Last modified by kai on 2025/06/30 10:31

From version 137.1
edited by Xiaoling
on 2025/06/10 09:23
Change comment: There is no comment for this version
To version 36.1
edited by Saxer Lin
on 2023/05/13 11:59
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,39 +1,37 @@
1 -
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
2 2  
3 -[[image:image-20240103095714-2.png||data-xwiki-image-style-alignment="center"]]
4 4  
5 5  
5 +**Table of Contents:**
6 6  
7 +{{toc/}}
7 7  
8 8  
9 9  
10 -**Table of Contents:**
11 11  
12 -{{toc/}}
13 13  
14 14  
14 += 1. Introduction =
15 15  
16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
16 16  
18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
17 17  
18 18  
19 -= 1. Introduction =
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
20 20  
21 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
22 22  
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
23 23  
24 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + Li-ion battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
25 25  
26 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
27 27  
28 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
29 29  
30 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
31 31  
32 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
33 33  
34 34  == 1.2 ​Features ==
35 35  
36 -
37 37  * LoRaWAN 1.0.3 Class A
38 38  * Ultra-low power consumption
39 39  * Open-Source hardware/software
... ... @@ -42,15 +42,13 @@
42 42  * Support wireless OTA update firmware
43 43  * Uplink on periodically
44 44  * Downlink to change configure
45 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
46 -* Solar panel + 3000mAh Li-ion battery (SN50v3-LS)
43 +* 8500mAh Battery for long term use
47 47  
48 48  == 1.3 Specification ==
49 49  
50 -
51 51  (% style="color:#037691" %)**Common DC Characteristics:**
52 52  
53 -* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
54 54  * Operating Temperature: -40 ~~ 85°C
55 55  
56 56  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -84,7 +84,6 @@
84 84  
85 85  == 1.4 Sleep mode and working mode ==
86 86  
87 -
88 88  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
89 89  
90 90  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -93,25 +93,26 @@
93 93  == 1.5 Button & LEDs ==
94 94  
95 95  
96 -[[image:image-20250415113729-1.jpeg]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
97 97  
98 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
99 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
100 -|[[image:1749518618870-272.png]] 1~~3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
93 +
94 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
101 101  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
102 102  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
103 103  )))
104 -|[[image:1749518621646-995.png]] >3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
100 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
105 105  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
106 106  (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
107 107  Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
108 108  )))
109 -|[[image:image-20250609112212-4.png||height="31" width="25"]] x5|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
105 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
110 110  
111 111  == 1.6 BLE connection ==
112 112  
113 113  
114 -SN50v3-LB/LS supports BLE remote configure.
110 +SN50v3-LB supports BLE remote configure.
115 115  
116 116  
117 117  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -126,39 +126,34 @@
126 126  == 1.7 Pin Definitions ==
127 127  
128 128  
129 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230513102034-2.png]]
130 130  
131 131  
132 132  == 1.8 Mechanical ==
133 133  
134 -=== 1.8.1 for LB version ===
135 135  
131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
136 136  
137 -[[image:image-20240924112806-1.png||height="548" width="894"]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
138 138  
135 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
139 139  
140 140  
141 -=== 1.8.2 for LS version ===
138 +== Hole Option ==
142 142  
143 -[[image:image-20231231203439-3.png||height="385" width="886"]]
140 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
144 144  
142 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
145 145  
146 -== 1.9 Hole Option ==
144 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
147 147  
148 148  
149 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
147 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
150 150  
151 -[[image:image-20250329085729-1.jpeg]]
152 -
153 -[[image:image-20250329085744-2.jpeg]]
154 -
155 -
156 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
157 -
158 158  == 2.1 How it works ==
159 159  
160 160  
161 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
162 162  
163 163  
164 164  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -166,62 +166,45 @@
166 166  
167 167  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
168 168  
169 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
170 170  
171 -[[image:image-20250329090241-3.png]]
172 172  
173 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
174 174  
175 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
165 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
176 176  
177 -[[image:image-20250329090300-4.jpeg]]
167 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
178 178  
179 179  
180 180  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
181 181  
182 -**Create the application.**
183 183  
184 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
173 +(% style="color:blue" %)**Register the device**
185 185  
186 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
175 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
187 187  
188 188  
189 -**Add devices to the created Application.**
178 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
190 190  
191 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
180 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
192 192  
193 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
194 194  
183 +(% style="color:blue" %)**Add APP EUI in the application**
195 195  
196 -**Enter end device specifics manually.**
197 197  
198 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
199 199  
200 200  
201 -**Add DevEUI and AppKey.**
189 +(% style="color:blue" %)**Add APP KEY**
202 202  
203 -**Customize a platform ID for the device.**
191 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
204 204  
205 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
206 206  
194 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
207 207  
208 -(% style="color:blue" %)**Step 2: **(%%)Add decoder.
