Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 35 added, 0 removed)
- image-20230512163509-1.png
- image-20230512164658-2.png
- image-20230512170701-3.png
- image-20230512172447-4.png
- image-20230512173758-5.png
- image-20230512173903-6.png
- image-20230512180609-7.png
- image-20230512180718-8.png
- image-20230512181814-9.png
- image-20230513084523-1.png
- image-20230513102034-2.png
- image-20230513103633-3.png
- image-20230513105207-4.png
- image-20230513105351-5.png
- image-20230513110214-6.png
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
- image-20230610162852-1.png
- image-20230610163213-1.png
- image-20230610170047-1.png
- image-20230610170152-2.png
- image-20230810121434-1.png
- image-20230811113449-1.png
- image-20230817170702-1.png
- image-20230817172209-2.png
- image-20230817173800-3.png
- image-20230817173830-4.png
- image-20230817173858-5.png
- image-20230817183137-1.png
- image-20230817183218-2.png
- image-20230817183249-3.png
- image-20230818092200-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB User Manual 1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.ting - Content
-
... ... @@ -1,4 +1,5 @@ 1 -[[image:image-20230511201248-1.png||height="403" width="489"]] 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 4 4 ... ... @@ -15,23 +15,20 @@ 15 15 16 16 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 17 17 19 + 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 20 20 21 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 - 23 - 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 - 27 27 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 28 28 29 - 30 30 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 31 31 32 - 33 33 == 1.2 Features == 34 34 32 + 35 35 * LoRaWAN 1.0.3 Class A 36 36 * Ultra-low power consumption 37 37 * Open-Source hardware/software ... ... @@ -44,6 +44,7 @@ 44 44 45 45 == 1.3 Specification == 46 46 45 + 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -80,6 +80,7 @@ 80 80 81 81 == 1.4 Sleep mode and working mode == 82 82 82 + 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-20230 511203450-2.png||height="443" width="785"]]125 +[[image:image-20230610163213-1.png||height="404" width="699"]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -135,8 +135,9 @@ 135 135 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 136 136 137 137 138 -== Hole Option == 138 +== 1.9 Hole Option == 139 139 140 + 140 140 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 141 141 142 142 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -149,7 +149,7 @@ 149 149 == 2.1 How it works == 150 150 151 151 152 -The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S3 1x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 153 153 154 154 155 155 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -157,7 +157,7 @@ 157 157 158 158 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example. 159 159 160 -The LPS8 V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.161 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 161 161 162 162 163 163 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. ... ... @@ -206,7 +206,7 @@ 206 206 === 2.3.1 Device Status, FPORT~=5 === 207 207 208 208 209 -Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 210 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 210 210 211 211 The Payload format is as below. 212 212 ... ... @@ -214,44 +214,44 @@ 214 214 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 215 215 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 216 216 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 217 -|(% style="width:103px" %) **Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT218 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 218 218 219 219 Example parse in TTNv3 220 220 221 221 222 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 223 223 224 224 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 225 225 226 226 (% style="color:#037691" %)**Frequency Band**: 227 227 228 - *0x01: EU868229 +0x01: EU868 229 229 230 - *0x02: US915231 +0x02: US915 231 231 232 - *0x03: IN865233 +0x03: IN865 233 233 234 - *0x04: AU915235 +0x04: AU915 235 235 236 - *0x05: KZ865237 +0x05: KZ865 237 237 238 - *0x06: RU864239 +0x06: RU864 239 239 240 - *0x07: AS923241 +0x07: AS923 241 241 242 - *0x08: AS923-1243 +0x08: AS923-1 243 243 244 - *0x09: AS923-2245 +0x09: AS923-2 245 245 246 - *0x0a: AS923-3247 +0x0a: AS923-3 247 247 248 - *0x0b: CN470249 +0x0b: CN470 249 249 250 - *0x0c: EU433251 +0x0c: EU433 251 251 252 - *0x0d: KR920253 +0x0d: KR920 253 253 254 - *0x0e: MA869255 +0x0e: MA869 255 255 256 256 257 257 (% style="color:#037691" %)**Sub-Band**: ... ... @@ -275,25 +275,40 @@ 275 275 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 276 276 277 277 278 -SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 279 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 279 279 280 280 For example: 281 281 282 - **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 283 + (% style="color:blue" %)**AT+MOD=2 ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 283 283 284 284 285 285 (% style="color:red" %) **Important Notice:** 286 286 287 -1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 288 -1. All modes share the same Payload Explanation from HERE. 289 -1. By default, the device will send an uplink message every 20 minutes. 288 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 290 290 290 +2. All modes share the same Payload Explanation from HERE. 291 + 292 +3. By default, the device will send an uplink message every 20 minutes. 293 + 294 + 291 291 ==== 2.3.2.1 MOD~=1 (Default Mode) ==== 292 292 297 + 293 293 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 294 294 295 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 296 -|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20) 300 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 301 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 302 +|Value|Bat|(% style="width:191px" %)((( 303 +Temperature(DS18B20)(PC13) 304 +)))|(% style="width:78px" %)((( 305 +ADC(PA4) 306 +)))|(% style="width:216px" %)((( 307 +Digital in(PB15)&Digital Interrupt(PA8) 308 +)))|(% style="width:308px" %)((( 309 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 310 +)))|(% style="width:154px" %)((( 311 +Humidity(SHT20 or SHT31) 312 +))) 297 297 298 298 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 299 299 ... ... @@ -300,128 +300,152 @@ 300 300 301 301 ==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 302 302 319 + 303 303 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 304 304 305 -|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2** 306 -|**Value**|BAT|((( 307 -Temperature(DS18B20) 308 -)))|ADC|Digital in & Digital Interrupt|((( 309 -Distance measure by: 310 -1) LIDAR-Lite V3HP 311 -Or 312 -2) Ultrasonic Sensor 313 -)))|Reserved 322 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 323 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 324 +|Value|BAT|(% style="width:196px" %)((( 325 +Temperature(DS18B20)(PC13) 326 +)))|(% style="width:87px" %)((( 327 +ADC(PA4) 328 +)))|(% style="width:189px" %)((( 329 +Digital in(PB15) & Digital Interrupt(PA8) 330 +)))|(% style="width:208px" %)((( 331 +Distance measure by: 1) LIDAR-Lite V3HP 332 +Or 2) Ultrasonic Sensor 333 +)))|(% style="width:117px" %)Reserved 314 314 315 315 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 316 316 317 -**Connection of LIDAR-Lite V3HP:** 318 318 319 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]]338 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 320 320 321 - **Connection to UltrasonicSensor:**340 +[[image:image-20230512173758-5.png||height="563" width="712"]] 322 322 323 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]] 324 324 343 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 344 + 345 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.