<
From version < 14.1 >
edited by Edwin Chen
on 2023/05/11 23:21
To version < 87.13 >
edited by Xiaoling
on 2024/01/03 14:06
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB User Manual
1 +SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -1,37 +1,40 @@
1 -[[image:image-20230511201248-1.png||height="403" width="489"]]
1 +
2 2  
3 +(% style="text-align:center" %)
4 +[[image:image-20240103095714-2.png]]
3 3  
4 4  
5 -**Table of Contents:**
6 6  
7 -{{toc/}}
8 8  
9 9  
10 10  
11 +**Table of Contents:**
11 11  
13 +{{toc/}}
12 12  
13 13  
14 -= 1. Introduction =
15 15  
16 -== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
18 -(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
19 19  
20 20  
21 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
20 += 1. Introduction =
22 22  
22 +== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23 23  
24 -(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
25 +(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 +(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
28 28  
29 +SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
29 29  
30 -SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
31 +SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
31 31  
33 +SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32 32  
33 33  == 1.2 ​Features ==
34 34  
37 +
35 35  * LoRaWAN 1.0.3 Class A
36 36  * Ultra-low power consumption
37 37  * Open-Source hardware/software
... ... @@ -40,13 +40,15 @@
40 40  * Support wireless OTA update firmware
41 41  * Uplink on periodically
42 42  * Downlink to change configure
43 -* 8500mAh Battery for long term use
46 +* 8500mAh Li/SOCl2 battery (SN50v3-LB)
47 +* Solar panel + 3000mAh Li-on battery (SN50v3-LS)
44 44  
45 45  == 1.3 Specification ==
46 46  
51 +
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 -* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 +* Supply Voltage: Built- in battery , 2.5v ~~ 3.6v
50 50  * Operating Temperature: -40 ~~ 85°C
51 51  
52 52  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -80,6 +80,7 @@
80 80  
81 81  == 1.4 Sleep mode and working mode ==
82 82  
88 +
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -88,11 +88,11 @@
88 88  == 1.5 Button & LEDs ==
89 89  
90 90  
91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
92 92  
93 93  
94 94  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 -|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 +|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 225px;background-color:#4F81BD;color:white" %)**Action**
96 96  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 97  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 98  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -107,7 +107,7 @@
107 107  == 1.6 BLE connection ==
108 108  
109 109  
110 -SN50v3-LB supports BLE remote configure.
116 +SN50v3-LB/LS supports BLE remote configure.
111 111  
112 112  
113 113  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -122,34 +122,40 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230511203450-2.png||height="443" width="785"]]
131 +[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
129 129  
136 +=== 1.8.1 for LB version ===
130 130  
131 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132 132  
133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134 134  
141 +
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
144 +=== 1.8.2 for LS version ===
137 137  
138 -== Hole Option ==
146 +[[image:image-20231231203439-3.png||height="385" width="886"]]
139 139  
140 -SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
141 141  
149 +== 1.9 Hole Option ==
150 +
151 +
152 +SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
153 +
142 142  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
143 143  
144 144  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
145 145  
146 146  
147 -= 2. Configure SN50v3-LB to connect to LoRaWAN network =
159 += 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
148 148  
149 149  == 2.1 How it works ==
150 150  
151 151  
152 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
164 +The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
153 153  
154 154  
155 155  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -157,12 +157,12 @@
157 157  
158 158  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
159 159  
160 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
172 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
161 161  
162 162  
163 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
164 164  
165 -Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 +Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
166 166  
167 167  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
168 168  
... ... @@ -191,10 +191,10 @@
191 191  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
192 192  
193 193  
194 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
195 195  
196 196  
197 -Press the button for 5 seconds to activate the SN50v3-LB.
209 +Press the button for 5 seconds to activate the SN50v3-LB/LS.
198 198  
199 199  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 200  
... ... @@ -206,52 +206,52 @@
206 206  === 2.3.1 Device Status, FPORT~=5 ===
207 207  
208 208  
209 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
221 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
210 210  
211 211  The Payload format is as below.
212 212  
213 213  
214 214  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
215 -|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
227 +|(% colspan="6" style="background-color:#4F81BD;color:white" %)**Device Status (FPORT=5)**
216 216  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
217 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
229 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
218 218  
219 219  Example parse in TTNv3
220 220  
221 221  
222 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
234 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
223 223  
224 224  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
225 225  
226 226  (% style="color:#037691" %)**Frequency Band**:
227 227  
228 -*0x01: EU868
240 +0x01: EU868
229 229  
230 -*0x02: US915
242 +0x02: US915
231 231  
232 -*0x03: IN865
244 +0x03: IN865
233 233  
234 -*0x04: AU915
246 +0x04: AU915
235 235  
236 -*0x05: KZ865
248 +0x05: KZ865
237 237  
238 -*0x06: RU864
250 +0x06: RU864
239 239  
240 -*0x07: AS923
252 +0x07: AS923
241 241  
242 -*0x08: AS923-1
254 +0x08: AS923-1
243 243  
244 -*0x09: AS923-2
256 +0x09: AS923-2
245 245  
246 -*0x0a: AS923-3
258 +0x0a: AS923-3
247 247  
248 -*0x0b: CN470
260 +0x0b: CN470
249 249  
250 -*0x0c: EU433
262 +0x0c: EU433
251 251  
252 -*0x0d: KR920
264 +0x0d: KR920
253 253  
254 -*0x0e: MA869
266 +0x0e: MA869
255 255  
256 256  
257 257  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -275,25 +275,40 @@
275 275  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
276 276  
277 277  
278 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
290 +SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
279 279  
280 280  For example:
281 281  
282 - **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
294 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283 283  
284 284  
285 285  (% style="color:red" %) **Important Notice:**
286 286  
287 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 -1. All modes share the same Payload Explanation from HERE.
