command is:
386 386  
387 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
644 +**AT+INTMOD=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
388 388  
389 -=== 2.5.2 Unix TimeStamp ===
646 +Below shows some screen captures in TTN V3:
390 390  
648 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
391 391  
392 -S31x-LB uses Unix TimeStamp format based on
650 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
393 393  
394 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
652 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
395 395  
396 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
397 397  
398 -Below is the converter example
655 +==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
399 399  
400 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
657 +The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
401 401  
402 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 Jan ~-~- 29 Friday 03:03:25
659 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
403 403  
661 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
404 404  
405 -=== 2.5.3 Set Device Time ===
663 +Below is the connection to SHT20/ SHT31. The connection is as below:
406 406  
665 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
407 407  
408 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
667 +The device will be able to get the I2C sensor data now and upload to IoT Server.
409 409  
410 -Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
669 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
411 411  
412 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
671 +Convert the read byte to decimal and divide it by ten.
413 413  
673 +**Example:**
414 414  
415 -=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
675 +Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
416 416  
677 +Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
417 417  
418 -The Datalog uplinks will use below payload format.
679 +If you want to use other I2C device, please refer the SHT20 part source code as reference.
419 419  
420 -**Retrieval data payload:**
421 421  
422 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
423 -|=(% style="width: 80px;background-color:#D9E2F3" %)(((
424 -**Size(bytes)**
425 -)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
426 -|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
427 -[[Temp_Black>>||anchor="HTemperatureBlack:"]]
428 -)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
682 +==== 2.3.3.7  ​Distance Reading ====
429 429  
430 -**Poll message flag & Ext:**
684 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
431 431  
432 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
433 433  
434 -**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
687 +==== 2.3.3.8 Ultrasonic Sensor ====
435 435  
436 -**Poll Message Flag**: 1: This message is a poll message reply.
689 +This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
437 437  
438 -* Poll Message Flag is set to 1.
691 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
439 439  
440 -* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
693 +The picture below shows the connection:
441 441  
442 -For example, in US915 band, the max payload for different DR is:
443 443  
444 -**a) DR0:** max is 11 bytes so one entry of data
696 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
445 445  
446 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
698 +The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
447 447  
448 -**c) DR2:** total payload includes 11 entries of data
700 +**Example:**
449 449  
450 -**d) DR3: **total payload includes 22 entries of data.
702 +Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
451 451  
452 -If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
453 453  
706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
454 454  
455 -**Example:**
708 +You can see the serial output in ULT mode as below:
456 456  
457 -If S31x-LB has below data inside Flash:
710 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
458 458  
459 -[[image:1682646494051-944.png]]
712 +**In TTN V3 server:**
460 460  
461 -If user sends below downlink command: 3160065F9760066DA705
714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
462 462  
463 -Where : Start time: 60065F97 = time 21/1/19 04:27:03
716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
464 464  
465 - Stop time: 60066DA7= time 21/1/19 05:27:03
718 +==== 2.3.3.9  Battery Output - BAT pin ====
466 466  
720 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
467 467  
468 -**S31x-LB will uplink this payload.**
469 469  
470 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
723 +==== 2.3.3.1 +5V Output ====
471 471  
472 -(((
473 -__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
474 -)))
725 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
475 475  
476 -(((
477 -Where the first 11 bytes is for the first entry:
478 -)))
727 +The 5V output time can be controlled by AT Command.
479 479  
480 -(((
481 -7FFF089801464160065F97
482 -)))
729 +**AT+5VT=1000**
483 483  
484 -(((
485 -**Ext sensor data**=0x7FFF/100=327.67
486 -)))
731 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
487 487  
488 -(((
489 -**Temp**=0x088E/100=22.00
490 -)))
733 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
491 491  
492 -(((
493 -**Hum**=0x014B/10=32.6
494 -)))
495 495  
496 -(((
497 -**poll message flag & Ext**=0x41,means reply data,Ext=1
498 -)))
499 499  
500 -(((
501 -**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
502 -)))
737 +==== 2.3.3.11  BH1750 Illumination Sensor ====
503 503  
739 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
504 504  
505 -(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
741 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
506 506  
507 -== 2.6 Temperature Alarm Feature ==
743 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
508 508  
509 509  
510 -S31x-LB work flow with Alarm feature.
746 +==== 2.3.3.1 Working MOD ====
511 511  
748 +The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
512 512  
513 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
750 +User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
514 514  
752 +Case 7^^th^^ Byte >> 2 & 0x1f:
515 515  
516 -== 2.7 Frequency Plans ==
754 +* 0: MOD1
755 +* 1: MOD2
756 +* 2: MOD3
757 +* 3: MOD4
758 +* 4: MOD5
759 +* 5: MOD6
517 517  
761 +== 2.4 Payload Decoder file ==
518 518  
519 -The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
520 520  
764 +In TTN, use can add a custom payload so it shows friendly reading
765 +
766 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
767 +
768 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
769 +
770 +
771 +
772 +== 2.5 Frequency Plans ==
773 +
774 +
775 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
776 +
521 521  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
522 522  
523 523  
524 -= 3. Configure S31x-LB =
780 += 3. Configure SN50v3-LB =
525 525  
526 526  == 3.1 Configure Methods ==
527 527  
528 528  
529 -S31x-LB supports below configure method:
785 +SN50v3-LB supports below configure method:
530 530  
531 531  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
532 532  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -545,7 +545,7 @@
545 545  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
546 546  
547 547  
548 -== 3.3 Commands special design for S31x-LB ==
804 +== 3.3 Commands special design for SN50v3-LB ==
549 549  
550 550  
551 551  These commands only valid for S31x-LB, as below:
... ... @@ -581,7 +581,6 @@
581 581  
582 582  === 3.3.2 Get Device Status ===
583 583  
584 -
585 585  Send a LoRaWAN downlink to ask device send Alarm settings.