209 209  
210 -In TTN, user can add a custom payload so it shows friendly reading.
197 +Press the button for 5 seconds to activate the SN50v3-LB.
211 211  
212 -Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
213 -
214 -Below is TTN screen shot:
215 -
216 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
217 -
218 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
219 -
220 -
221 -(% style="color:blue" %)**Step 3:**(%%) Activate SN50v3-LB/LS
222 -
223 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
224 -
225 225  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
226 226  
227 227  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
... ... @@ -232,52 +232,52 @@
232 232  === 2.3.1 Device Status, FPORT~=5 ===
233 233  
234 234  
235 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
236 236  
237 237  The Payload format is as below.
238 238  
239 239  
240 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
241 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
215 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
242 242  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
243 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
244 244  
245 245  Example parse in TTNv3
246 246  
247 247  
248 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
249 249  
250 250  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
251 251  
252 252  (% style="color:#037691" %)**Frequency Band**:
253 253  
254 -0x01: EU868
228 +*0x01: EU868
255 255  
256 -0x02: US915
230 +*0x02: US915
257 257  
258 -0x03: IN865
232 +*0x03: IN865
259 259  
260 -0x04: AU915
234 +*0x04: AU915
261 261  
262 -0x05: KZ865
236 +*0x05: KZ865
263 263  
264 -0x06: RU864
238 +*0x06: RU864
265 265  
266 -0x07: AS923
240 +*0x07: AS923
267 267  
268 -0x08: AS923-1
242 +*0x08: AS923-1
269 269  
270 -0x09: AS923-2
244 +*0x09: AS923-2
271 271  
272 -0x0a: AS923-3
246 +*0x0a: AS923-3
273 273  
274 -0x0b: CN470
248 +*0x0b: CN470
275 275  
276 -0x0c: EU433
250 +*0x0c: EU433
277 277  
278 -0x0d: KR920
252 +*0x0d: KR920
279 279  
280 -0x0e: MA869
254 +*0x0e: MA869
281 281  
282 282  
283 283  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -301,39 +301,46 @@
301 301  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
302 302  
303 303  
304 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
305 305  
306 306  For example:
307 307  
308 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
309 309  
310 310  
311 311  (% style="color:red" %) **Important Notice:**
312 312  
313 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
314 314  
315 -2. All modes share the same Payload Explanation from HERE.
291 +==== 2.3.2.1  MOD~=1 (Default Mode) ====
316 316  
317 -3. By default, the device will send an uplink message every 20 minutes.
293 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
318 318  
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
319 319  
320 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
299 +(PC13)
300 +)))|(((
301 +ADC
321 321  
303 +(PA4)
304 +)))|(% style="width:216px" %)(((
305 +Digital in(PB15) &
322 322  
323 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
307 +Digital Interrupt(PA8)
324 324  
325 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
326 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
327 -|Value|Bat|(% style="width:191px" %)(((
328 -Temperature(DS18B20)(PC13)
329 -)))|(% style="width:78px" %)(((
330 -ADC(PA4)
331 -)))|(% style="width:216px" %)(((
332 -Digital in(PB15)&Digital Interrupt(PA8)
333 -)))|(% style="width:308px" %)(((
334 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
335 -)))|(% style="width:154px" %)(((
336 -Humidity(SHT20 or SHT31)
309 +
310 +)))|(% style="width:342px" %)(((
311 +Temperature
312 +
313 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
314 +)))|(% style="width:171px" %)(((
315 +Humidity
316 +
317 +(SHT20 or SHT31)
337 337  )))
338 338  
339 339  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -341,90 +341,106 @@
341 341  
342 342  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
343 343  
344 -
345 345  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
346 346  
347 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
348 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
349 -|Value|BAT|(% style="width:196px" %)(((
350 -Temperature(DS18B20)(PC13)
351 -)))|(% style="width:87px" %)(((
352 -ADC(PA4)
353 -)))|(% style="width:189px" %)(((
354 -Digital in(PB15) & Digital Interrupt(PA8)
355 -)))|(% style="width:208px" %)(((
356 -Distance measure by: 1) LIDAR-Lite V3HP
357 -Or 2) Ultrasonic Sensor
358 -)))|(% style="width:117px" %)Reserved
327 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
328 +|**Value**|BAT|(((
329 +Temperature(DS18B20)
359 359  
360 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
331 +(PC13)
332 +)))|(((
333 +ADC
361 361  
335 +(PA4)
336 +)))|(((
337 +Digital in(PB15) &
362 362  
363 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
339 +Digital Interrupt(PA8)
340 +)))|(((
341 +Distance measure by:
342 +1) LIDAR-Lite V3HP
343 +Or
344 +2) Ultrasonic Sensor
345 +)))|Reserved
364 364  