289 -1. By default, the device will send an uplink message every 20 minutes.
299 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
290 290  
301 +2. All modes share the same Payload Explanation from HERE.
302 +
303 +3. By default, the device will send an uplink message every 20 minutes.
304 +
305 +
291 291  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
292 292  
308 +
293 293  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
294 294  
295 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
296 -|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20)
311 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
312 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:20px" %)**2**|(% style="background-color:#4F81BD;color:white; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#4F81BD;color:white; width:130px" %)**2**|(% style="background-color:#4F81BD;color:white; width:80px" %)**2**
313 +|Value|Bat|(% style="width:191px" %)(((
314 +Temperature(DS18B20)(PC13)
315 +)))|(% style="width:78px" %)(((
316 +ADC(PA4)
317 +)))|(% style="width:216px" %)(((
318 +Digital in(PB15)&Digital Interrupt(PA8)
319 +)))|(% style="width:308px" %)(((
320 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
321 +)))|(% style="width:154px" %)(((
322 +Humidity(SHT20 or SHT31)
323 +)))
297 297  
298 298  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
299 299  
... ... @@ -300,128 +300,152 @@
300 300  
301 301  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
302 302  
330 +
303 303  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
304 304  
305 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
306 -|**Value**|BAT|(((
307 -Temperature(DS18B20)
308 -)))|ADC|Digital in & Digital Interrupt|(((
309 -Distance measure by:
310 -1) LIDAR-Lite V3HP
311 -Or
312 -2) Ultrasonic Sensor
313 -)))|Reserved
333 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
334 +|(% style="background-color:#4F81BD;color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4F81BD;color:white; width:30px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#4F81BD;color:white; width:110px" %)**1**|(% style="background-color:#4F81BD;color:white; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
335 +|Value|BAT|(% style="width:196px" %)(((
336 +Temperature(DS18B20)(PC13)
337 +)))|(% style="width:87px" %)(((
338 +ADC(PA4)
339 +)))|(% style="width:189px" %)(((
340 +Digital in(PB15) & Digital Interrupt(PA8)
341 +)))|(% style="width:208px" %)(((
342 +Distance measure by: 1) LIDAR-Lite V3HP
343 +Or 2) Ultrasonic Sensor
344 +)))|(% style="width:117px" %)Reserved
314 314  
315 315  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
316 316  
317 -**Connection of LIDAR-Lite V3HP:**
318 318  
319 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]]
349 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
320 320  
321 -**Connection to Ultrasonic Sensor:**
351 +[[image:image-20230512173758-5.png||height="563" width="712"]]
322 322  
323 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]]
324 324  
354 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
355 +
356 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
357 +
358 +[[image:image-20230512173903-6.png||height="596" width="715"]]
359 +
360 +
325 325  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
326 326  
327 -|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
328 -|**Value**|BAT|(((
329 -Temperature(DS18B20)
330 -)))|Digital in & Digital Interrupt|ADC|(((
363 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
364 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
365 +|Value|BAT|(% style="width:183px" %)(((
366 +Temperature(DS18B20)(PC13)
367 +)))|(% style="width:173px" %)(((
368 +Digital in(PB15) & Digital Interrupt(PA8)
369 +)))|(% style="width:84px" %)(((
370 +ADC(PA4)
371 +)))|(% style="width:323px" %)(((
331 331  Distance measure by:1)TF-Mini plus LiDAR
332 -Or 
333 -2) TF-Luna LiDAR
334 -)))|Distance signal  strength
373 +Or 2) TF-Luna LiDAR
374 +)))|(% style="width:188px" %)Distance signal  strength
335 335  
336 336  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
337 337  
378 +
338 338  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
339 339  
340 -Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
381 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
341 341  
342 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]]
383 +[[image:image-20230512180609-7.png||height="555" width="802"]]
343 343  
385 +
344 344  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
345 345  
346 -Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
388 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
347 347  
348 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
390 +[[image:image-20230610170047-1.png||height="452" width="799"]]
349 349  
350 -Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
351 351  
352 -
353 353  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
354 354  
395 +
355 355  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
356 356  
357 -|=(((
398 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
399 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
358 358  **Size(bytes)**
359 -)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1
360 -|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|(((
361 -Digital in(PA12)&Digital Interrupt1(PB14)
362 -)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat
401 +)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 100px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
402 +|Value|(% style="width:68px" %)(((
403 +ADC1(PA4)
404 +)))|(% style="width:75px" %)(((
405 +ADC2(PA5)
406 +)))|(((
407 +ADC3(PA8)
408 +)))|(((
409 +Digital Interrupt(PB15)
410 +)))|(% style="width:304px" %)(((
411 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
412 +)))|(% style="width:163px" %)(((
413 +Humidity(SHT20 or SHT31)
414 +)))|(% style="width:53px" %)Bat
363 363  
364 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
416 +[[image:image-20230513110214-6.png]]
365 365  
366 366  
367 367  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
368 368  
369 -This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4
370 370  
371 -Hardware connection is as below,
372 -
373 -**( Note:**
374 -
375 -* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes.
376 -* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already.
377 -
378 -See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) **
379 -
380 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]]
381 -
382 382  This mode has total 11 bytes. As shown below:
383 383  
384 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
385 -|**Value**|BAT|(((
386 -Temperature1
387 -(DS18B20)
388 -(PB3)
389 -)))|ADC|Digital in & Digital Interrupt|Temperature2
390 -(DS18B20)
391 -(PA9)|Temperature3
392 -(DS18B20)
393 -(PA10)
424 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
425 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
426 +|Value|BAT|(% style="width:186px" %)(((
427 +Temperature1(DS18B20)(PC13)
428 +)))|(% style="width:82px" %)(((
429 +ADC(PA4)
430 +)))|(% style="width:210px" %)(((
431 +Digital in(PB15) & Digital Interrupt(PA8) 
432 +)))|(% style="width:191px" %)Temperature2(DS18B20)
433 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
394 394  
395 395  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
396 396  
397 397  
398 -==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
438 +[[image:image-20230513134006-1.png||height="559" width="736"]]
399 399  
400 -This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection.