** 346 + 347 +[[image:image-20230512173903-6.png||height="596" width="715"]] 348 + 349 + 325 325 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 326 326 327 -|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2** 328 -|**Value**|BAT|((( 329 -Temperature(DS18B20) 330 -)))|Digital in & Digital Interrupt|ADC|((( 352 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 353 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 354 +|Value|BAT|(% style="width:183px" %)((( 355 +Temperature(DS18B20)(PC13) 356 +)))|(% style="width:173px" %)((( 357 +Digital in(PB15) & Digital Interrupt(PA8) 358 +)))|(% style="width:84px" %)((( 359 +ADC(PA4) 360 +)))|(% style="width:323px" %)((( 331 331 Distance measure by:1)TF-Mini plus LiDAR 332 -Or 333 -2) TF-Luna LiDAR 334 -)))|Distance signal strength 362 +Or 2) TF-Luna LiDAR 363 +)))|(% style="width:188px" %)Distance signal strength 335 335 336 336 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 337 337 367 + 338 338 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 339 339 340 -Need to remove R3 and R4 resistors to get low power . Sincefirmwarev1.7.0370 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 341 341 342 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]]372 +[[image:image-20230512180609-7.png||height="555" width="802"]] 343 343 374 + 344 344 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 345 345 346 -Need to remove R3 and R4 resistors to get low power . Sincefirmwarev1.7.0377 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.** 347 347 348 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]379 +[[image:image-20230610170047-1.png||height="452" width="799"]] 349 349 350 -Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption. 351 351 352 - 353 353 ==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 354 354 384 + 355 355 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 356 356 357 -|=((( 387 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 388 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 358 358 **Size(bytes)** 359 -)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1 360 -|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|((( 361 -Digital in(PA12)&Digital Interrupt1(PB14) 362 -)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat 390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 391 +|Value|(% style="width:68px" %)((( 392 +ADC1(PA4) 393 +)))|(% style="width:75px" %)((( 394 +ADC2(PA5) 395 +)))|((( 396 +ADC3(PA8) 397 +)))|((( 398 +Digital Interrupt(PB15) 399 +)))|(% style="width:304px" %)((( 400 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 401 +)))|(% style="width:163px" %)((( 402 +Humidity(SHT20 or SHT31) 403 +)))|(% style="width:53px" %)Bat 363 363 364 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]405 +[[image:image-20230513110214-6.png]] 365 365 366 366 367 367 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 368 368 369 -This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4 370 370 371 -Hardware connection is as below, 372 - 373 -**( Note:** 374 - 375 -* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes. 376 -* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already. 377 - 378 -See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) ** 379 - 380 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]] 381 - 382 382 This mode has total 11 bytes. As shown below: 383 383 384 - |**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**385 -|** Value**|BAT|(((386 - Temperature1387 -(DS18B20) 388 -( PB3)389 - )))|ADC|Digital in & Digital Interrupt|Temperature2390 -( DS18B20)391 -(P A9)|Temperature3392 -(DS18B20) 393 -(P A10)413 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 415 +|Value|BAT|(% style="width:186px" %)((( 416 +Temperature1(DS18B20)(PC13) 417 +)))|(% style="width:82px" %)((( 418 +ADC(PA4) 419 +)))|(% style="width:210px" %)((( 420 +Digital in(PB15) & Digital Interrupt(PA8) 421 +)))|(% style="width:191px" %)Temperature2(DS18B20) 422 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 394 394 395 395 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 396 396 397 397 398 - ====2.3.2.5MOD~=5(WeightMeasurementby HX711)====427 +[[image:image-20230513134006-1.png||height="559" width="736"]] 399 399 400 -This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection. 401 401 430 +==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 402 402 403 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]] 404 404 433 +[[image:image-20230512164658-2.png||height="532" width="729"]] 434 + 405 405 Each HX711 need to be calibrated before used. User need to do below two steps: 406 406 407 -1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 408 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 437 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram. 438 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor. 409 409 1. ((( 410 -Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0) 440 +Weight has 4 bytes, the unit is g. 441 + 442 + 443 + 411 411 ))) 412 412 413 413 For example: 414 414 415 -**AT+ WEIGAP=403.0**448 +(% style="color:blue" %)**AT+GETSENSORVALUE =0** 416 416 417 417 Response: Weight is 401 g 418 418 419 419 Check the response of this command and adjust the value to match the real value for thing. 420 420 421 -|=((( 454 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 455 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 422 422 **Size(bytes)** 423 -)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2 424 -|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved 457 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 458 +|Value|BAT|(% style="width:193px" %)((( 459 +Temperature(DS18B20)(PC13) 460 +)))|(% style="width:85px" %)((( 461 +ADC(PA4) 462 +)))|(% style="width:186px" %)((( 463 +Digital in(PB15) & Digital Interrupt(PA8) 464 +)))|(% style="width:100px" %)Weight 425 425 426 426 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 427 427 ... ... @@ -428,516 +428,487 @@ 428 428 429 429 ==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 430 430 471 + 431 431 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 432 432 433 433 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. 