365 -[[image:image-20230512173758-5.png||height="563" width="712"]]
347 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
366 366  
349 +**Connection of LIDAR-Lite V3HP:**
367 367  
368 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351 +[[image:image-20230512173758-5.png||height="563" width="712"]]
369 369  
370 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353 +**Connection to Ultrasonic Sensor:**
371 371  
355 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
356 +
372 372  [[image:image-20230512173903-6.png||height="596" width="715"]]
373 373  
374 -
375 375  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
376 376  
377 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
378 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
379 -|Value|BAT|(% style="width:183px" %)(((
380 -Temperature(DS18B20)(PC13)
381 -)))|(% style="width:173px" %)(((
382 -Digital in(PB15) & Digital Interrupt(PA8)
383 -)))|(% style="width:84px" %)(((
384 -ADC(PA4)
385 -)))|(% style="width:323px" %)(((
361 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
362 +|**Value**|BAT|(((
363 +Temperature(DS18B20)
364 +
365 +(PC13)
366 +)))|(((
367 +Digital in(PB15) &
368 +
369 +Digital Interrupt(PA8)
370 +)))|(((
371 +ADC
372 +
373 +(PA4)
374 +)))|(((
386 386  Distance measure by:1)TF-Mini plus LiDAR
387 -Or 2) TF-Luna LiDAR
388 -)))|(% style="width:188px" %)Distance signal  strength
376 +Or 
377 +2) TF-Luna LiDAR
378 +)))|Distance signal  strength
389 389  
390 390  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
391 391  
392 -
393 393  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
394 394  
395 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
384 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
396 396  
397 397  [[image:image-20230512180609-7.png||height="555" width="802"]]
398 398  
399 -
400 400  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
401 401  
402 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
390 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
403 403  
404 -[[image:image-20230610170047-1.png||height="452" width="799"]]
392 +[[image:image-20230513105207-4.png||height="469" width="802"]]
405 405  
406 406  
407 407  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
408 408  
409 -
410 410  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
411 411  
412 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
413 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
399 +(% style="width:1031px" %)
400 +|=(((
414 414  **Size(bytes)**
415 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
416 -|Value|(% style="width:68px" %)(((
417 -ADC1(PA4)
402 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
403 +|**Value**|(% style="width:68px" %)(((
404 +ADC1
405 +
406 +(PA4)
418 418  )))|(% style="width:75px" %)(((
419 -ADC2(PA5)
408 +ADC2
409 +
410 +(PA5)
420 420  )))|(((
421 -ADC3(PA8)
412 +ADC3
413 +
414 +(PA8)
422 422  )))|(((
423 423  Digital Interrupt(PB15)
424 424  )))|(% style="width:304px" %)(((
425 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
418 +Temperature
419 +
420 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
426 426  )))|(% style="width:163px" %)(((
427 -Humidity(SHT20 or SHT31)
422 +Humidity
423 +
424 +(SHT20 or SHT31)
428 428  )))|(% style="width:53px" %)Bat
429 429  
430 430  [[image:image-20230513110214-6.png]]
... ... @@ -432,68 +432,75 @@
432 432  
433 433  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
434 434  
432 +[[image:image-20230512170701-3.png||height="565" width="743"]]
435 435  
436 436  This mode has total 11 bytes. As shown below:
437 437  
438 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
439 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
440 -|Value|BAT|(% style="width:186px" %)(((
441 -Temperature1(DS18B20)(PC13)
436 +(% style="width:1017px" %)
437 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
438 +|**Value**|BAT|(% style="width:186px" %)(((
439 +Temperature1(DS18B20)
440 +(PC13)
442 442  )))|(% style="width:82px" %)(((
443 -ADC(PA4)
442 +ADC
443 +
444 +(PA4)
444 444  )))|(% style="width:210px" %)(((
445 -Digital in(PB15) & Digital Interrupt(PA8) 
446 +Digital in(PB15) &
447 +
448 +Digital Interrupt(PA8) 
446 446  )))|(% style="width:191px" %)Temperature2(DS18B20)
447 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
450 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
451 +(PB8)
448 448  
449 449  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
450 450  
451 451  
452 -[[image:image-20230513134006-1.png||height="559" width="736"]]
453 -
454 -
455 455  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
456 456  
457 -
458 458  [[image:image-20230512164658-2.png||height="532" width="729"]]
459 459  
460 460  Each HX711 need to be calibrated before used. User need to do below two steps:
461 461  
462 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
463 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
462 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
463 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
464 464  1. (((
465 465  Weight has 4 bytes, the unit is g.