401 401  
441 +==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
402 402  
403 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]]
404 404  
444 +[[image:image-20230512164658-2.png||height="532" width="729"]]
445 +
405 405  Each HX711 need to be calibrated before used. User need to do below two steps:
406 406  
407 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
408 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
448 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
449 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
409 409  1. (((
410 -Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0)
451 +Weight has 4 bytes, the unit is g.
452 +
453 +
454 +
411 411  )))
412 412  
413 413  For example:
414 414  
415 -**AT+WEIGAP =403.0**
459 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
416 416  
417 417  Response:  Weight is 401 g
418 418  
419 419  Check the response of this command and adjust the value to match the real value for thing.
420 420  
421 -|=(((
465 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
466 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
422 422  **Size(bytes)**
423 -)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2
424 -|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved
468 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 200px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**4**
469 +|Value|BAT|(% style="width:193px" %)(((
470 +Temperature(DS18B20)(PC13)
471 +)))|(% style="width:85px" %)(((
472 +ADC(PA4)
473 +)))|(% style="width:186px" %)(((
474 +Digital in(PB15) & Digital Interrupt(PA8)
475 +)))|(% style="width:100px" %)Weight
425 425  
426 426  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
427 427  
... ... @@ -428,516 +428,516 @@
428 428  
429 429  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
430 430  
482 +
431 431  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
432 432  
433 433  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
434 434  
435 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]]
487 +[[image:image-20230512181814-9.png||height="543" width="697"]]
436 436  
437 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
438 438  
439 -|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
440 -|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
441 -[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
442 -)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
490 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
443 443  
492 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
493 +|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 80px;background-color:#4F81BD;color:white" %)**4**
494 +|Value|BAT|(% style="width:256px" %)(((
495 +Temperature(DS18B20)(PC13)
496 +)))|(% style="width:108px" %)(((
497 +ADC(PA4)
498 +)))|(% style="width:126px" %)(((
499 +Digital in(PB15)
500 +)))|(% style="width:145px" %)(((
501 +Count(PA8)
502 +)))
503 +
444 444  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
445 445  
446 446  
447 447  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
448 448  
449 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
450 450  
451 -|=(((
510 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
511 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
452 452  **Size(bytes)**
453 -)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
454 -|**Value**|BAT|Temperature(DS18B20)|ADC|(((
455 -Digital in(PA12)&Digital Interrupt1(PB14)
456 -)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
513 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
514 +|Value|BAT|(% style="width:188px" %)(((
515 +Temperature(DS18B20)
516 +(PC13)
517 +)))|(% style="width:83px" %)(((
518 +ADC(PA5)
519 +)))|(% style="width:184px" %)(((
520 +Digital Interrupt1(PA8)
521 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
457 457  
523 +[[image:image-20230513111203-7.png||height="324" width="975"]]
524 +
525 +
458 458  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
459 459  
460 -|=(((
528 +
529 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
530 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
461 461  **Size(bytes)**
462 -)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
463 -|**Value**|BAT|Temperature(DS18B20)|(((
464 -ADC1(PA0)
465 -)))|(((
466 -Digital in
467 -& Digital Interrupt(PB14)
468 -)))|(((
469 -ADC2(PA1)
470 -)))|(((
471 -ADC3(PA4)
532 +)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 120px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)2
533 +|Value|BAT|(% style="width:207px" %)(((
534 +Temperature(DS18B20)
535 +(PC13)
536 +)))|(% style="width:94px" %)(((
537 +ADC1(PA4)
538 +)))|(% style="width:198px" %)(((
539 +Digital Interrupt(PB15)
540 +)))|(% style="width:84px" %)(((
541 +ADC2(PA5)
542 +)))|(% style="width:82px" %)(((
543 +ADC3(PA8)
472 472  )))
473 473  
474 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
546 +[[image:image-20230513111231-8.png||height="335" width="900"]]
475 475  
476 476  
477 477  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
478 478  
479 -|=(((
551 +
552 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
553 +|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
480 480  **Size(bytes)**
481 -)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
482 -|**Value**|BAT|(((
483 -Temperature1(PB3)
555 +)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4|=(% style="width: 60px;background-color:#4F81BD;color:white" %)4
556 +|Value|BAT|(((
557 +Temperature
558 +(DS18B20)(PC13)
484 484  )))|(((
485 -Temperature2(PA9)
560 +Temperature2
561 +(DS18B20)(PB9)
486 486  )))|(((
487 -Digital in
488 -& Digital Interrupt(PA4)
489 -)))|(((
490 -Temperature3(PA10)
491 -)))|(((
492 -Count1(PB14)
493 -)))|(((
494 -Count2(PB15)
563 +Digital Interrupt
564 +(PB15)
565 +)))|(% style="width:193px" %)(((
566 +Temperature3
567 +(DS18B20)(PB8)
568 +)))|(% style="width:78px" %)(((
569 +Count1(PA8)
570 +)))|(% style="width:78px" %)(((
571 +Count2(PA4)
495 495  )))
496 496  
497 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
574 +[[image:image-20230513111255-9.png||height="341" width="899"]]
498 498  
499 -**The newly added AT command is issued correspondingly:**
576 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
500 500  
501 -**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
578 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
502 502  
503 -**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
580 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
504 504  
505 -**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
582 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
506 506  
507 -**AT+SETCNT=aa,bb** 
508 508  
509 -When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
585 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
510 510  
511 -When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
587 +When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
512 512  
589 +When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
513 513  
514 514  
515 -=== 2.3.3  Decode payload ===
592 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
516 516  
517 -While using TTN V3 network, you can add the payload format to decode the payload.
