Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- image-20230512163509-1.png
- image-20230512164658-2.png
- image-20230512170701-3.png
- image-20230512172447-4.png
- image-20230512173758-5.png
- image-20230512173903-6.png
- image-20230512180609-7.png
- image-20230512180718-8.png
- image-20230512181814-9.png
- image-20230513084523-1.png
- image-20230513102034-2.png
- image-20230513103633-3.png
- image-20230513105207-4.png
- image-20230513105351-5.png
- image-20230513110214-6.png
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB User Manual 1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Saxer - Content
-
... ... @@ -1,4 +1,5 @@ 1 -[[image:image-20230511201248-1.png||height="403" width="489"]] 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 4 4 ... ... @@ -15,23 +15,21 @@ 15 15 16 16 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 17 17 19 + 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 20 - 21 21 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 22 23 - 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 - 27 27 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 28 28 29 - 30 30 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 31 31 32 32 33 33 == 1.2 Features == 34 34 33 + 35 35 * LoRaWAN 1.0.3 Class A 36 36 * Ultra-low power consumption 37 37 * Open-Source hardware/software ... ... @@ -42,8 +42,10 @@ 42 42 * Downlink to change configure 43 43 * 8500mAh Battery for long term use 44 44 44 + 45 45 == 1.3 Specification == 46 46 47 + 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -78,8 +78,10 @@ 78 78 * Sleep Mode: 5uA @ 3.3v 79 79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 80 80 82 + 81 81 == 1.4 Sleep mode and working mode == 82 82 85 + 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -104,6 +104,7 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 110 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-202305112034 50-2.png||height="443" width="785"]]129 +[[image:image-20230513102034-2.png]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,8 +135,9 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 142 +== 1.9 Hole Option == 139 139 144 + 140 140 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 141 141 142 142 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -149,7 +149,7 @@ 149 149 == 2.1 How it works == 150 150 151 151 152 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 153 153 154 154 155 155 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -157,7 +157,7 @@ 157 157 158 158 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 159 159 160 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.165 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 161 161 162 162 163 163 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -206,7 +206,7 @@ 206 206 === 2.3.1 Device Status, FPORT~=5 === 207 207 208 208 209 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 214 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 210 210 211 211 The Payload format is as below. 212 212 ... ... @@ -219,7 +219,7 @@ 219 219 Example parse in TTNv3 220 220 221 221 222 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 223 223 224 224 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 225 225 ... ... @@ -275,25 +275,40 @@ 275 275 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 276 276 277 277 278 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 283 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 279 279 280 280 For example: 281 281 282 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 287 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 283 283 284 284 285 285 (% style="color:red" %) **Important Notice:** 286 286 287 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 -1. All modes share the same Payload Explanation from HERE. 289 -1. By default, the device will send an uplink message every 20 minutes. 292 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 290 290 294 +2. All modes share the same Payload Explanation from HERE. 295 + 296 +3. By default, the device will send an uplink message every 20 minutes. 297 + 298 + 291 291 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 292 292 301 + 293 293 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 294 294 295 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 296 -|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20) 304 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 305 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 306 +|**Value**|Bat|(% style="width:191px" %)((( 307 +Temperature(DS18B20)(PC13) 308 +)))|(% style="width:78px" %)((( 309 +ADC(PA4) 310 +)))|(% style="width:216px" %)((( 311 +Digital in(PB15)&Digital Interrupt(PA8) 312 +)))|(% style="width:308px" %)((( 313 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 314 +)))|(% style="width:154px" %)((( 315 +Humidity(SHT20 or SHT31) 316 +))) 297 297 298 298 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 299 299 ... ... @@ -300,220 +300,274 @@ 300 300 301 301 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 302 302 323 + 303 303 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 304 304 305 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 306 -|**Value**|BAT|((( 307 -Temperature(DS18B20) 308 -)))|ADC|Digital in & Digital Interrupt|((( 309 -Distance measure by: 310 -1) LIDAR-Lite V3HP 326 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 327 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 328 +|**Value**|BAT|(% style="width:196px" %)((( 329 +Temperature(DS18B20)(PC13) 330 +)))|(% style="width:87px" %)((( 331 +ADC(PA4) 332 +)))|(% style="width:189px" %)((( 333 +Digital in(PB15) & Digital Interrupt(PA8) 334 +)))|(% style="width:208px" %)((( 335 +Distance measure by:1) LIDAR-Lite V3HP 311 311 Or 312 312 2) Ultrasonic Sensor 313 -)))|Reserved 338 +)))|(% style="width:117px" %)Reserved 314 314 315 315 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 316 316 317 -**Connection of LIDAR-Lite V3HP:** 318 318 319 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]]343 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 320 320 321 - **Connection to UltrasonicSensor:**345 +[[image:image-20230512173758-5.png||height="563" width="712"]] 322 322 323 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]] 324 324 348 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 349 + 350 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 351 + 352 +[[image:image-20230512173903-6.png||height="596" width="715"]] 353 + 354 + 325 325 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 326 326 327 -|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 328 -|**Value**|BAT|((( 329 -Temperature(DS18B20) 330 -)))|Digital in & Digital Interrupt|ADC|((( 357 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 358 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 359 +|**Value**|BAT|(% style="width:183px" %)((( 360 +Temperature(DS18B20)(PC13) 361 +)))|(% style="width:173px" %)((( 362 +Digital in(PB15) & Digital Interrupt(PA8) 363 +)))|(% style="width:84px" %)((( 364 +ADC(PA4) 365 +)))|(% style="width:323px" %)((( 331 331 Distance measure by:1)TF-Mini plus LiDAR 332 332 Or 333 333 2) TF-Luna LiDAR 334 -)))|Distance signal strength 369 +)))|(% style="width:188px" %)Distance signal strength 335 335 336 336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 337 337 373 + 338 338 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 339 339 340 -Need to remove R3 and R4 resistors to get low power . Sincefirmwarev1.7.0376 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 341 341 342 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]]378 +[[image:image-20230512180609-7.png||height="555" width="802"]] 343 343 380 + 344 344 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 345 345 346 -Need to remove R3 and R4 resistors to get low power . Sincefirmwarev1.7.0383 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 347 347 348 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]385 +[[image:image-20230513105207-4.png||height="469" width="802"]] 349 349 350 -Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 351 351 352 - 353 353 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 354 354 390 + 355 355 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 356 356 357 -|=((( 393 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 394 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 358 358 **Size(bytes)** 359 -)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1 360 -|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|((( 361 -Digital in(PA12)&Digital Interrupt1(PB14) 362 -)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat 396 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 397 +|**Value**|(% style="width:68px" %)((( 398 +ADC1(PA4) 399 +)))|(% style="width:75px" %)((( 400 +ADC2(PA5) 401 +)))|((( 402 +ADC3(PA8) 403 +)))|((( 404 +Digital Interrupt(PB15) 405 +)))|(% style="width:304px" %)((( 406 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 407 +)))|(% style="width:163px" %)((( 408 +Humidity(SHT20 or SHT31) 409 +)))|(% style="width:53px" %)Bat 363 363 364 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]411 +[[image:image-20230513110214-6.png]] 365 365 366 366 367 367 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 368 368 369 -This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4 370 370 371 -Hardware connection is as below, 372 - 373 -**( Note:** 374 - 375 -* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes. 376 -* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already. 377 - 378 -See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) ** 379 - 380 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]] 381 - 382 382 This mode has total 11 bytes. As shown below: 383 383 384 - |**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**385 -|** Value**|BAT|(((386 - Temperature1387 -(DS18B20) 388 -( PB3)389 - )))|ADC|Digital in & Digital Interrupt|Temperature2390 -( DS18B20)391 -(P A9)|Temperature3392 -(DS18B20) 393 -(P A10)419 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 420 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 421 +|**Value**|BAT|(% style="width:186px" %)((( 422 +Temperature1(DS18B20)(PC13) 423 +)))|(% style="width:82px" %)((( 424 +ADC(PA4) 425 +)))|(% style="width:210px" %)((( 426 +Digital in(PB15) & Digital Interrupt(PA8) 427 +)))|(% style="width:191px" %)Temperature2(DS18B20) 428 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 394 394 395 395 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 396 396 397 397 398 - ====2.3.2.5MOD~=5(WeightMeasurementby HX711)====433 +[[image:image-20230513134006-1.png||height="559" width="736"]] 399 399 400 -This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection. 