466 -
467 -
468 -
469 469  )))
470 470  
471 471  For example:
472 472  
473 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
470 +**AT+GETSENSORVALUE =0**
474 474  
475 475  Response:  Weight is 401 g
476 476  
477 477  Check the response of this command and adjust the value to match the real value for thing.
478 478  
479 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
480 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
476 +(% style="width:982px" %)
477 +|=(((
481 481  **Size(bytes)**
482 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
483 -|Value|BAT|(% style="width:193px" %)(((
484 -Temperature(DS18B20)(PC13)
485 -)))|(% style="width:85px" %)(((
486 -ADC(PA4)
487 -)))|(% style="width:186px" %)(((
488 -Digital in(PB15) & Digital Interrupt(PA8)
489 -)))|(% style="width:100px" %)Weight
479 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
480 +|**Value**|BAT|(% style="width:282px" %)(((
481 +Temperature(DS18B20)
490 490  
483 +(PC13)
484 +
485 +
486 +)))|(% style="width:119px" %)(((
487 +ADC
488 +
489 +(PA4)
490 +)))|(% style="width:279px" %)(((
491 +Digital in(PB15) &
492 +
493 +Digital Interrupt(PA8)
494 +)))|(% style="width:106px" %)Weight
495 +
491 491  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
492 492  
493 493  
494 494  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
495 495  
496 -
497 497  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
498 498  
499 499  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -500,19 +500,26 @@
500 500  
501 501  [[image:image-20230512181814-9.png||height="543" width="697"]]
502 502  
507 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
503 503  
504 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
509 +(% style="width:961px" %)
510 +|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
511 +|**Value**|BAT|(% style="width:256px" %)(((
512 +Temperature(DS18B20)
505 505  
506 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
507 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
508 -|Value|BAT|(% style="width:256px" %)(((
509 -Temperature(DS18B20)(PC13)
514 +(PC13)
510 510  )))|(% style="width:108px" %)(((
511 -ADC(PA4)
516 +ADC
517 +
518 +(PA4)
512 512  )))|(% style="width:126px" %)(((
513 -Digital in(PB15)
520 +Digital in
521 +
522 +(PB15)
514 514  )))|(% style="width:145px" %)(((
515 -Count(PA8)
524 +Count
525 +
526 +(PA8)
516 516  )))
517 517  
518 518  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -520,41 +520,47 @@
520 520  
521 521  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
522 522  
523 -
524 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
525 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
534 +|=(((
526 526  **Size(bytes)**
527 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
528 -|Value|BAT|(% style="width:188px" %)(((
536 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
537 +|**Value**|BAT|(((
529 529  Temperature(DS18B20)
539 +
530 530  (PC13)
531 -)))|(% style="width:83px" %)(((
532 -ADC(PA5)
533 -)))|(% style="width:184px" %)(((
541 +)))|(((
542 +ADC
543 +
544 +(PA5)
545 +)))|(((
534 534  Digital Interrupt1(PA8)
535 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
547 +)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved
536 536  
537 537  [[image:image-20230513111203-7.png||height="324" width="975"]]
538 538  
539 -
540 540  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
541 541  
542 -
543 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
544 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
553 +(% style="width:917px" %)
554 +|=(((
545 545  **Size(bytes)**
546 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
547 -|Value|BAT|(% style="width:207px" %)(((
556 +)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 79px;" %)2
557 +|**Value**|BAT|(% style="width:207px" %)(((
548 548  Temperature(DS18B20)
559 +
549 549  (PC13)
550 550  )))|(% style="width:94px" %)(((
551 -ADC1(PA4)
562 +ADC1
563 +
564 +(PA4)
552 552  )))|(% style="width:198px" %)(((
553 553  Digital Interrupt(PB15)
554 554  )))|(% style="width:84px" %)(((
555 -ADC2(PA5)
556 -)))|(% style="width:82px" %)(((
557 -ADC3(PA8)
568 +ADC2
569 +
570 +(PA5)
571 +)))|(% style="width:79px" %)(((
572 +ADC3
573 +
574 +(PA8)
558 558  )))
559 559  
560 560  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -562,205 +562,56 @@
562 562  
563 563  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