518 518  
519 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
595 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
520 520  
521 -The payload decoder function for TTN V3 are here:
597 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
522 522  
523 -SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
599 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
524 524  
525 525  
526 -==== 2.3.3.1 Battery Info ====
602 +===== 2.3.2.10.a  Uplink, PWM input capture =====
527 527  
528 -Check the battery voltage for SN50v3.
529 529  
530 -Ex1: 0x0B45 = 2885mV
605 +[[image:image-20230817172209-2.png||height="439" width="683"]]
531 531  
532 -Ex2: 0x0B49 = 2889mV
607 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
608 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
609 +|Value|Bat|(% style="width:191px" %)(((
610 +Temperature(DS18B20)(PC13)
611 +)))|(% style="width:78px" %)(((
612 +ADC(PA4)
613 +)))|(% style="width:135px" %)(((
614 +PWM_Setting
615 +&Digital Interrupt(PA8)
616 +)))|(% style="width:70px" %)(((
617 +Pulse period
618 +)))|(% style="width:89px" %)(((
619 +Duration of high level
620 +)))
533 533  
622 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
534 534  
535 -==== 2.3.3.2  Temperature (DS18B20) ====
536 536  
537 -If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
625 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
538 538  
539 -More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
627 +**Frequency:**
540 540  
541 -**Connection:**
629 +(% class="MsoNormal" %)
630 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
542 542  
543 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378573379-646.png?rev=1.1||alt="1656378573379-646.png"]]
632 +(% class="MsoNormal" %)
633 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
544 544  
545 -**Example**:
546 546  
547 -If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
636 +(% class="MsoNormal" %)
637 +**Duty cycle:**
548 548  
549 -If payload is: FF3FH (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
639 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
550 550  
551 -(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
641 +[[image:image-20230818092200-1.png||height="344" width="627"]]
552 552  
553 553  
554 -==== 2.3.3.3 Digital Input ====
644 +===== 2.3.2.10.b  Uplink, PWM output =====
555 555  
556 -The digital input for pin PA12,
557 557  
558 -* When PA12 is high, the bit 1 of payload byte 6 is 1.
559 -* When PA12 is low, the bit 1 of payload byte 6 is 0.
647 +[[image:image-20230817172209-2.png||height="439" width="683"]]
560 560  
649 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
561 561  
562 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
651 +a is the time delay of the output, the unit is ms.
563 563  
564 -The ADC pins in LSN50 can measure range from 0~~Vbat, it use reference voltage from . If user need to measure a voltage > VBat, please use resistors to divide this voltage to lower than VBat, otherwise, it may destroy the ADC pin.
653 +b is the output frequency, the unit is HZ.
565 565  
566 -Note: minimum VBat is 2.5v, when batrrey lower than this value. Device won't be able to send LoRa Uplink.
655 +c is the duty cycle of the output, the unit is %.
567 567  
568 -The ADC monitors the voltage on the PA0 line, in mV.
657 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
569 569  
570 -Ex: 0x021F = 543mv,
659 +aa is the time delay of the output, the unit is ms.
571 571  
572 -**~ Example1:**  Reading an Oil Sensor (Read a resistance value):
661 +bb is the output frequency, the unit is HZ.
573 573  
663 +cc is the duty cycle of the output, the unit is %.
574 574  
575 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172409-28.png?rev=1.1||alt="image-20220627172409-28.png"]]
576 576  
577 -In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor.
578 -
666 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
579 579  
580 -**Steps:**
668 +The oscilloscope displays as follows:
581 581  
582 -1. Solder a 10K resistor between PA0 and VCC.
583 -1. Screw oil sensor's two pins to PA0 and PB4.
670 +[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
584 584  
585 -The equipment circuit is as below:
586 586  
587 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172500-29.png?rev=1.1||alt="image-20220627172500-29.png"]]
673 +===== 2.3.2.10.c  Downlink, PWM output =====
588 588  
589 -According to above diagram:
590 590  
591 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091043-4.png?rev=1.1||alt="image-20220628091043-4.png"]]
676 +[[image:image-20230817173800-3.png||height="412" width="685"]]
592 592  
593 -So
678 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
594 594  
595 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091344-6.png?rev=1.1||alt="image-20220628091344-6.png"]]
680 + xx xx xx is the output frequency, the unit is HZ.
596 596  
597 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091621-8.png?rev=1.1||alt="image-20220628091621-8.png"]] is the reading of ADC. So if ADC=0x05DC=0.9 v and VCC (BAT) is 2.9v
682 + yy is the duty cycle of the output, the unit is %.
598 598  
599 -The [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091702-9.png?rev=1.1||alt="image-20220628091702-9.png"]] 4.5K ohm
684 + zz zz is the time delay of the output, the unit is ms.
600 600  
601 -Since the Bouy is linear resistance from 10 ~~ 70cm.
602 602  
603 -The position of Bouy is [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091824-10.png?rev=1.1||alt="image-20220628091824-10.png"]] , from the bottom of Bouy.
687 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
604 604  
689 +The oscilloscope displays as follows:
605 605  
606 -==== 2.3.3.5 Digital Interrupt ====
691 +[[image:image-20230817173858-5.png||height="634" width="843"]]
607 607  
608 -Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
609 609  
610 -**~ Interrupt connection method:**
694 +=== 2.3.3  ​Decode payload ===
611 611  
612 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
613 613  
614 -**Example to use with door sensor :**
697 +While using TTN V3 network, you can add the payload format to decode the payload.