434 434 435 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]]476 +[[image:image-20230512181814-9.png||height="543" width="697"]] 436 436 437 -**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen. 438 438 439 -|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4** 440 -|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|((( 441 -[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]] 442 -)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count 479 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 443 443 481 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 482 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 483 +|Value|BAT|(% style="width:256px" %)((( 484 +Temperature(DS18B20)(PC13) 485 +)))|(% style="width:108px" %)((( 486 +ADC(PA4) 487 +)))|(% style="width:126px" %)((( 488 +Digital in(PB15) 489 +)))|(% style="width:145px" %)((( 490 +Count(PA8) 491 +))) 492 + 444 444 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 445 445 446 446 447 447 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 448 448 449 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]] 450 450 451 -|=((( 499 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 500 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 452 452 **Size(bytes)** 453 -)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2 454 -|**Value**|BAT|Temperature(DS18B20)|ADC|((( 455 -Digital in(PA12)&Digital Interrupt1(PB14) 456 -)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved 502 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 503 +|Value|BAT|(% style="width:188px" %)((( 504 +Temperature(DS18B20) 505 +(PC13) 506 +)))|(% style="width:83px" %)((( 507 +ADC(PA5) 508 +)))|(% style="width:184px" %)((( 509 +Digital Interrupt1(PA8) 510 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 457 457 512 +[[image:image-20230513111203-7.png||height="324" width="975"]] 513 + 514 + 458 458 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 459 459 460 -|=((( 517 + 518 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 519 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 461 461 **Size(bytes)** 462 -)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2 463 -|**Value**|BAT|Temperature(DS18B20)|((( 464 -ADC1(PA0) 465 -)))|((( 466 -Digital in 467 -& Digital Interrupt(PB14) 468 -)))|((( 469 -ADC2(PA1) 470 -)))|((( 471 -ADC3(PA4) 521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 522 +|Value|BAT|(% style="width:207px" %)((( 523 +Temperature(DS18B20) 524 +(PC13) 525 +)))|(% style="width:94px" %)((( 526 +ADC1(PA4) 527 +)))|(% style="width:198px" %)((( 528 +Digital Interrupt(PB15) 529 +)))|(% style="width:84px" %)((( 530 +ADC2(PA5) 531 +)))|(% style="width:82px" %)((( 532 +ADC3(PA8) 472 472 ))) 473 473 474 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]535 +[[image:image-20230513111231-8.png||height="335" width="900"]] 475 475 476 476 477 477 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 478 478 479 -|=((( 540 + 541 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 542 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 480 480 **Size(bytes)** 481 -)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4 482 -|**Value**|BAT|((( 483 -Temperature1(PB3) 544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 545 +|Value|BAT|((( 546 +Temperature 547 +(DS18B20)(PC13) 484 484 )))|((( 485 -Temperature2(PA9) 549 +Temperature2 550 +(DS18B20)(PB9) 486 486 )))|((( 487 -Digital in 488 -& Digital Interrupt(PA4) 489 -)))|((( 490 -Temperature3(PA10) 491 -)))|((( 492 -Count1(PB14) 493 -)))|((( 494 -Count2(PB15) 552 +Digital Interrupt 553 +(PB15) 554 +)))|(% style="width:193px" %)((( 555 +Temperature3 556 +(DS18B20)(PB8) 557 +)))|(% style="width:78px" %)((( 558 +Count1(PA8) 559 +)))|(% style="width:78px" %)((( 560 +Count2(PA4) 495 495 ))) 496 496 497 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]563 +[[image:image-20230513111255-9.png||height="341" width="899"]] 498 498 499 -**The newly added AT command is issued correspondingly:** 565 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 500 500 501 -** ~AT+INTMOD1****PB14** pin: Corresponding downlink: **06 00 00 xx**567 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 502 502 503 -** ~AT+INTMOD2** **PB15****06 00 01 xx**569 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 504 504 505 -** ~AT+INTMOD3****PA4**571 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 506 506 507 -**AT+SETCNT=aa,bb** 508 508 509 - WhenAA is1, settheuntof PB14 pin to BB Correspondingdownlink:09 01bbbb bb bb574 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 510 510 511 -When AA is 2, set the count of PB15pin to BB Corresponding downlink:09 02bb bb bb bb576 +When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 512 512 578 +When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 513 513 514 514 515 -=== 2.3. 3Decodepayload ===581 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 516 516 517 - Whileusing TTNV3network,youcanddthepayloadformatto decodethe payload.583 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 518 518 519 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]585 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. 520 520 521 - ThepayloaddecoderfunctionforTTN V3 areere:587 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]] 522 522 523 -SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 524 524 590 +===== 2.3.2.10.a Uplink, PWM input capture ===== 525 525 526 -==== 2.3.3.1 Battery Info ==== 527 527 528 - Check the battery voltagefor SN50v3.593 +[[image:image-20230817172209-2.png||height="439" width="683"]] 529 529 530 -Ex1: 0x0B45 = 2885mV 595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 597 +|Value|Bat|(% style="width:191px" %)((( 598 +Temperature(DS18B20)(PC13) 599 +)))|(% style="width:78px" %)((( 600 +ADC(PA4) 601 +)))|(% style="width:135px" %)((( 602 +PWM_Setting 531 531 532 -Ex2: 0x0B49 = 2889mV 604 +&Digital Interrupt(PA8) 605 +)))|(% style="width:70px" %)((( 606 +Pulse period 607 +)))|(% style="width:89px" %)((( 608 +Duration of high level 609 +))) 533 533 611 +[[image:image-20230817170702-1.png||height="161" width="1044"]] 534 534 535 -==== 2.3.3.2 Temperature (DS18B20) ==== 536 536 537 - Ifthereis a DS18B20connectedto PB3pin.Thetemperaturewillbeuploadedin thepayload.614 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle. 538 538 539 - MoreDS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]616 +**Frequency:** 540 540 541 -**Connection:** 618 +(% class="MsoNormal" %) 619 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ); 542 542 543 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378573379-646.png?rev=1.1||alt="1656378573379-646.png"]] 621 +(% class="MsoNormal" %) 622 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ); 544 544 545 -**Example**: 546 546 547 -If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 625 +(% class="MsoNormal" %) 626 +**Duty cycle:** 548 548 549 - Ifpayloadis:FF3FH:(FF3F&8000== 1) , temp =(FF3FH - 65536)/10 = -19.3 degrees.628 +Duty cycle= Duration of high level/ Pulse period*100 ~(%). 550 550 551 - (FF3F &8000:Judge whether the highestbit is 1,when the highestbit is 1, it is negative)630 +[[image:image-20230818092200-1.png||height="344" width="627"]] 552 552 553 553 554 -==== 2.3. 3.3igitalInput ====633 +===== 2.3.2.10.b Downlink, PWM output ===== 555 555 556 -The digital input for pin PA12, 557 557 558 -* When PA12 is high, the bit 1 of payload byte 6 is 1. 559 -* When PA12 is low, the bit 1 of payload byte 6 is 0. 