401 401 436 +==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 402 402 403 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]] 404 404 439 +[[image:image-20230512164658-2.png||height="532" width="729"]] 440 + 405 405 Each HX711 need to be calibrated before used. User need to do below two steps: 406 406 407 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 408 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 443 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 444 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 409 409 1. ((( 410 -Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0) 446 +Weight has 4 bytes, the unit is g. 447 + 448 + 449 + 411 411 ))) 412 412 413 413 For example: 414 414 415 -**AT+ WEIGAP=403.0**454 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 416 416 417 417 Response: Weight is 401 g 418 418 419 419 Check the response of this command and adjust the value to match the real value for thing. 420 420 421 -|=((( 460 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 461 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 422 422 **Size(bytes)** 423 -)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2 424 -|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved 463 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 464 +|**Value**|BAT|(% style="width:193px" %)((( 465 +Temperature(DS18B20)(PC13) 466 +)))|(% style="width:85px" %)((( 467 +ADC(PA4) 468 +)))|(% style="width:186px" %)((( 469 +Digital in(PB15) & Digital Interrupt(PA8) 470 +)))|(% style="width:100px" %)Weight 425 425 426 426 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 427 427 428 428 475 + 429 429 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 430 430 478 + 431 431 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 432 432 433 433 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. 434 434 435 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]]483 +[[image:image-20230512181814-9.png||height="543" width="697"]] 436 436 437 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 438 438 439 -|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 440 -|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 441 -[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 442 -)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 486 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 443 443 488 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 489 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 490 +|**Value**|BAT|(% style="width:256px" %)((( 491 +Temperature(DS18B20)(PC13) 492 +)))|(% style="width:108px" %)((( 493 +ADC(PA4) 494 +)))|(% style="width:126px" %)((( 495 +Digital in(PB15) 496 +)))|(% style="width:145px" %)((( 497 +Count(PA8) 498 +))) 499 + 444 444 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 445 445 446 446 447 447 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 448 448 449 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 450 450 451 -|=((( 506 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 507 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 452 452 **Size(bytes)** 453 -)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 454 -|**Value**|BAT|Temperature(DS18B20)|ADC|((( 455 -Digital in(PA12)&Digital Interrupt1(PB14) 456 -)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 509 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 510 +|**Value**|BAT|(% style="width:188px" %)((( 511 +Temperature(DS18B20) 512 +(PC13) 513 +)))|(% style="width:83px" %)((( 514 +ADC(PA5) 515 +)))|(% style="width:184px" %)((( 516 +Digital Interrupt1(PA8) 517 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 457 457 519 +[[image:image-20230513111203-7.png||height="324" width="975"]] 520 + 521 + 458 458 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 459 459 460 -|=((( 524 + 525 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 526 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 461 461 **Size(bytes)** 462 -)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 463 -|**Value**|BAT|Temperature(DS18B20)|((( 464 -ADC1(PA0) 465 -)))|((( 466 -Digital in 467 -& Digital Interrupt(PB14) 468 -)))|((( 469 -ADC2(PA1) 470 -)))|((( 471 -ADC3(PA4) 528 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 529 +|**Value**|BAT|(% style="width:207px" %)((( 530 +Temperature(DS18B20) 531 +(PC13) 532 +)))|(% style="width:94px" %)((( 533 +ADC1(PA4) 534 +)))|(% style="width:198px" %)((( 535 +Digital Interrupt(PB15) 536 +)))|(% style="width:84px" %)((( 537 +ADC2(PA5) 538 +)))|(% style="width:82px" %)((( 539 +ADC3(PA8) 472 472 ))) 473 473 474 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]542 +[[image:image-20230513111231-8.png||height="335" width="900"]] 475 475 476 476 477 477 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 478 478 479 -|=((( 547 + 548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 549 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 