615 615  
616 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
699 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
617 617  
618 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
701 +The payload decoder function for TTN V3 are here:
619 619  
620 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
703 +SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
621 621  
622 -**~ Below is the installation example:**
623 623  
624 -Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
706 +==== 2.3.3.1 Battery Info ====
625 625  
626 -* (((
627 -One pin to LSN50's PB14 pin
628 -)))
629 -* (((
630 -The other pin to LSN50's VCC pin
631 -)))
632 632  
633 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
709 +Check the battery voltage for SN50v3-LB/LS.
634 634  
635 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
711 +Ex1: 0x0B45 = 2885mV
636 636  
637 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
713 +Ex2: 0x0B49 = 2889mV
638 638  
639 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
640 640  
641 -The above photos shows the two parts of the magnetic switch fitted to a door.
716 +==== 2.3.3.2  Temperature (DS18B20) ====
642 642  
643 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
644 644  
645 -The command is:
719 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
646 646  
647 -**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
721 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
648 648  
649 -Below shows some screen captures in TTN V3:
723 +(% style="color:blue" %)**Connection:**
650 650  
651 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
725 +[[image:image-20230512180718-8.png||height="538" width="647"]]
652 652  
653 -In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
654 654  
655 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
728 +(% style="color:blue" %)**Example**:
656 656  
657 -**Notice for hardware version LSN50 v1 < v1.3** (produced before 2018-Nov).
730 +If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
658 658  
659 -In this hardware version, there is no R14 resistance solder. When use the latest firmware, it should set AT+INTMOD=0 to close the interrupt. If user need to use Interrupt in this hardware version, user need to solder R14 with 10M resistor and C1 (0.1uF) on board.
732 +If payload is: FF3FH (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
660 660  
661 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379563303-771.png?rev=1.1||alt="1656379563303-771.png"]]
734 +(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
662 662  
663 663  
664 -==== 2.3.3.6 I2C Interface (SHT20) ====
737 +==== 2.3.3.3 Digital Input ====
665 665  
666 -The PB6(SDA) and PB7(SCK) are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
667 667  
668 -We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with **AT+MOD=1 (default value).**
740 +The digital input for pin PB15,
669 669  
670 -Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in LSN50 will be a good reference.
742 +* When PB15 is high, the bit 1 of payload byte 6 is 1.
743 +* When PB15 is low, the bit 1 of payload byte 6 is 0.
671 671  
672 -Below is the connection to SHT20/ SHT31. The connection is as below:
745 +(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
746 +(((
747 +When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
673 673  
674 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
749 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
675 675  
676 -The device will be able to get the I2C sensor data now and upload to IoT Server.
751 +
752 +)))
677 677  
678 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
754 +==== 2.3.3.4  Analogue Digital Converter (ADC) ====
679 679  
680 -Convert the read byte to decimal and divide it by ten.
681 681  
682 -**Example:**
757 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
683 683  
684 -Temperature Read:0116(H) = 278(D)  Value 278 /10=27.8℃;
759 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
685 685  
686 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
761 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
687 687  
688 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
689 689  
764 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
690 690  
691 -==== 2.3.3.7  ​Distance Reading ====
692 692  
693 -Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
767 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
694 694  
769 +[[image:image-20230811113449-1.png||height="370" width="608"]]
695 695  
696 -==== 2.3.3.8 Ultrasonic Sensor ====
697 697  
698 -The LSN50 v1.5 firmware supports ultrasonic sensor (with AT+MOD=2) such as SEN0208 from DF-Robot. This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
699 699  
700 -The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
773 +==== 2.3.3.5 Digital Interrupt ====
701 701  
702 -The picture below shows the connection:
703 703  
704 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656380061365-178.png?rev=1.1||alt="1656380061365-178.png"]]
776 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
705 705  
706 -Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
778 +(% style="color:blue" %)** Interrupt connection method:**
707 707  
708 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
780 +[[image:image-20230513105351-5.png||height="147" width="485"]]
709 709  
710 -**Example:**
711 711  
712 -Distance:  Read: 0C2D(Hex) = 3117(D)  Value 3117 mm=311.7 cm
783 +(% style="color:blue" %)**Example to use with door sensor :**
713 713  
714 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
785 +The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
715 715  
716 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
787 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
717 717  
718 -You can see the serial output in ULT mode as below:
789 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
719 719  
720 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
721 721  
722 -**In TTN V3 server:**
792 +(% style="color:blue" %)**Below is the installation example:**
723 723  
724 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
794 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
725 725  
726 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
796 +* (((
797 +One pin to SN50v3-LB/LS's PA8 pin
798 +)))
799 +* (((
800 +The other pin to SN50v3-LB/LS's VDD pin
801 +)))
727 727  
728 -==== 2.3.3.9  Battery Output - BAT pin ====
803 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
729 729  
730 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
805 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
731 731  
807 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
732 732  
733 -==== 2.3.3.10  +5V Output ====
809 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
734 734  
735 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
811 +The above photos shows the two parts of the magnetic switch fitted to a door.
736 736  
737 -The 5V output time can be controlled by AT Command.
813 +The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
738 738  
739 -**AT+5VT=1000**
815 +The command is:
740 740  
741 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
817 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
742 742  
743 -By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
819 +Below shows some screen captures in TTN V3:
744 744  
821 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
745 745  
746 746  
747 -==== 2.3.3.1 BH1750 Illumination Sensor ====
824 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
748 748  
749 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
826 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
750 750  
751 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-11.jpeg?rev=1.1||alt="image-20220628110012-11.jpeg"]]
752 752  
753 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
829 +==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
754 754  
755 755  
756 -==== 2.3.3.12  Working MOD ====
832 +The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
757 757  
758 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
834 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
759 759  
760 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
836 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
761 761  
762 -Case 7^^th^^ Byte >> 2 & 0x1f:
763 763  
764 -* 0: MOD1
765 -* 1: MOD2
766 -* 2: MOD3
767 -* 3: MOD4
768 -* 4: MOD5
769 -* 5: MOD6
839 +Below is the connection to SHT20/ SHT31. The connection is as below:
770 770  
841 +[[image:image-20230610170152-2.png||height="501" width="846"]]
771 771  
772 -== 2.4 Payload Decoder file ==
773 773  
844 +The device will be able to get the I2C sensor data now and upload to IoT Server.