636 +[[image:image-20230817173800-3.png||height="412" width="685"]] 560 560 638 +Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** 561 561 562 - ====2.3.3.4AnalogueDigitalConverter(ADC)====640 + xx xx xx is the output frequency, the unit is HZ. 563 563 564 - TheADCpinsinLSN50canmeasurerangefrom0~~Vbat,itusereferencevoltagefrom.Ifuserneedtomeasurea voltage> VBat,pleaseuse resistorsto divide this voltagetolowerthan VBat,otherwise,itmay destroythe ADC pin.642 + yy is the duty cycle of the output, the unit is %. 565 565 566 - Note:minimumVBatis2.5v, whenbatrreylowerthanthis value.Devicewon'tbe able tosendLoRa Uplink.644 + zz zz is the time delay of the output, the unit is ms. 567 567 568 -The ADC monitors the voltage on the PA0 line, in mV. 569 569 570 - Ex: 0x021F=543mv,647 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds. 571 571 572 - **~ Example1:**Reading an OilSensor (Reada resistancevalue):649 +The oscilloscope displays as follows: 573 573 651 +[[image:image-20230817173858-5.png||height="694" width="921"]] 574 574 575 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172409-28.png?rev=1.1||alt="image-20220627172409-28.png"]] 576 576 577 -In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor. 578 - 654 +=== 2.3.3 Decode payload === 579 579 580 -**Steps:** 581 581 582 -1. Solder a 10K resistor between PA0 and VCC. 583 -1. Screw oil sensor's two pins to PA0 and PB4. 657 +While using TTN V3 network, you can add the payload format to decode the payload. 584 584 585 - The equipmentcircuitisbelow:659 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] 586 586 587 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172500-29.png?rev=1.1||alt="image-20220627172500-29.png"]]661 +The payload decoder function for TTN V3 are here: 588 588 589 - According tobovem:663 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 590 590 591 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091043-4.png?rev=1.1||alt="image-20220628091043-4.png"]] 592 592 593 - So666 +==== 2.3.3.1 Battery Info ==== 594 594 595 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091344-6.png?rev=1.1||alt="image-20220628091344-6.png"]] 596 596 597 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091621-8.png?rev=1.1||alt="image-20220628091621-8.png"]]is the reading ofADC. Soif ADC=0x05DC=0.9vand VCC (BAT) is 2.9v669 +Check the battery voltage for SN50v3-LB. 598 598 599 - The [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091702-9.png?rev=1.1||alt="image-20220628091702-9.png"]] 4.5K ohm671 +Ex1: 0x0B45 = 2885mV 600 600 601 - SincetheBouyislinear resistance from10 ~~ 70cm.673 +Ex2: 0x0B49 = 2889mV 602 602 603 -The position of Bouy is [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091824-10.png?rev=1.1||alt="image-20220628091824-10.png"]] , from the bottom of Bouy. 604 604 676 +==== 2.3.3.2 Temperature (DS18B20) ==== 605 605 606 -==== 2.3.3.5 Digital Interrupt ==== 607 607 608 - DigitalInterrupt refersto pinPB14,and therearedifferent trigger methods.Whenthereisaigger,the SN50v3willsendapackettotheserver.679 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 609 609 610 - **~ Interruptconnectionmethod:**681 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 611 611 612 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]683 +(% style="color:blue" %)**Connection:** 613 613 614 - **Exampleousewithdoor sensor :**685 +[[image:image-20230512180718-8.png||height="538" width="647"]] 615 615 616 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 617 617 618 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]688 +(% style="color:blue" %)**Example**: 619 619 620 - Whenthe twopiecesare close to eachother, the 2 wire output will beshortoropen(dependingonthetype),while ifthetwo pieces are away fromeach other, the 2 wire outputwillbetheoppositestatus.So we can use LSN50 interrupt interface todetect the status forthedoor or window.690 +If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 621 621 622 - **~Belowistheinstallationexample:**692 +If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. 623 623 624 -F ixonepieceofthemagneticsensortothedoor andconnectthe twopins toLSN50 asfollows:694 +(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative) 625 625 626 -* ((( 627 -One pin to LSN50's PB14 pin 628 -))) 629 -* ((( 630 -The other pin to LSN50's VCC pin 631 -))) 632 632 633 - Installthe other piece to the door.Find a place where the two pieces will be close to each other when the door is closed.Forthis particular magnetic sensor, whenthe door is closed,the outputwill be short, and PB14 will be at the VCC voltage.697 +==== 2.3.3.3 Digital Input ==== 634 634 635 -Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 636 636 637 - Whendoor sensoris shorted, there will extrapower consumptionin the circuit,the extracurrentis 3v3/R14 = 3v2/1Mohm = 0.3uA which canbe ignored.700 +The digital input for pin PB15, 638 638 639 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 702 +* When PB15 is high, the bit 1 of payload byte 6 is 1. 703 +* When PB15 is low, the bit 1 of payload byte 6 is 0. 640 640 641 -The above photos shows the two parts of the magnetic switch fitted to a door. 705 +(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 706 +((( 707 +When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 642 642 643 - Thesoftware bydefault uses the falling edgeon the signalline as an interrupt. Weneedtomodify itto acceptboththerisingedge (0v~-~-> VCC , door close) andthe fallingdge(VCC ~-~-> 0v , door open) as theinterrupt.709 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 644 644 645 -The command is: 711 + 712 +))) 646 646 647 - **AT+INTMOD=1**~/~/(more infoaboutINMODpleaserefer** **[[**ATCommand Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)714 +==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 648 648 649 -Below shows some screen captures in TTN V3: 650 650 651 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]717 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv. 652 652 653 - InMOD=1,usercan usebyte6to seethestatusfordooropenorclose.TTNV3decoder is asbelow:719 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 654 654 655 -doo r= (bytes[6]&x80)?"CLOSE":"OPEN";721 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 656 656 657 -**Notice for hardware version LSN50 v1 < v1.3** (produced before 2018-Nov). 658 658 659 - Inthishardwareversion,thereisno R14 resistance solder.Whenusethelatestfirmware, it shouldsetAT+INTMOD=0 toclosethe interrupt. If userneed to useInterruptinthishardware version,userneed tosolderR14with10MresistorandC1(0.1uF)on board.724 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 660 660 661 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379563303-771.png?rev=1.1||alt="1656379563303-771.png"]] 662 662 727 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original. 663 663 664 - ====2.3.3.6 I2C Interface (SHT20)====729 +[[image:image-20230811113449-1.png||height="370" width="608"]] 665 665 666 - ThePB6(SDA) and PB7(SCK) are I2Cinterfacelines.You can use these to connect to anI2C device and getthesensordata.731 +==== 2.3.3.5 Digital Interrupt ==== 667 667 668 -We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with **AT+MOD=1 (default value).