586 586  
587 587  (% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
... ... @@ -589,77 +589,6 @@
589 589  Sensor will upload Device Status via FPORT=5. See payload section for detail.
590 590  
591 591  
592 -=== 3.3.3 Set Temperature Alarm Threshold ===
593 -
594 -* (% style="color:blue" %)**AT Command:**
595 -
596 -(% style="color:#037691" %)**AT+SHTEMP=min,max**
597 -
598 -* When min=0, and max≠0, Alarm higher than max
599 -* When min≠0, and max=0, Alarm lower than min
600 -* When min≠0 and max≠0, Alarm higher than max or lower than min
601 -
602 -Example:
603 -
604 - AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
605 -
606 -* (% style="color:blue" %)**Downlink Payload:**
607 -
608 -(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
609 -
610 -(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
611 -
612 -
613 -=== 3.3.4 Set Humidity Alarm Threshold ===
614 -
615 -* (% style="color:blue" %)**AT Command:**
616 -
617 -(% style="color:#037691" %)**AT+SHHUM=min,max**
618 -
619 -* When min=0, and max≠0, Alarm higher than max
620 -* When min≠0, and max=0, Alarm lower than min
621 -* When min≠0 and max≠0, Alarm higher than max or lower than min
622 -
623 -Example:
624 -
625 - AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
626 -
627 -* (% style="color:blue" %)**Downlink Payload:**
628 -
629 -(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
630 -
631 -(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
632 -
633 -
634 -=== 3.3.5 Set Alarm Interval ===
635 -
636 -The shortest time of two Alarm packet. (unit: min)
637 -
638 -* (% style="color:blue" %)**AT Command:**
639 -
640 -(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
641 -
642 -* (% style="color:blue" %)**Downlink Payload:**
643 -
644 -(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
645 -
646 -
647 -=== 3.3.6 Get Alarm settings ===
648 -
649 -
650 -Send a LoRaWAN downlink to ask device send Alarm settings.
651 -
652 -* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
653 -
654 -**Example:**
655 -
656 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
657 -
658 -
659 -**Explain:**
660 -
661 -* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
662 -
663 663  === 3.3.7 Set Interrupt Mode ===
664 664  
665 665  
... ... @@ -694,7 +694,7 @@
694 694  = 4. Battery & Power Consumption =
695 695  
696 696  
697 -S31x-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
881 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
698 698  
699 699  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
700 700  
... ... @@ -703,7 +703,7 @@
703 703  
704 704  
705 705  (% class="wikigeneratedid" %)
706 -User can change firmware S31x-LB to:
890 +User can change firmware SN50v3-LB to:
707 707  
708 708  * Change Frequency band/ region.
709 709  * Update with new features.
... ... @@ -719,47 +719,46 @@
719 719  
720 720  = 6. FAQ =
721 721  
906 +== 6.1 Where can i find source code of SN50v3-LB? ==
722 722  
908 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
909 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
723 723  
911 +
724 724  = 7. Order Info =
725 725  
726 726  
727 -Part Number: (% style="color:blue" %)**S31-LB-XX  / S31B-LB-XX**
915 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
728 728  
729 729  (% style="color:red" %)**XX**(%%): The default frequency band
730 730  
731 731  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
732 -
733 733  * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
734 -
735 735  * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
736 -
737 737  * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
738 -
739 739  * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
740 -
741 741  * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
742 -
743 743  * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
744 -
745 745  * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
746 746  
747 -= =
928 +(% style="color:red" %)**YY: ** (%%)Hole Option
748 748  
930 +* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
931 +* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
932 +* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
933 +* (% style="color:red" %)**NH**(%%): No Hole
934 +
749 749  = 8. ​Packing Info =
750 750  
751 751  (% style="color:#037691" %)**Package Includes**:
752 752  
753 -* S31x-LB LoRaWAN Temperature & Humidity Sensor
939 +* SN50v3-LB LoRaWAN Generic Node
754 754  
755 755  (% style="color:#037691" %)**Dimension and weight**:
756 756  
757 757  * Device Size: cm
758 -
759 759  * Device Weight: g
760 -
761 761  * Package Size / pcs : cm
762 -
763 763  * Weight / pcs : g
764 764  
765 765  = 9. Support =
image-20230511201248-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +429.5 KB
Content
image-20230511203450-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +679.1 KB
Content
image-20230512163509-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +172.7 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0