774 774  
775 -In TTN, use can add a custom payload so it shows friendly reading
846 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
776 776  
777 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
848 +Convert the read byte to decimal and divide it by ten.
778 778  
779 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
850 +**Example:**
780 780  
852 +Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
781 781  
782 -== 2.5 Datalog Feature ==
854 +Humidity:    Read:0248(H)=584(D Value 584 / 10=58.4, So 58.4%
783 783  
856 +If you want to use other I2C device, please refer the SHT20 part source code as reference.
784 784  
785 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
786 786  
859 +==== 2.3.3.7  ​Distance Reading ====
787 787  
788 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
789 789  
862 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
790 790  
791 -Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
792 792  
793 -* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
794 -* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
865 +==== 2.3.3.8 Ultrasonic Sensor ====
795 795  
796 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
797 797  
798 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
868 +This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
799 799  
800 -=== 2.5.2 Unix TimeStamp ===
870 +The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
801 801  
872 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
802 802  
803 -S31x-LB uses Unix TimeStamp format based on
874 +The picture below shows the connection:
804 804  
805 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
876 +[[image:image-20230512173903-6.png||height="596" width="715"]]
806 806  
807 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
808 808  
809 -Below is the converter example
879 +Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
810 810  
811 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
881 +The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
812 812  
813 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
883 +**Example:**
814 814  
885 +Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
815 815  
816 -=== 2.5.3 Set Device Time ===
817 817  
888 +==== 2.3.3.9  Battery Output - BAT pin ====
818 818  
819 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
820 820  
821 -Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
891 +The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
822 822  
823 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
824 824  
894 +==== 2.3.3.10  +5V Output ====
825 825  
826 -=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
827 827  
897 +SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
828 828  
829 -The Datalog uplinks will use below payload format.
899 +The 5V output time can be controlled by AT Command.
830 830  
831 -**Retrieval data payload:**
901 +(% style="color:blue" %)**AT+5VT=1000**
832 832  
833 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
834 -|=(% style="width: 80px;background-color:#D9E2F3" %)(((
835 -**Size(bytes)**
836 -)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
837 -|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
838 -[[Temp_Black>>||anchor="HTemperatureBlack:"]]
839 -)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
903 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
840 840  
841 -**Poll message flag & Ext:**
905 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
842 842  
843 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
844 844  
845 -**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
908 +==== 2.3.3.11  BH1750 Illumination Sensor ====
846 846  
847 -**Poll Message Flag**: 1: This message is a poll message reply.
848 848  
849 -* Poll Message Flag is set to 1.
911 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
850 850  
851 -* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
913 +[[image:image-20230512172447-4.png||height="416" width="712"]]
852 852  
853 -For example, in US915 band, the max payload for different DR is:
854 854  
855 -**a) DR0:** max is 11 bytes so one entry of data
916 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
856 856  
857 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
858 858  
859 -**c) DR2:** total payload includes 11 entries of data
919 +==== 2.3.3.1 PWM MOD ====
860 860  
861 -**d) DR3: **total payload includes 22 entries of data.
862 862  
863 -If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
922 +* (((
923 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
924 +)))
925 +* (((
926 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
927 +)))
864 864  
929 + [[image:image-20230817183249-3.png||height="320" width="417"]]
865 865  
866 -**Example:**
867 -
868 -If S31x-LB has below data inside Flash:
869 -
870 -[[image:1682646494051-944.png]]
871 -
872 -If user sends below downlink command: 3160065F9760066DA705
873 -
874 -Where : Start time: 60065F97 = time 21/1/19 04:27:03
875 -
876 - Stop time: 60066DA7= time 21/1/19 05:27:03
877 -
878 -
879 -**S31x-LB will uplink this payload.**
880 -
881 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
882 -
883 -(((
884 -__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
931 +* (((
932 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
885 885  )))
886 -
887 -(((
888 -Where the first 11 bytes is for the first entry:
934 +* (((
935 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
889 889  )))
937 +* (((
938 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
890 890  
891 -(((
892 -7FFF089801464160065F97
893 -)))
940 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
894 894  
895 -(((
896 -**Ext sensor data**=0x7FFF/100=327.67
897 -)))
942 +a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
898 898  
899 -(((
900 -**Temp**=0x088E/100=22.00
944 +b) If the output duration is more than 30 seconds, better to use external power source. 
901 901  )))
902 902  
903 -(((
904 -**Hum**=0x014B/10=32.6
905 -)))
906 906  
907 -(((
908 -**poll message flag & Ext**=0x41,means reply data,Ext=1
909 -)))
948 +==== 2.3.3.13  Working MOD ====
910 910  
911 -(((
912 -**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
913 -)))
914 914  
951 +The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
915 915  
916 -(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
953 +User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
917 917  
918 -== 2.6 Temperature Alarm Feature ==
955 +Case 7^^th^^ Byte >> 2 & 0x1f:
919 919  
957 +* 0: MOD1
958 +* 1: MOD2
959 +* 2: MOD3
960 +* 3: MOD4
961 +* 4: MOD5
962 +* 5: MOD6
963 +* 6: MOD7
964 +* 7: MOD8
965 +* 8: MOD9
966 +* 9: MOD10
920 920  
921 -S31x-LB work flow with Alarm feature.