564 564  
565 -
566 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
567 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
582 +(% style="width:1010px" %)
583 +|=(((
568 568  **Size(bytes)**
569 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
570 -|Value|BAT|(((
571 -Temperature
572 -(DS18B20)(PC13)
585 +)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
586 +|**Value**|BAT|(((
587 +Temperature1(DS18B20)
588 +
589 +(PC13)
573 573  )))|(((
574 -Temperature2
575 -(DS18B20)(PB9)
591 +Temperature2(DS18B20)
592 +
593 +(PB9)
576 576  )))|(((
577 577  Digital Interrupt
596 +
578 578  (PB15)
579 579  )))|(% style="width:193px" %)(((
580 -Temperature3
581 -(DS18B20)(PB8)
599 +Temperature3(DS18B20)
600 +
601 +(PB8)
582 582  )))|(% style="width:78px" %)(((
583 -Count1(PA8)
603 +Count1
604 +
605 +(PA8)
584 584  )))|(% style="width:78px" %)(((
585 -Count2(PA4)
607 +Count2
608 +
609 +(PA4)
586 586  )))
587 587  
588 588  [[image:image-20230513111255-9.png||height="341" width="899"]]
589 589  
590 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
614 +**The newly added AT command is issued correspondingly:**
591 591  
592 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
616 +**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
593 593  
594 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
618 +**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
595 595  
596 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
620 +**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
597 597  
622 +**AT+SETCNT=aa,bb** 
598 598  
599 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
600 -
601 601  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
602 602  
603 603  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
604 604  
605 605  
606 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
607 607  
608 -
609 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
610 -
611 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
612 -
613 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
614 -
615 -
616 -===== 2.3.2.10.a  Uplink, PWM input capture =====
617 -
618 -
619 -[[image:image-20230817172209-2.png||height="439" width="683"]]
620 -
621 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
622 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
623 -|Value|Bat|(% style="width:191px" %)(((
624 -Temperature(DS18B20)(PC13)
625 -)))|(% style="width:78px" %)(((
626 -ADC(PA4)
627 -)))|(% style="width:135px" %)(((
628 -PWM_Setting
629 -&Digital Interrupt(PA8)
630 -)))|(% style="width:70px" %)(((
631 -Pulse period
632 -)))|(% style="width:89px" %)(((
633 -Duration of high level
634 -)))
635 -
636 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
637 -
638 -
639 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
640 -
641 -**Frequency:**
642 -
643 -(% class="MsoNormal" %)
644 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
645 -
646 -(% class="MsoNormal" %)
647 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
648 -
649 -
650 -(% class="MsoNormal" %)
651 -**Duty cycle:**
652 -
653 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
654 -
655 -[[image:image-20230818092200-1.png||height="344" width="627"]]
656 -
657 -
658 -===== 2.3.2.10.b  Uplink, PWM output =====
659 -
660 -
661 -[[image:image-20230817172209-2.png||height="439" width="683"]]
662 -
663 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
664 -
665 -a is the time delay of the output, the unit is ms.
666 -
667 -b is the output frequency, the unit is HZ.
668 -
669 -c is the duty cycle of the output, the unit is %.
670 -
671 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
672 -
673 -aa is the time delay of the output, the unit is ms.
674 -
675 -bb is the output frequency, the unit is HZ.
676 -
677 -cc is the duty cycle of the output, the unit is %.
678 -
679 -
680 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
681 -
682 -The oscilloscope displays as follows:
683 -
684 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
685 -
686 -
687 -===== 2.3.2.10.c  Downlink, PWM output =====
688 -
689 -
690 -[[image:image-20230817173800-3.png||height="412" width="685"]]
691 -
692 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
693 -
694 - xx xx xx is the output frequency, the unit is HZ.
695 -
696 - yy is the duty cycle of the output, the unit is %.
697 -
698 - zz zz is the time delay of the output, the unit is ms.