** 669 669 670 - Notice:Different I2C sensorshavedifferentI2C commandssetandinitiateprocess,ifuserwant to useotherI2C sensors,Userneedto re-writethesourcecodeto supportthosesensors.SHT20 code in LSN50 willbe agoodreference.734 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 671 671 672 - BelowishennectiontoSHT20/ SHT31. The connectionis as below:736 +(% style="color:blue" %)** Interrupt connection method:** 673 673 674 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]738 +[[image:image-20230513105351-5.png||height="147" width="485"]] 675 675 676 -The device will be able to get the I2C sensor data now and upload to IoT Server. 677 677 678 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]741 +(% style="color:blue" %)**Example to use with door sensor :** 679 679 680 - Convertthereadbytetodecimalanddivide itbyten.743 +The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 681 681 682 - **Example:**745 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 683 683 684 - Temperature:Read:0116(H)=278(D)Value:278/10=27.8℃;747 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 685 685 686 -Humidity: Read:0248(H)=584(D) Value: 584 / 10=58.4, So 58.4% 687 687 688 - Ifyou want toseotherI2C device, pleaserefertheSHT20 partsourcecodes reference.750 +(% style="color:blue" %)**Below is the installation example:** 689 689 752 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 690 690 691 -==== 2.3.3.7 Distance Reading ==== 754 +* ((( 755 +One pin to SN50v3-LB's PA8 pin 756 +))) 757 +* ((( 758 +The other pin to SN50v3-LB's VDD pin 759 +))) 692 692 693 - Refer[[UltrasonicSensorsection>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].761 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 694 694 763 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 695 695 696 - ====2.3.3.8UltrasonicSensor====765 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 697 697 698 - The LSN50 v1.5 firmwaresupports ultrasonic sensor (with AT+MOD=2) such as SEN0208 fromDF-Robot. This FundamentalPrinciplesof this sensorcanbe foundat thislink: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]767 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 699 699 700 -The LSN50 detectsthepulsewidthfthesensorand convertsit tomm output. The accuracy will be within1 centimeter.The usable range (thedistance betweenthe ultrasonicprobeandthe measuredbject) is between 24cm and 600cm.769 +The above photos shows the two parts of the magnetic switch fitted to a door. 701 701 702 -The picture belowshowsthe connection:771 +The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt. 703 703 704 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656380061365-178.png?rev=1.1||alt="1656380061365-178.png"]]773 +The command is: 705 705 706 - Connectto theLSN50 andrun**AT+MOD=2**toswitchto ultrasonic(ULT).775 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/ (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 707 707 708 - Theultrasonicsensor usesthe 8^^th^^ and 9^^th^^ byte for themeasurementvalue.777 +Below shows some screen captures in TTN V3: 709 709 710 - **Example:**779 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 711 711 712 -Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 713 713 714 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]782 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 715 715 716 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]784 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 717 717 718 -You can see the serial output in ULT mode as below: 719 719 720 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]787 +==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 721 721 722 -**In TTN V3 server:** 723 723 724 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]790 +The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 725 725 726 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]792 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 727 727 728 -= ===2.3.3.9BatteryOutput -BATpin====794 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 729 729 730 -The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 731 731 797 +Below is the connection to SHT20/ SHT31. The connection is as below: 732 732 733 - ====2.3.3.10+5V Output ====799 +[[image:image-20230610170152-2.png||height="501" width="846"]] 734 734 735 -SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 736 736 737 -The 5Voutput timecanbecontrolledbyATCommand.802 +The device will be able to get the I2C sensor data now and upload to IoT Server. 738 738 739 - **AT+5VT=1000**804 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] 740 740 741 - Means set 5Vvalid timeohave 1000ms. Sothe real5Voutputwillactuallyhave1000ms + samplingtimeforother sensors.806 +Convert the read byte to decimal and divide it by ten. 742 742 743 - By default the AT+5VT=500. If the external sensor which require 5v and requiremore time to get stablestate, user can use this command to increase the power ON duration for this sensor.808 +**Example:** 744 744 810 +Temperature: Read:0116(H) = 278(D) Value: 278 /10=27.8℃; 745 745 812 +Humidity: Read:0248(H)=584(D) Value: 584 / 10=58.4, So 58.4% 746 746 747 - ====2.3.3.11BH1750IlluminationSensor====814 +If you want to use other I2C device, please refer the SHT20 part source code as reference. 748 748 749 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 750 750 751 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-11.jpeg?rev=1.1||alt="image-20220628110012-11.jpeg"]]817 +==== 2.3.3.7 Distance Reading ==== 752 752 753 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]] 754 754 820 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 755 755 756 -==== 2.3.3.12 Working MOD ==== 757 757 758 - TheworkingMODinfo iscontainedin theDigital in& Digital Interruptbyte (7^^th^^ Byte).823 +==== 2.3.3.8 Ultrasonic Sensor ==== 759 759 760 -User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: 761 761 762 - Case7^^th^^Byte>>2&0x1f:826 +This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 763 763 764 -* 0: MOD1 765 -* 1: MOD2 766 -* 2: MOD3 767 -* 3: MOD4 768 -* 4: MOD5 769 -* 5: MOD6 828 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 770 770 830 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 771 771 772 - ==2.4PayloadDecoder file ==832 +The picture below shows the connection: 773 773 834 +[[image:image-20230512173903-6.png||height="596" width="715"]] 774 774 775 -In TTN, use can add a custom payload so it shows friendly reading 776 776 777 - In thepage(% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) toaddthedecoderfrom:837 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 778 778 779 - [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]839 +The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 780 780 841 +**Example:** 781 781 782 - == 2.5DatalogFeature ==843 +Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 783 783 784 784 785 - DatalogFeature istoensureIoT Server can getall sampling datafromSensor even if the LoRaWANnetwork is down. For each sampling,S31x-LB will store the reading for future retrieving purposes.846 +==== 2.3.3.9 Battery Output - BAT pin ==== 786 786 787 787 788 - ===2.5.1Ways toget datalogviaLoRaWAN===849 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 789 789 790 790 791 - Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LBwillwait for ACK for everyuplink, whenthereis no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.852 +==== 2.3.3.10 +5V Output ==== 792 792 793 -* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server. 