968 +== 2.4 Payload Decoder file ==
922 922  
923 923  
924 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
971 +In TTN, use can add a custom payload so it shows friendly reading
925 925  
973 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
926 926  
927 -== 2.7 Frequency Plans ==
975 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
928 928  
929 929  
930 -The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
978 +== 2.5 Frequency Plans ==
931 931  
980 +
981 +The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
982 +
932 932  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
933 933  
934 934  
935 -= 3. Configure S31x-LB =
986 += 3. Configure SN50v3-LB/LS =
936 936  
937 937  == 3.1 Configure Methods ==
938 938  
939 939  
940 -S31x-LB supports below configure method:
991 +SN50v3-LB/LS supports below configure method:
941 941  
942 942  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
943 943  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -956,10 +956,10 @@
956 956  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
957 957  
958 958  
959 -== 3.3 Commands special design for S31x-LB ==
1010 +== 3.3 Commands special design for SN50v3-LB/LS ==
960 960  
961 961  
962 -These commands only valid for S31x-LB, as below:
1013 +These commands only valid for SN50v3-LB/LS, as below:
963 963  
964 964  
965 965  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -970,7 +970,7 @@
970 970  (% style="color:blue" %)**AT Command: AT+TDC**
971 971  
972 972  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
973 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1024 +|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
974 974  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
975 975  30000
976 976  OK
... ... @@ -993,120 +993,252 @@
993 993  === 3.3.2 Get Device Status ===
994 994  
995 995  
996 -Send a LoRaWAN downlink to ask device send Alarm settings.
1047 +Send a LoRaWAN downlink to ask the device to send its status.
997 997  
998 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1049 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
999 999  
1000 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
1051 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1001 1001  
1002 1002  
1003 -=== 3.3.3 Set Temperature Alarm Threshold ===
1054 +=== 3.3.3 Set Interrupt Mode ===
1004 1004  
1005 -* (% style="color:blue" %)**AT Command:**
1006 1006  
1007 -(% style="color:#037691" %)**AT+SHTEMP=min,max**
1057 +Feature, Set Interrupt mode for GPIO_EXIT.
1008 1008  
1009 -* When min=0, and max≠0, Alarm higher than max
1010 -* When min≠0, and max=0, Alarm lower than min
1011 -* When min≠0 and max≠0, Alarm higher than max or lower than min
1059 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1012 1012  
1013 -Example:
1061 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1062 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1063 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1064 +0
1065 +OK
1066 +the mode is 0 =Disable Interrupt
1067 +)))
1068 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1069 +Set Transmit Interval
1070 +0. (Disable Interrupt),
1071 +~1. (Trigger by rising and falling edge)
1072 +2. (Trigger by falling edge)
1073 +3. (Trigger by rising edge)
1074 +)))|(% style="width:157px" %)OK
1075 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1076 +Set Transmit Interval
1077 +trigger by rising edge.
1078 +)))|(% style="width:157px" %)OK
1079 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1014 1014  
1015 - AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
1081 +(% style="color:blue" %)**Downlink Command: 0x06**
1016 1016  
1017 -* (% style="color:blue" %)**Downlink Payload:**
1083 +Format: Command Code (0x06) followed by 3 bytes.
1018 1018  
1019 -(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
1085 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1020 1020  
1021 -(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
1087 +* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1088 +* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1089 +* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1090 +* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1022 1022  
1092 +=== 3.3.4 Set Power Output Duration ===
1023 1023  
1024 -=== 3.3.4 Set Humidity Alarm Threshold ===
1025 1025  
1026 -* (% style="color:blue" %)**AT Command:**
1095 +Control the output duration 5V . Before each sampling, device will
1027 1027  
1028 -(% style="color:#037691" %)**AT+SHHUM=min,max**
1097 +~1. first enable the power output to external sensor,
1029 1029  
1030 -* When min=0, and max≠0, Alarm higher than max
1031 -* When min≠0, and max=0, Alarm lower than min
1032 -* When min≠0 and max≠0, Alarm higher than max or lower than min
1099 +2. keep it on as per duration, read sensor value and construct uplink payload
1033 1033  
1034 -Example:
1101 +3. final, close the power output.
1035 1035  
1036 - AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
1103 +(% style="color:blue" %)**AT Command: AT+5VT**
1037 1037  
1038 -* (% style="color:blue" %)**Downlink Payload:**
1105 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1106 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1107 +|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1108 +500(default)
1109 +OK
1110 +)))
1111 +|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1112 +Close after a delay of 1000 milliseconds.
1113 +)))|(% style="width:157px" %)OK
1039 1039  
1040 -(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
1115 +(% style="color:blue" %)**Downlink Command: 0x07**
1041 1041  
1042 -(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
1117 +Format: Command Code (0x07) followed by 2 bytes.
1043 1043  
1119 +The first and second bytes are the time to turn on.
1044 1044  
1045 -=== 3.3.5 Set Alarm Interval ===
1121 +* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1122 +* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1046 1046  
1047 -The shortest time of two Alarm packet. (unit: min)
1124 +=== 3.3.5 Set Weighing parameters ===
1048 1048  
1049 -* (% style="color:blue" %)**AT Command:**
1050 1050  
1051 -(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
1127 +Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1052 1052  
1053 -* (% style="color:blue" %)**Downlink Payload:**
1129 +(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1054 1054  
1055 -(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
1131 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1132 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1133 +|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1134 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1135 +|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1056 1056  
1137 +(% style="color:blue" %)**Downlink Command: 0x08**
1057 1057  
1058 -=== 3.3.6 Get Alarm settings ===
1139 +Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1059 1059  
1141 +Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1060 1060  
1061 -Send a LoRaWAN downlink to ask device send Alarm settings.
1143 +The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1062 1062  
1063 -* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1145 +* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1146 +* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1147 +* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1064 1064  
1065 -**Example:**
1149 +=== 3.3.6 Set Digital pulse count value ===
1066 1066  
1067 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1068 1068  
1152 +Feature: Set the pulse count value.