480 480 **Size(bytes)** 481 -)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 551 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 482 482 |**Value**|BAT|((( 483 -Temperature1(PB3) 553 +Temperature 554 +(DS18B20)(PC13) 484 484 )))|((( 485 -Temperature2(PA9) 556 +Temperature2 557 +(DS18B20)(PB9) 486 486 )))|((( 487 -Digital in 488 -& Digital Interrupt(PA4) 489 -)))|((( 490 -Temperature3(PA10) 491 -)))|((( 492 -Count1(PB14) 493 -)))|((( 494 -Count2(PB15) 559 +Digital Interrupt 560 +(PB15) 561 +)))|(% style="width:193px" %)((( 562 +Temperature3 563 +(DS18B20)(PB8) 564 +)))|(% style="width:78px" %)((( 565 +Count1(PA8) 566 +)))|(% style="width:78px" %)((( 567 +Count2(PA4) 495 495 ))) 496 496 497 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]570 +[[image:image-20230513111255-9.png||height="341" width="899"]] 498 498 499 -**The newly added AT command is issued correspondingly:** 572 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 500 500 501 -** ~AT+INTMOD1****PB14** pin: Corresponding downlink: **06 00 00 xx**574 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 502 502 503 -** ~AT+INTMOD2** **PB15****06 00 01 xx**576 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 504 504 505 -** ~AT+INTMOD3****PA4**578 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 506 506 507 -**AT+SETCNT=aa,bb** 508 508 509 - WhenAA is1, settheuntof PB14 pin to BB Correspondingdownlink:09 01bbbb bb bb581 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 510 510 511 -When AA is 2, set the count of PB15pin to BB Corresponding downlink:09 02bb bb bb bb583 +When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 512 512 585 +When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 513 513 514 514 515 515 === 2.3.3 Decode payload === 516 516 590 + 517 517 While using TTN V3 network, you can add the payload format to decode the payload. 518 518 519 519 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] ... ... @@ -520,13 +520,14 @@ 520 520 521 521 The payload decoder function for TTN V3 are here: 522 522 523 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 597 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 524 524 525 525 526 526 ==== 2.3.3.1 Battery Info ==== 527 527 528 -Check the battery voltage for SN50v3. 529 529 603 +Check the battery voltage for SN50v3-LB. 604 + 530 530 Ex1: 0x0B45 = 2885mV 531 531 532 532 Ex2: 0x0B49 = 2889mV ... ... @@ -534,16 +534,18 @@ 534 534 535 535 ==== 2.3.3.2 Temperature (DS18B20) ==== 536 536 537 -If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload. 538 538 539 - More DS18B20 cancheckthe[[3DS18B20mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]613 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 540 540 541 - **Connection:**615 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 542 542 543 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378573379-646.png?rev=1.1||alt="1656378573379-646.png"]]617 +(% style="color:blue" %)**Connection:** 544 544 545 - **Example**:619 +[[image:image-20230512180718-8.png||height="538" width="647"]] 546 546 621 + 622 +(% style="color:blue" %)**Example**: 623 + 547 547 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 548 548 549 549 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -553,87 +553,69 @@ 553 553 554 554 ==== 2.3.3.3 Digital Input ==== 555 555 556 -The digital input for pin PA12, 557 557 558 -* When PA12 is high, the bit 1 of payload byte 6 is 1. 559 -* When PA12 is low, the bit 1 of payload byte 6 is 0. 634 +The digital input for pin PB15, 560 560 561 -==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 636 +* When PB15 is high, the bit 1 of payload byte 6 is 1. 637 +* When PB15 is low, the bit 1 of payload byte 6 is 0. 562 562 563 -The ADC pins in LSN50 can measure range from 0~~Vbat, it use reference voltage from . If user need to measure a voltage > VBat, please use resistors to divide this voltage to lower than VBat, otherwise, it may destroy the ADC pin. 639 +(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 640 +((( 641 +When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 564 564 565 - Note:minimum VBat is2.5v, when batrreylowerthanthis value.Device won'tbeable tosend LoRaUplink.643 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 566 566 567 -The ADC monitors the voltage on the PA0 line, in mV. 568 - 569 -Ex: 0x021F = 543mv, 570 - 571 -**~ Example1:** Reading an Oil Sensor (Read a resistance value): 572 - 573 - 574 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172409-28.png?rev=1.1||alt="image-20220627172409-28.png"]] 575 - 576 -In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor. 577 577 646 +))) 578 578 579 - **Steps:**648 +==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 580 580 581 -1. Solder a 10K resistor between PA0 and VCC. 582 -1. Screw oil sensor's two pins to PA0 and PB4. 