794 -* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages. 795 795 796 -B elowisthe typicalcasethe auto-updatedatalogfeature(SetPNACKMD=1)855 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 797 797 798 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]857 +The 5V output time can be controlled by AT Command. 799 799 800 -= ==2.5.2 UnixTimeStamp===859 +(% style="color:blue" %)**AT+5VT=1000** 801 801 861 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 802 802 803 - S31x-LB usesUnixTimeStampformatbased on863 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 804 804 805 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]] 806 806 807 - Usercangetthistime from link:[[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]]:866 +==== 2.3.3.11 BH1750 Illumination Sensor ==== 808 808 809 -Below is the converter example 810 810 811 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png"height="298"width="720"]]869 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 812 812 813 - So, wecan useAT+TIMESTAMP=1611889405 or downlink3060137afd00 to set thecurrent time 2021– Jan ~-~- 29 Friday 03:03:25871 +[[image:image-20230512172447-4.png||height="416" width="712"]] 814 814 815 815 816 - === 2.5.3Set DeviceTime ===874 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 817 817 818 818 819 - Userneedtoset (% style="color:blue" %)**SYNCMOD=1**(%%)to enable sync time via MAC command.877 +==== 2.3.3.12 PWM MOD ==== 820 820 821 -Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days). 822 822 823 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 880 +* ((( 881 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned. 882 +))) 883 +* ((( 884 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below: 885 +))) 824 824 887 + [[image:image-20230817183249-3.png||height="320" width="417"]] 825 825 826 -=== 2.5.4 Datalog Uplink payload (FPORT~=3) === 889 +* ((( 890 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values. 891 +))) 892 +* ((( 893 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 894 +))) 895 +* ((( 896 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to Class C. Power consumption will not be low. 827 827 898 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 828 828 829 - TheDataloguplinkswillusebelowpayloadformat.900 +a) If needs to realtime control output, SN50v3-LB has be run in CLass C and have to use external power source. 830 830 831 - **Retrievaldatapayload:**902 +b) If the output duration is more than 30 seconds, bettert to use external power source. 832 832 833 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 834 -|=(% style="width: 80px;background-color:#D9E2F3" %)((( 835 -**Size(bytes)** 836 -)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4** 837 -|(% style="width:103px" %)**Value**|(% style="width:54px" %)((( 838 -[[Temp_Black>>||anchor="HTemperatureBlack:"]] 839 -)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]] 840 840 841 -**Poll message flag & Ext:** 842 - 843 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]] 844 - 845 -**No ACK Message**: 1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature) 846 - 847 -**Poll Message Flag**: 1: This message is a poll message reply. 848 - 849 -* Poll Message Flag is set to 1. 850 - 851 -* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands. 852 - 853 -For example, in US915 band, the max payload for different DR is: 854 - 855 -**a) DR0:** max is 11 bytes so one entry of data 856 - 857 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes) 858 - 859 -**c) DR2:** total payload includes 11 entries of data 860 - 861 -**d) DR3: **total payload includes 22 entries of data. 862 - 863 -If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 864 - 865 - 866 -**Example:** 867 - 868 -If S31x-LB has below data inside Flash: 869 - 870 -[[image:1682646494051-944.png]] 871 - 872 -If user sends below downlink command: 3160065F9760066DA705 873 - 874 -Where : Start time: 60065F97 = time 21/1/19 04:27:03 875 - 876 - Stop time: 60066DA7= time 21/1/19 05:27:03 877 - 878 - 879 -**S31x-LB will uplink this payload.** 880 - 881 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]] 882 - 883 -((( 884 -__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E 905 + 885 885 ))) 886 886 887 -((( 888 -Where the first 11 bytes is for the first entry: 889 -))) 908 +==== 2.3.3.13 Working MOD ==== 890 890 891 -((( 892 -7FFF089801464160065F97 893 -))) 894 894 895 -((( 896 -**Ext sensor data**=0x7FFF/100=327.67 897 -))) 911 +The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 898 898 899 -((( 900 -**Temp**=0x088E/100=22.00 901 -))) 913 +User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: 902 902 903 -((( 904 -**Hum**=0x014B/10=32.6 905 -))) 915 +Case 7^^th^^ Byte >> 2 & 0x1f: 906 906 907 -((( 908 -**poll message flag & Ext**=0x41,means reply data,Ext=1 909 -))) 917 +* 0: MOD1 918 +* 1: MOD2 919 +* 2: MOD3 920 +* 3: MOD4 921 +* 4: MOD5 922 +* 5: MOD6 923 +* 6: MOD7 924 +* 7: MOD8 925 +* 8: MOD9 926 +* 9: MOD10 910 910 911 -((( 912 -**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03 913 -))) 928 +== 2.4 Payload Decoder file == 914 914 915 915 916 - (% aria-label="数据 URI图像图像小部件" contenteditable="false"role="region"style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png);background:rgba(220,220,220,0.5); display:none"tabindex="-1" %)[[image:||alt="数据URI 图片" data-widget="image"draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件"contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png);background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](%aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region"style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png);background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png);background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png);background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的931 +In TTN, use can add a custom payload so it shows friendly reading 917 917 918 - ==2.6 Temperature AlarmFeature==933 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 919 919 935 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 920 920 921 -S31x-LB work flow with Alarm feature. 922 922 938 +== 2.5 Frequency Plans == 923 923 924 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]] 925 925 941 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 926 926 927 -== 2.7 Frequency Plans == 928 - 929 - 930 -The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 931 - 932 932 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 933 933 934 934 935 -= 3. Configure S3 1x-LB =946 += 3. Configure SN50v3-LB = 936 936 937 937 == 3.1 Configure Methods == 938 938 939 939 940 -S3 1x-LB supports below configure method:951 +SN50v3-LB supports below configure method: 941 941 942 942 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 943 943 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -956,10 +956,10 @@ 956 956 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 957 957 958 958 959 -== 3.3 Commands special design for S3 1x-LB ==970 +== 3.3 Commands special design for SN50v3-LB == 960 960 961 961 962 -These commands only valid for S3 1x-LB, as below:973 +These commands only valid for SN50v3-LB, as below: 963 963 964 964 965 965 === 3.3.1 Set Transmit Interval Time === ... ... @@ -970,7 +970,7 @@ 970 970 (% style="color:blue" %)**AT Command: AT+TDC** 971 971 972 972 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 973 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response** 984 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 974 974 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 975 975 30000 976 976 OK ... ... @@ -993,115 +993,182 @@ 993 993 === 3.3.2 Get Device Status === 994 994 995 995 996 -Send a LoRaWAN downlink to ask device send Alarmsettings.1007 +Send a LoRaWAN downlink to ask the device to send its status. 