699 -
700 -
701 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
702 -
703 -The oscilloscope displays as follows:
704 -
705 -[[image:image-20230817173858-5.png||height="634" width="843"]]
706 -
707 -
708 -
709 -==== 2.3.2.11  MOD~=11 (TEMP117)(Since firmware V1.3.0) ====
710 -
711 -
712 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
713 -
714 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
715 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
716 -|Value|Bat|(% style="width:191px" %)(((
717 -Temperature(DS18B20)(PC13)
718 -)))|(% style="width:78px" %)(((
719 -ADC(PA4)
720 -)))|(% style="width:216px" %)(((
721 -Digital in(PB15)&Digital Interrupt(PA8)
722 -)))|(% style="width:308px" %)(((
723 -Temperature
724 -(TEMP117)
725 -)))|(% style="width:154px" %)(((
726 -Reserved position, meaningless
727 -(0x0000)
728 -)))
729 -
730 -[[image:image-20240717113113-1.png||height="352" width="793"]]
731 -
732 -Connection:
733 -
734 -[[image:image-20240717141528-2.jpeg||height="430" width="654"]]
735 -
736 -
737 -==== 2.3.2.12  MOD~=12 (Count+SHT31)(Since firmware V1.3.1) ====
738 -
739 -
740 -This mode has total 11 bytes. As shown below:
741 -
742 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
743 -|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
744 -|Value|BAT|(% style="width:86px" %)(((
745 - Temperature_SHT31
746 -)))|(% style="width:86px" %)(((
747 -Humidity_SHT31
748 -)))|(% style="width:86px" %)(((
749 - Digital in(PB15)
750 -)))|(% style="width:86px" %)(((
751 -Count(PA8)
752 -)))
753 -
754 -[[image:image-20240717150948-5.png||height="389" width="979"]]
755 -
756 -Wiring example:
757 -
758 -[[image:image-20240717152224-6.jpeg||height="359" width="680"]]
759 -
760 -
761 761  === 2.3.3  ​Decode payload ===
762 762  
763 -
764 764  While using TTN V3 network, you can add the payload format to decode the payload.
765 765  
766 766  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -767,14 +767,13 @@
767 767  
768 768  The payload decoder function for TTN V3 are here:
769 769  
770 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
638 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
771 771  
772 772  
773 773  ==== 2.3.3.1 Battery Info ====
774 774  
643 +Check the battery voltage for SN50v3.
775 775  
776 -Check the battery voltage for SN50v3-LB/LS.
777 -
778 778  Ex1: 0x0B45 = 2885mV
779 779  
780 780  Ex2: 0x0B49 = 2889mV
... ... @@ -782,28 +782,25 @@
782 782  
783 783  ==== 2.3.3.2  Temperature (DS18B20) ====
784 784  
652 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
785 785  
786 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
654 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
787 787  
788 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
656 +**Connection:**
789 789  
790 -(% style="color:blue" %)**Connection:**
791 -
792 792  [[image:image-20230512180718-8.png||height="538" width="647"]]
793 793  
660 +**Example**:
794 794  
795 -(% style="color:blue" %)**Example**:
796 -
797 797  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
798 798  
799 799  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
800 800  
801 -(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
666 +FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative
802 802  
803 803  
804 804  ==== 2.3.3.3 Digital Input ====
805 805  
806 -
807 807  The digital input for pin PB15,
808 808  
809 809  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -813,63 +813,49 @@
813 813  (((
814 814  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
815 815  
816 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
817 -
818 -
680 +**Note:**The maximum voltage input supports 3.6V.