583 583 584 -The e quipmentcircuit is asbelow:651 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 585 585 586 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172500-29.png?rev=1.1||alt="image-20220627172500-29.png"]]653 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 587 587 588 - Accordingtovediagram:655 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 589 589 590 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091043-4.png?rev=1.1||alt="image-20220628091043-4.png"]] 591 591 592 -So 658 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 593 593 594 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091344-6.png?rev=1.1||alt="image-20220628091344-6.png"]] 595 595 596 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091621-8.png?rev=1.1||alt="image-20220628091621-8.png"]]is the reading of ADC. So if ADC=0x05DC=0.9 v and VCC (BAT) is 2.9v661 +==== 2.3.3.5 Digital Interrupt ==== 597 597 598 -The [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091702-9.png?rev=1.1||alt="image-20220628091702-9.png"]] 4.5K ohm 599 599 600 - SinceheBouyislinear resistancefrom10~~70cm.664 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 601 601 602 - Theposition of Bouyis [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091824-10.png?rev=1.1||alt="image-20220628091824-10.png"]], frome bottom of Bouy.666 +(% style="color:blue" %)** Interrupt connection method:** 603 603 668 +[[image:image-20230513105351-5.png||height="147" width="485"]] 604 604 605 -==== 2.3.3.5 Digital Interrupt ==== 606 606 607 - DigitalInterrupt refersto pin PB14,and thereare differenttrigger methods.When there isa trigger,the SN50v3will send a packettotheserver.671 +(% style="color:blue" %)**Example to use with door sensor :** 608 608 609 -**~ Interrupt connection method:** 610 - 611 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]] 612 - 613 -**Example to use with door sensor :** 614 - 615 615 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 616 616 617 617 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 618 618 619 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.677 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 620 620 621 -**~ Below is the installation example:** 622 622 623 - Fixone piece ofthemagneticsensor tothedoorandconnectthetwo pinso LSN50as follows:680 +(% style="color:blue" %)**Below is the installation example:** 624 624 682 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 683 + 625 625 * ((( 626 -One pin to LSN50's PB14pin685 +One pin to SN50v3-LB's PA8 pin 627 627 ))) 628 628 * ((( 629 -The other pin to LSN50's VCCpin688 +The other pin to SN50v3-LB's VDD pin 630 630 ))) 631 631 632 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and P B14will be at the VCC voltage.691 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 633 633 634 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 693 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 635 635 636 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v 2/1Mohm =0.3uA which can be ignored.695 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 637 637 638 638 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 639 639 ... ... @@ -643,35 +643,33 @@ 643 643 644 644 The command is: 645 645 646 -**AT+INTMOD=1 705 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 647 647 648 648 Below shows some screen captures in TTN V3: 649 649 650 650 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 651 651 652 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 653 653 712 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 713 + 654 654 door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 655 655 656 -**Notice for hardware version LSN50 v1 < v1.3** (produced before 2018-Nov). 657 657 658 - Inthis hardware version, there is no R14 resistance solder.Whenuse the latest firmware, it should set AT+INTMOD=0to close the interrupt.If userneedto useInterrupt in this hardwareversion, user need to solder R14 with 10Mresistorand C1(0.1uF)on board.717 +==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 659 659 660 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379563303-771.png?rev=1.1||alt="1656379563303-771.png"]] 661 661 720 +The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 662 662 663 - ====2.3.3.6I2CInterface(SHT20)====722 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 664 664 665 - ThePB6(SDA)andPB7(SCK)are I2C interfacelines.Youcan use thesetoconnecttoan I2C deviceandget the sensor data.724 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 666 666 667 -We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with **AT+MOD=1 (default value).** 668 668 669 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in LSN50 will be a good reference. 670 - 671 671 Below is the connection to SHT20/ SHT31. The connection is as below: 672 672 673 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]729 +[[image:image-20230513103633-3.png||height="448" width="716"]] 674 674 731 + 675 675 The device will be able to get the I2C sensor data now and upload to IoT Server. 676 676 677 677 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] ... ... @@ -689,21 +689,26 @@ 689 689 690 690 ==== 2.3.3.7 Distance Reading ==== 691 691 692 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]]. 