997 997 998 -(% style="color:blue" %)**Downlink Payload: **(%%)0x26 011009 +(% style="color:blue" %)**Downlink Payload: 0x26 01** 999 999 1000 -Sensor will upload Device Status via FPORT=5. See payload section for detail. 1011 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail. 1001 1001 1002 1002 1003 -=== 3.3.3 Set TemperatureAlarm Threshold ===1014 +=== 3.3.3 Set Interrupt Mode === 1004 1004 1005 -* (% style="color:blue" %)**AT Command:** 1006 1006 1007 - (%style="color:#037691"%)**AT+SHTEMP=min,max**1017 +Feature, Set Interrupt mode for GPIO_EXIT. 1008 1008 1009 -* When min=0, and max≠0, Alarm higher than max 1010 -* When min≠0, and max=0, Alarm lower than min 1011 -* When min≠0 and max≠0, Alarm higher than max or lower than min 1019 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1012 1012 1013 -Example: 1021 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1022 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1023 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1024 +0 1025 +OK 1026 +the mode is 0 =Disable Interrupt 1027 +))) 1028 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 1029 +Set Transmit Interval 1030 +0. (Disable Interrupt), 1031 +~1. (Trigger by rising and falling edge) 1032 +2. (Trigger by falling edge) 1033 +3. (Trigger by rising edge) 1034 +)))|(% style="width:157px" %)OK 1035 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 1036 +Set Transmit Interval 1037 +trigger by rising edge. 1038 +)))|(% style="width:157px" %)OK 1039 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 1014 1014 1015 - AT+SHTEMP=0,30 ~/~/ Alarmwhentemperature higher than30.1041 +(% style="color:blue" %)**Downlink Command: 0x06** 1016 1016 1017 - * (% style="color:blue"%)**Downlink Payload:**1043 +Format: Command Code (0x06) followed by 3 bytes. 1018 1018 1019 - (%style="color:#037691"%)**0x(0C01001E)**(%%)~/~/SetAT+SHTEMP=0,301045 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1020 1020 1021 -(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)** 1047 +* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 1048 +* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 1049 +* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1050 +* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1022 1022 1052 +=== 3.3.4 Set Power Output Duration === 1023 1023 1024 -=== 3.3.4 Set Humidity Alarm Threshold === 1025 1025 1026 - * (% style="color:blue"%)**ATCommand:**1055 +Control the output duration 5V . Before each sampling, device will 1027 1027 1028 - (%style="color:#037691"%)**AT+SHHUM=min,max**1057 +~1. first enable the power output to external sensor, 1029 1029 1030 -* When min=0, and max≠0, Alarm higher than max 1031 -* When min≠0, and max=0, Alarm lower than min 1032 -* When min≠0 and max≠0, Alarm higher than max or lower than min 1059 +2. keep it on as per duration, read sensor value and construct uplink payload 1033 1033 1034 - Example:1061 +3. final, close the power output. 1035 1035 1036 - AT+SHHUM=70,0 ~/~/ Alarm whenhumiditylower than70%.1063 +(% style="color:blue" %)**AT Command: AT+5VT** 1037 1037 1038 -* (% style="color:blue" %)**Downlink Payload:** 1065 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1066 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1067 +|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1068 +500(default) 1069 +OK 1070 +))) 1071 +|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 1072 +Close after a delay of 1000 milliseconds. 1073 +)))|(% style="width:157px" %)OK 1039 1039 1040 -(% style="color: #037691" %)**0x(0C 02 4600)**(%%) ~/~/ Set AT+SHTHUM=70,01075 +(% style="color:blue" %)**Downlink Command: 0x07** 1041 1041 1042 - (% style="color:red" %)**(note:3^^rd^^byte=0x46forlowlimit(70%),4^^th^^byte= 0x00 for high limit (notset))**1077 +Format: Command Code (0x07) followed by 2 bytes. 1043 1043 1079 +The first and second bytes are the time to turn on. 1044 1044 1045 -=== 3.3.5 Set Alarm Interval === 1081 +* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 1082 +* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 1046 1046 1047 - Theshortesttimeof two Alarm packet.(unit: min)1084 +=== 3.3.5 Set Weighing parameters === 1048 1048 1049 -* (% style="color:blue" %)**AT Command:** 1050 1050 1051 - (% style="color:#037691"%)**AT+ATDC=30** (%%) ~/~/ The shortestintervalof two Alarmpacketsis30 minutes,Meansis thereis anrm packetuplink, there won'tbeanotheronenthenext30 minutes.1087 +Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 1052 1052 1053 - *(% style="color:blue" %)**DownlinkPayload:**1089 +(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1054 1054 1055 -(% style="color:#037691" %)**0x(0D 00 1E)**(%%) **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes 1091 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1092 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1093 +|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1094 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1095 +|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1056 1056 1097 +(% style="color:blue" %)**Downlink Command: 0x08** 1057 1057 1058 - ===3.3.6GetAlarmsettings===1099 +Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 1059 1059 1101 +Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 1060 1060 1061 - Send aLoRaWAN downlinktoaskdevice sendAlarmsettings.1103 +The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 1062 1062 1063 -* (% style="color:#037691" %)**Downlink Payload: **(%%)0x0E 01 1105 +* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1106 +* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1107 +* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 1064 1064 1065 - **Example:**1109 +=== 3.3.6 Set Digital pulse count value === 1066 1066 1067 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]] 1068 1068 1112 +Feature: Set the pulse count value. 1069 1069 1070 - **Explain:**1114 +Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1071 1071 1072 - *Alarm & MOD bit is0x7C, 0x7C >> 2=0x31:Meansthismessage is the Alarmsettingsmessage.1116 +(% style="color:blue" %)**AT Command: AT+SETCNT** 1073 1073 1074 -=== 3.3.7 Set Interrupt Mode === 1118 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1119 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1120 +|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1121 +|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1075 1075 1123 +(% style="color:blue" %)**Downlink Command: 0x09** 1076 1076 1077 -F eature,Set Interruptmode forGPIO_EXIT.1125 +Format: Command Code (0x09) followed by 5 bytes. 