819 819  )))
820 820  
821 821  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
822 822  
685 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
823 823  
824 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
687 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
825 825  
826 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
827 -
828 828  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
829 829  
691 +**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
830 830  
831 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
832 -
833 -
834 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
835 -
836 -[[image:image-20230811113449-1.png||height="370" width="608"]]
837 -
838 -
839 -
840 840  ==== 2.3.3.5 Digital Interrupt ====
841 841  
695 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
842 842  
843 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
697 +**~ Interrupt connection method:**
844 844  
845 -(% style="color:blue" %)** Interrupt connection method:**
846 -
847 847  [[image:image-20230513105351-5.png||height="147" width="485"]]
848 848  
701 +**Example to use with door sensor :**
849 849  
850 -(% style="color:blue" %)**Example to use with door sensor :**
851 -
852 852  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
853 853  
854 854  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
855 855  
856 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
707 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
857 857  
709 +**~ Below is the installation example:**
858 858  
859 -(% style="color:blue" %)**Below is the installation example:**
711 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
860 860  
861 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
862 -
863 863  * (((
864 -One pin to SN50v3-LB/LS's PA8 pin
714 +One pin to SN50_v3's PA8 pin
865 865  )))
866 866  * (((
867 -The other pin to SN50v3-LB/LS's VDD pin
717 +The other pin to SN50_v3's VDD pin
868 868  )))
869 869  
870 870  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
871 871  
872 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
722 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
873 873  
874 874  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
875 875  
... ... @@ -881,55 +881,29 @@
881 881  
882 882  The command is:
883 883  
884 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
734 +**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
885 885  
886 886  Below shows some screen captures in TTN V3:
887 887  
888 888  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
889 889  
740 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
890 890  
891 -(% style="color:blue" %)**Application in different modes:**
742 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
892 892  
893 -* In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
894 894  
895 - door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
896 -
897 -
898 -* In **MOD=7**, there are three interrupt pins in effect.
899 -
900 -See the **[[AT+INTMODx>>||anchor="H3.3.3SetInterruptMode"]] **command explained to set the three pin interrupt modes.
901 -
902 -As you can see from the byte parsing table of pattern 7, the seventh byte of the original load is used to display the PA8 pin interrupt flag and status, the eighth byte of the original load is used to display the PA4 pin interrupt flag and status, and the ninth byte of the original load is used to display the PB15 pin interrupt flag and status.
903 -
904 -[[image:image-20250402103902-1.png]]
905 -
906 -TTN V3 decoder is as below:
907 -
908 -[[image:image-20250402104508-2.png||height="255" width="579"]]
909 -
910 -(% style="color:red" %)**Note: mode in decoding is sorted from 0, so it corresponds to the actual working mode AT+MOD=7.**
911 -
912 -
913 -(% style="color:#037691" %)**Interrupt flag: **(%%)"EXTI1/2/3_Trigger", indicates whether the uplink packet is generated by an interrupt on the PA8/PA4/PB15 pin.
914 -
915 -
916 -(% style="color:#037691" %)**Interrupt status: **(%%)"EXTI1/2/3_Status", Displays the status of the interrupt sensors connected to the PA4/PA8/PB15 interrupt pins when the packet is uplinked.
917 -
918 -
919 919  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
920 920  
921 -
922 922  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
923 923  
924 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
749 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
925 925  
926 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
751 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
927 927  
928 -
929 929  Below is the connection to SHT20/ SHT31. The connection is as below:
930 930  
931 -[[image:image-20230610170152-2.png||height="501" width="846"]]
932 932  
756 +[[image:image-20230513103633-3.png||height="636" width="1017"]]
933 933  
934 934  The device will be able to get the I2C sensor data now and upload to IoT Server.
935 935  
... ... @@ -948,26 +948,23 @@
948 948  
949 949  ==== 2.3.3.7  ​Distance Reading ====
950 950  
775 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
951 951  
952 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
953 953  
954 -
955 955  ==== 2.3.3.8 Ultrasonic Sensor ====
956 956  
957 -
958 958  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
959 959  
960 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
782 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
961 961  
962 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
784 +The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
963 963  
964 964  The picture below shows the connection:
965 965  
966 966  [[image:image-20230512173903-6.png||height="596" width="715"]]
967 967  
790 +Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
968 968  
969 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
970 -
971 971  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
972 972  
973 973  **Example:**
... ... @@ -975,71 +975,37 @@
975 975  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
976 976  
977 977  
799 +
978 978  ==== 2.3.3.9  Battery Output - BAT pin ====
979 979  
802 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
980 980  
981 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
982 982  
983 -
984 984  ==== 2.3.3.10  +5V Output ====
985 985  
807 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
986 986  
987 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
988 -
989 989  The 5V output time can be controlled by AT Command.
990 990  
991 -(% style="color:blue" %)**AT+5VT=1000**
811 +**AT+5VT=1000**
992 992  
993 993  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
994 994  
995 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
815 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
996 996  
997 997  
818 +
998 998  ==== 2.3.3.11  BH1750 Illumination Sensor ====
999 999  
1000 -
1001 1001  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
1002 1002  
1003 -[[image:image-20230512172447-4.png||height="416" width="712"]]
823 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
1004 1004  
825 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
1005 1005  
1006 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
1007 1007  
828 +==== 2.3.3.12  Working MOD ====
1008 1008  
1009 -==== 2.3.3.12  PWM MOD ====
1010 -
1011 -
1012 -* (((
1013 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
1014 -)))
1015 -* (((
1016 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
1017 -)))
1018 -
1019 - [[image:image-20230817183249-3.png||height="320" width="417"]]
1020 -
1021 -* (((
1022 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
1023 -)))
1024 -* (((
1025 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
1026 -)))
1027 -* (((
1028 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
1029 -
1030 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
1031 -
1032 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
1033 -
1034 -b) If the output duration is more than 30 seconds, better to use external power source. 