693 693 750 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 694 694 752 + 695 695 ==== 2.3.3.8 Ultrasonic Sensor ==== 696 696 697 -The LSN50 v1.5 firmware supports ultrasonic sensor (with AT+MOD=2) such as SEN0208 from DF-Robot. This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 698 698 699 -Th eLSN50detectsthepulsewidthof thesensor andconverts ittommoutput.Theccuracy will be within1centimeter. Theusablerange (thedistancebetweentheultrasonicprobeandthemeasuredobject) is between24cm and 600cm.756 +This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 700 700 758 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 759 + 760 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 761 + 701 701 The picture below shows the connection: 702 702 703 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656380061365-178.png?rev=1.1||alt="1656380061365-178.png"]]764 +[[image:image-20230512173903-6.png||height="596" width="715"]] 704 704 705 -Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT). 706 706 767 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 768 + 707 707 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 708 708 709 709 **Example:** ... ... @@ -710,50 +710,41 @@ 710 710 711 711 Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 712 712 713 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]] 714 714 715 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]] 716 - 717 -You can see the serial output in ULT mode as below: 718 - 719 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]] 720 - 721 -**In TTN V3 server:** 722 - 723 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]] 724 - 725 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]] 726 - 727 727 ==== 2.3.3.9 Battery Output - BAT pin ==== 728 728 729 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 730 730 779 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 731 731 781 + 732 732 ==== 2.3.3.10 +5V Output ==== 733 733 734 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 735 735 785 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 786 + 736 736 The 5V output time can be controlled by AT Command. 737 737 738 -**AT+5VT=1000** 789 +(% style="color:blue" %)**AT+5VT=1000** 739 739 740 740 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 741 741 742 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 793 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 743 743 744 744 745 - 746 746 ==== 2.3.3.11 BH1750 Illumination Sensor ==== 747 747 798 + 748 748 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 749 749 750 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-11.jpeg?rev=1.1||alt="image-20220628110012-11.jpeg"]]801 +[[image:image-20230512172447-4.png||height="416" width="712"]] 751 751 752 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 753 753 804 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 754 754 806 + 755 755 ==== 2.3.3.12 Working MOD ==== 756 756 809 + 757 757 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 758 758 759 759 User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: ... ... @@ -766,7 +766,11 @@ 766 766 * 3: MOD4 767 767 * 4: MOD5 768 768 * 5: MOD6 822 +* 6: MOD7 823 +* 7: MOD8 824 +* 8: MOD9 769 769 826 + 770 770 == 2.4 Payload Decoder file == 771 771 772 772 ... ... @@ -774,11 +774,9 @@ 774 774 775 775 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 776 776 777 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/ LSN50v2-S31%26S31BLSN50v2-S31%26S31B]]834 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 778 778 779 779 780 - 781 - 782 782 == 2.5 Frequency Plans == 783 783 784 784 ... ... @@ -787,17 +787,18 @@ 787 787 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 788 788 789 789 790 -= 3. Configure S3 1x-LB =845 += 3. Configure SN50v3-LB = 791 791 792 792 == 3.1 Configure Methods == 793 793 794 794 795 -S3 1x-LB supports below configure method:850 +SN50v3-LB supports below configure method: 796 796 797 797 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 798 798 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 799 799 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 800 800 856 + 801 801 == 3.2 General Commands == 802 802 803 803 ... ... @@ -811,10 +811,10 @@ 811 811 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 812 812 813 813 814 -== 3.3 Commands special design for S3 1x-LB ==870 +== 3.3 Commands special design for SN50v3-LB == 815 815 816 816 817 -These commands only valid for S3 1x-LB, as below:873 +These commands only valid for SN50v3-LB, as below: 818 818 819 819 820 820 === 3.3.1 Set Transmit Interval Time === ... ... @@ -845,117 +845,163 @@ 845 845 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 846 846 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 847 847 904 + 848 848 === 3.3.2 Get Device Status === 849 849 850 850 851 -Send a LoRaWAN downlink to ask device send Alarmsettings.908 +Send a LoRaWAN downlink to ask the device to send its status. 