1078 1078 1079 - (%style="color:blue"%)**ATCommand: AT+INTMOD**1127 +The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1080 1080 1129 +* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1130 +* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1131 + 1132 +=== 3.3.7 Set Workmode === 1133 + 1134 + 1135 +Feature: Switch working mode. 1136 + 1137 +(% style="color:blue" %)**AT Command: AT+MOD** 1138 + 1081 1081 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1082 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1083 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1084 -0 1140 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1141 +|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1085 1085 OK 1086 -the mode is 0 =Disable Interrupt 1087 1087 ))) 1088 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 1089 -Set Transmit Interval 1090 -0. (Disable Interrupt), 1091 -~1. (Trigger by rising and falling edge) 1092 -2. (Trigger by falling edge) 1093 -3. (Trigger by rising edge) 1094 -)))|(% style="width:157px" %)OK 1144 +|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1145 +OK 1146 +Attention:Take effect after ATZ 1147 +))) 1095 1095 1096 -(% style="color:blue" %)**Downlink Command: 0x0 6**1149 +(% style="color:blue" %)**Downlink Command: 0x0A** 1097 1097 1098 -Format: Command Code (0x0 6) followed by3bytes.1151 +Format: Command Code (0x0A) followed by 1 bytes. 1099 1099 1100 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1153 +* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1154 +* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 1101 1101 1102 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 1103 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 1156 +=== 3.3.8 PWM setting === 1104 1104 1158 + 1159 +Feature: Set the time acquisition unit for PWM input capture. 1160 + 1161 +(% style="color:blue" %)**AT Command: AT+PWMSET** 1162 + 1163 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1164 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1165 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1166 +0(default) 1167 + 1168 +OK 1169 +))) 1170 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1171 +OK 1172 + 1173 +))) 1174 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1175 + 1176 +(% style="color:blue" %)**Downlink Command: 0x0C** 1177 + 1178 +Format: Command Code (0x0C) followed by 1 bytes. 1179 + 1180 +* Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1181 +* Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1182 + 1105 1105 = 4. Battery & Power Consumption = 1106 1106 1107 1107 ... ... @@ -1114,24 +1114,43 @@ 1114 1114 1115 1115 1116 1116 (% class="wikigeneratedid" %) 1117 -User can change firmware SN50v3-LB to: 1195 +**User can change firmware SN50v3-LB to:** 1118 1118 1119 1119 * Change Frequency band/ region. 1120 1120 * Update with new features. 1121 1121 * Fix bugs. 1122 1122 1123 -Firmware and changelog can be downloaded from : **[[Firmware download link>> url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**1201 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]** 1124 1124 1203 +**Methods to Update Firmware:** 1125 1125 1126 -Methods to Update Firmware: 1205 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1206 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1127 1127 1128 -* (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 1129 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1130 - 1131 1131 = 6. FAQ = 1132 1132 1210 +== 6.1 Where can i find source code of SN50v3-LB? == 1133 1133 1134 1134 1213 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1214 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1215 + 1216 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1217 + 1218 + 1219 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1220 + 1221 + 1222 +== 6.3 How to put several sensors to a SN50v3-LB? == 1223 + 1224 + 1225 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1226 + 1227 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1228 + 1229 +[[image:image-20230810121434-1.png||height="242" width="656"]] 1230 + 1231 + 1135 1135 = 7. Order Info = 1136 1136 1137 1137 ... ... @@ -1157,6 +1157,7 @@ 1157 1157 1158 1158 = 8. Packing Info = 1159 1159 1257 + 1160 1160 (% style="color:#037691" %)**Package Includes**: 1161 1161 1162 1162 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -1172,4 +1172,5 @@ 1172 1172 1173 1173 1174 1174 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 1175 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1273 + 1274 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
- image-20230512163509-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20230512164658-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.0 MB - Content
- image-20230512170701-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.5 MB - Content
- image-20230512172447-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.0 MB - Content
- image-20230512173758-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.1 MB - Content
- image-20230512173903-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512180609-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512180718-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512181814-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.2 MB - Content
- image-20230513084523-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +611.3 KB - Content
- image-20230513102034-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +607.1 KB - Content
- image-20230513103633-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +595.5 KB - Content
- image-20230513105207-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +384.7 KB - Content
- image-20230513105351-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.6 KB - Content
- image-20230513110214-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +172.7 KB - Content
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.0 KB - Content
- image-20230610162852-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.7 KB - Content
- image-20230610163213-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +695.4 KB - Content
- image-20230610170047-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +444.9 KB - Content
- image-20230610170152-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +359.5 KB - Content
- image-20230810121434-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Edwin - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.3 KB - Content
- image-20230811113449-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +973.1 KB - Content
- image-20230817170702-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +39.6 KB - Content
- image-20230817172209-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.3 MB - Content
- image-20230817173800-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.1 MB - Content
- image-20230817173830-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +508.5 KB - Content
- image-20230817173858-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.6 MB - Content
- image-20230817183137-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183218-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +137.1 KB - Content
- image-20230817183249-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.6 KB - Content
- image-20230818092200-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +98.9 KB - Content