1069 1069  
1070 -**Explain:**
1154 +Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1071 1071  
1072 -* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1156 +(% style="color:blue" %)**AT Command: AT+SETCNT**
1073 1073  
1074 -=== 3.3.7 Set Interrupt Mode ===
1158 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1159 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1160 +|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1161 +|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1075 1075  
1163 +(% style="color:blue" %)**Downlink Command: 0x09**
1076 1076  
1077 -Feature, Set Interrupt mode for GPIO_EXIT.
1165 +Format: Command Code (0x09) followed by 5 bytes.
1078 1078  
1079 -(% style="color:blue" %)**AT Command: AT+INTMOD**
1167 +The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1080 1080  
1169 +* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1170 +* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1171 +
1172 +=== 3.3.7 Set Workmode ===
1173 +
1174 +
1175 +Feature: Switch working mode.
1176 +
1177 +(% style="color:blue" %)**AT Command: AT+MOD**
1178 +
1081 1081  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1082 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1083 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1084 -0
1180 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1181 +|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1085 1085  OK
1086 -the mode is 0 =Disable Interrupt
1087 1087  )))
1088 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
1089 -Set Transmit Interval
1090 -0. (Disable Interrupt),
1091 -~1. (Trigger by rising and falling edge)
1092 -2. (Trigger by falling edge)
1093 -3. (Trigger by rising edge)
1094 -)))|(% style="width:157px" %)OK
1184 +|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1185 +OK
1186 +Attention:Take effect after ATZ
1187 +)))
1095 1095  
1096 -(% style="color:blue" %)**Downlink Command: 0x06**
1189 +(% style="color:blue" %)**Downlink Command: 0x0A**
1097 1097  
1098 -Format: Command Code (0x06) followed by 3 bytes.
1191 +Format: Command Code (0x0A) followed by 1 bytes.
1099 1099  
1100 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1193 +* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1194 +* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1101 1101  
1102 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
1103 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1196 +(% id="H3.3.8PWMsetting" %)
1197 +=== 3.3.8 PWM setting ===
1104 1104  
1105 -= 4. Battery & Power Consumption =
1106 1106  
1200 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1107 1107  
1108 -SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1202 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1109 1109  
1204 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1205 +|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 223px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1206 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1207 +0(default)
1208 +
1209 +OK
1210 +)))
1211 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1212 +OK
1213 +
1214 +)))
1215 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1216 +
1217 +(% style="color:blue" %)**Downlink Command: 0x0C**
1218 +
1219 +Format: Command Code (0x0C) followed by 1 bytes.
1220 +
1221 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1222 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1223 +
1224 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1225 +
1226 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1227 +
1228 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1229 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1230 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1231 +0,0,0(default)
1232 +
1233 +OK
1234 +)))
1235 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1236 +OK
1237 +
1238 +)))
1239 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1240 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1241 +
1242 +
1243 +)))|(% style="width:137px" %)(((
1244 +OK
1245 +)))
1246 +
1247 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1248 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1249 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1250 +AT+PWMOUT=a,b,c
1251 +
1252 +
1253 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1254 +Set PWM output time, output frequency and output duty cycle.
1255 +
1256 +(((
1257 +
1258 +)))
1259 +
1260 +(((
1261 +
1262 +)))
1263 +)))|(% style="width:242px" %)(((
1264 +a: Output time (unit: seconds)
1265 +
1266 +The value ranges from 0 to 65535.
1267 +
1268 +When a=65535, PWM will always output.
1269 +)))
1270 +|(% style="width:242px" %)(((
1271 +b: Output frequency (unit: HZ)
1272 +)))
1273 +|(% style="width:242px" %)(((
1274 +c: Output duty cycle (unit: %)
1275 +
1276 +The value ranges from 0 to 100.
1277 +)))
1278 +
1279 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1280 +
1281 +Format: Command Code (0x0B01) followed by 6 bytes.
1282 +
1283 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1284 +
1285 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1286 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1287 +
1288 += 4. Battery & Power Cons =
1289 +
1290 +
1291 +SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1292 +
1110 1110  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1111 1111  
1112 1112  
... ... @@ -1114,28 +1114,47 @@
1114 1114  
1115 1115  
1116 1116  (% class="wikigeneratedid" %)
1117 -User can change firmware SN50v3-LB to:
1300 +**User can change firmware SN50v3-LB/LS to:**
1118 1118  
1119 1119  * Change Frequency band/ region.
1120 1120  * Update with new features.
1121 1121  * Fix bugs.
1122 1122  
1123 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1306 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1124 1124  
1308 +**Methods to Update Firmware:**
1125 1125  
1126 -Methods to Update Firmware:
1310 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1311 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1127 1127  
1128 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1129 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1130 -
1131 1131  = 6. FAQ =
1132 1132  
1315 +== 6.1 Where can i find source code of SN50v3-LB/LS? ==
1133 1133  
1134 1134  
1318 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1319 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1320 +
1321 +== 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1322 +
1323 +
1324 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1325 +
1326 +
1327 +== 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1328 +
1329 +
1330 +When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1331 +
1332 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1333 +
1334 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1335 +
1336 +
1135 1135  = 7. Order Info =
1136 1136  
1137 1137  
1138 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1340 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1139 1139  
1140 1140  (% style="color:red" %)**XX**(%%): The default frequency band
1141 1141  
... ... @@ -1157,9 +1157,10 @@
1157 1157  
1158 1158  = 8. ​Packing Info =
1159 1159  
1362 +
1160 1160  (% style="color:#037691" %)**Package Includes**:
1161 1161  
1162 -* SN50v3-LB LoRaWAN Generic Node
1365 +* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1163 1163  
1164 1164  (% style="color:#037691" %)**Dimension and weight**:
1165 1165  
... ... @@ -1172,4 +1172,5 @@
1172 1172  
1173 1173  
1174 1174  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1175 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1378 +
1379 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
image-20230512163509-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +230.1 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0