852 852 853 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 01910 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 854 854 855 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 912 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 856 856 857 857 858 -=== 3.3.3 Set TemperatureAlarm Threshold ===915 +=== 3.3.3 Set Interrupt Mode === 859 859 860 -* (% style="color:blue" %)**AT Command:** 861 861 862 - (%style="color:#037691"%)**AT+SHTEMP=min,max**918 +Feature, Set Interrupt mode for GPIO_EXIT. 863 863 864 -* When min=0, and max≠0, Alarm higher than max 865 -* When min≠0, and max=0, Alarm lower than min 866 -* When min≠0 and max≠0, Alarm higher than max or lower than min 920 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 867 867 868 -Example: 922 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 923 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 924 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 925 +0 926 +OK 927 +the mode is 0 =Disable Interrupt 928 +))) 929 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 930 +Set Transmit Interval 931 +0. (Disable Interrupt), 932 +~1. (Trigger by rising and falling edge) 933 +2. (Trigger by falling edge) 934 +3. (Trigger by rising edge) 935 +)))|(% style="width:157px" %)OK 936 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 937 +Set Transmit Interval 938 +trigger by rising edge. 939 +)))|(% style="width:157px" %)OK 940 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 869 869 870 - AT+SHTEMP=0,30 ~/~/ Alarmwhentemperature higher than30.942 +(% style="color:blue" %)**Downlink Command: 0x06** 871 871 872 - * (% style="color:blue"%)**Downlink Payload:**944 +Format: Command Code (0x06) followed by 3 bytes. 873 873 874 - (%style="color:#037691"%)**0x(0C01001E)**(%%)~/~/SetAT+SHTEMP=0,30946 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 875 875 876 -(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)** 948 +* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 949 +* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 950 +* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 951 +* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 877 877 878 878 879 -=== 3.3.4 Set HumidityAlarm Threshold===954 +=== 3.3.4 Set Power Output Duration === 880 880 881 -* (% style="color:blue" %)**AT Command:** 882 882 883 - (% style="color:#037691"%)**AT+SHHUM=min,max**957 +Control the output duration 5V . Before each sampling, device will 884 884 885 -* When min=0, and max≠0, Alarm higher than max 886 -* When min≠0, and max=0, Alarm lower than min 887 -* When min≠0 and max≠0, Alarm higher than max or lower than min 959 +~1. first enable the power output to external sensor, 888 888 889 - Example:961 +2. keep it on as per duration, read sensor value and construct uplink payload 890 890 891 - AT+SHHUM=70,0~/~/ Alarmwhenhumidity lower than 70%.963 +3. final, close the power output. 892 892 893 - *(% style="color:blue" %)**DownlinkPayload:**965 +(% style="color:blue" %)**AT Command: AT+5VT** 894 894 895 -(% style="color:#037691" %)**0x(0C 02 46 00)**(%%) ~/~/ Set AT+SHTHUM=70,0 967 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 968 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 969 +|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 970 +500(default) 971 +OK 972 +))) 973 +|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 974 +Close after a delay of 1000 milliseconds. 975 +)))|(% style="width:157px" %)OK 896 896 897 -(% style="color: red" %)**(note: 3^^rd^^ byte= 0x46 for lowmit(70%), 4^^th^^ byte = 0x00 for high limit (notset))**977 +(% style="color:blue" %)**Downlink Command: 0x07** 898 898 979 +Format: Command Code (0x07) followed by 2 bytes. 899 899 900 - ===3.3.5SetAlarmInterval===981 +The first and second bytes are the time to turn on. 901 901 902 -The shortest time of two Alarm packet. (unit: min) 983 +* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 984 +* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 903 903 904 -* (% style="color:blue" %)**AT Command:** 905 905 906 - (% style="color:#037691" %)**AT+ATDC=30**(%%) ~/~/ Theshortestinterval of two Alarm packetsis 30 minutes, Means is thereis analarmpacket uplink, there won't beanother one inthenext 30 minutes.987 +=== 3.3.5 Set Weighing parameters === 907 907 908 -* (% style="color:blue" %)**Downlink Payload:** 909 909 910 - (% style="color:#037691"%)**0x(0D001E)**(%%)**~-~-->** SetAT+ATDC=0x001E=30 minutes990 +Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 911 911 992 +(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 912 912 913 -=== 3.3.6 Get Alarm settings === 994 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 995 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 996 +|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 997 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 998 +|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 914 914 1000 +(% style="color:blue" %)**Downlink Command: 0x08** 915 915 916 - SendaLoRaWANdownlink toaskdevicesendAlarmsettings.1002 +Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 917 917 918 - *(%style="color:#037691"%)**DownlinkPayload:**(%%)0x0E011004 +Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 919 919 920 - **Example:**1006 +The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 921 921 922 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]] 1008 +* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1009 +* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1010 +* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 923 923 924 924 925 - **Explain:**1013 +=== 3.3.6 Set Digital pulse count value === 926 926 927 -* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message. 928 928 929 - ===3.3.7SetInterruptMode===1016 +Feature: Set the pulse count value. 930 930 1018 +Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 931 931 932 - Feature,SetInterruptmodefor GPIO_EXIT.1020 +(% style="color:blue" %)**AT Command: AT+SETCNT** 933 933 934 -(% style="color:blue" %)**AT Command: AT+INTMOD** 1022 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1023 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1024 +|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1025 +|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 935 935 1027 +(% style="color:blue" %)**Downlink Command: 0x09** 1028 + 1029 +Format: Command Code (0x09) followed by 5 bytes. 1030 + 1031 +The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1032 + 1033 +* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1034 +* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1035 + 1036 + 1037 +=== 3.3.7 Set Workmode === 1038 + 1039 + 1040 +Feature: Switch working mode. 1041 + 1042 +(% style="color:blue" %)**AT Command: AT+MOD** 1043 + 936 936 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 937 937 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 938 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 939 -0 1046 +|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 940 940 OK 941 -the mode is 0 =Disable Interrupt 942 942 ))) 943 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 944 -Set Transmit Interval 945 -0. (Disable Interrupt), 946 -~1. (Trigger by rising and falling edge) 947 -2. (Trigger by falling edge) 948 -3. (Trigger by rising edge) 949 -)))|(% style="width:157px" %)OK 1049 +|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1050 +OK 1051 +Attention:Take effect after ATZ 1052 +))) 950 950 951 -(% style="color:blue" %)**Downlink Command: 0x0 6**1054 +(% style="color:blue" %)**Downlink Command: 0x0A** 952 952 953 -Format: Command Code (0x0 6) followed by3bytes.1056 +Format: Command Code (0x0A) followed by 1 bytes. 954 954 955 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1058 +* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1059 +* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 956 956 957 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 958 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 959 959 960 960 = 4. Battery & Power Consumption = 961 961 ... ... @@ -969,24 +969,29 @@ 969 969 970 970 971 971 (% class="wikigeneratedid" %) 972 -User can change firmware SN50v3-LB to: 1074 +**User can change firmware SN50v3-LB to:** 973 973 974 974 * Change Frequency band/ region. 975 975 * Update with new features. 976 976 * Fix bugs. 977 977 978 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 1080 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]** 979 979 1082 +**Methods to Update Firmware:** 980 980 981 -Methods to Update Firmware: 982 - 983 983 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 984 984 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 985 985 1087 + 986 986 = 6. FAQ = 987 987 1090 +== 6.1 Where can i find source code of SN50v3-LB? == 988 988 989 989 1093 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1094 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1095 + 1096 + 990 990 = 7. Order Info = 991 991 992 992 ... ... @@ -1010,8 +1010,10 @@ 1010 1010 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1011 1011 * (% style="color:red" %)**NH**(%%): No Hole 1012 1012 1120 + 1013 1013 = 8. Packing Info = 1014 1014 1123 + 1015 1015 (% style="color:#037691" %)**Package Includes**: 1016 1016 1017 1017 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1023,8 +1023,10 @@ 1023 1023 * Package Size / pcs : cm 1024 1024 * Weight / pcs : g 1025 1025 1135 + 1026 1026 = 9. Support = 1027 1027 1028 1028 1029 1029 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1030 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1140 + 1141 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
- image-20230512163509-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20230512164658-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.0 MB - Content
- image-20230512170701-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.5 MB - Content
- image-20230512172447-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.0 MB - Content
- image-20230512173758-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.1 MB - Content
- image-20230512173903-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512180609-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512180718-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512181814-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.2 MB - Content
- image-20230513084523-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +611.3 KB - Content
- image-20230513102034-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +607.1 KB - Content
- image-20230513103633-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +595.5 KB - Content
- image-20230513105207-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +384.7 KB - Content
- image-20230513105351-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.6 KB - Content
- image-20230513110214-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +172.7 KB - Content
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.0 KB - Content