1035 -
1036 -
1037 -
1038 -)))
1039 -
1040 -==== 2.3.3.13  Working MOD ====
1041 -
1042 -
1043 1043  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
1044 1044  
1045 1045  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -1055,7 +1055,6 @@
1055 1055  * 6: MOD7
1056 1056  * 7: MOD8
1057 1057  * 8: MOD9
1058 -* 9: MOD10
1059 1059  
1060 1060  == 2.4 Payload Decoder file ==
1061 1061  
... ... @@ -1064,23 +1064,24 @@
1064 1064  
1065 1065  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
1066 1066  
1067 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
853 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
1068 1068  
1069 1069  
856 +
1070 1070  == 2.5 Frequency Plans ==
1071 1071  
1072 1072  
1073 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
860 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
1074 1074  
1075 1075  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1076 1076  
1077 1077  
1078 -= 3. Configure SN50v3-LB/LS =
865 += 3. Configure SN50v3-LB =
1079 1079  
1080 1080  == 3.1 Configure Methods ==
1081 1081  
1082 1082  
1083 -SN50v3-LB/LS supports below configure method:
870 +SN50v3-LB supports below configure method:
1084 1084  
1085 1085  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1086 1086  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -1099,10 +1099,10 @@
1099 1099  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1100 1100  
1101 1101  
1102 -== 3.3 Commands special design for SN50v3-LB/LS ==
889 +== 3.3 Commands special design for SN50v3-LB ==
1103 1103  
1104 1104  
1105 -These commands only valid for SN50v3-LB/LS, as below:
892 +These commands only valid for S31x-LB, as below:
1106 1106  
1107 1107  
1108 1108  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1113,7 +1113,7 @@
1113 1113  (% style="color:blue" %)**AT Command: AT+TDC**
1114 1114  
1115 1115  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1116 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
903 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1117 1117  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1118 1118  30000
1119 1119  OK
... ... @@ -1135,123 +1135,55 @@
1135 1135  
1136 1136  === 3.3.2 Get Device Status ===
1137 1137  
925 +Send a LoRaWAN downlink to ask device send Alarm settings.
1138 1138  
1139 -Send a LoRaWAN downlink to ask the device to send its status.
927 +(% style="color:blue" %)**Downlink Payload **(%%)0x26 01
1140 1140  
1141 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
929 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1142 1142  
1143 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1144 1144  
1145 -
1146 1146  === 3.3.3 Set Interrupt Mode ===
1147 1147  
1148 1148  
1149 -==== 3.3.3.1 Before V1.3.4 firmware ====
935 +Feature, Set Interrupt mode for GPIO_EXIT.
1150 1150  
1151 -(% style="color:red" %)**Note: Before V1.3.4 firmware, the interrupt function of PA8,PA4,PB15 had only one parameter to set, which was used to set the interrupt trigger mode.**
937 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1152 1152  
1153 -Feature, Set Interrupt mode for PA8, PA4, PB15.
1154 -
1155 -Before using the interrupt function of the **INT** pin, users can set the interrupt triggering mode as required.
1156 -
1157 -(% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a**
1158 -
1159 -(% style="color:#4472c4" %)**AT+INTMODx:**
1160 -
1161 -* (% style="color:#4472c4" %)**AT+INTMOD1   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
1162 -* (% style="color:#4472c4" %)**AT+INTMOD2   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1163 -* (% style="color:#4472c4" %)**AT+INTMOD3   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
1164 -
1165 -**Parameter a setting:**
1166 -
1167 -* **0:** Disable Interrupt
1168 -* **1:** Trigger by rising and falling edge
1169 -* **2:** Trigger by falling edge
1170 -* **3: **Trigger by rising edge
1171 -
1172 -**Example:**
1173 -
1174 -* AT+INTMOD1=0  ~/~/Disable the PA8 pin interrupt function
1175 -* AT+INTMOD2=2  ~/~/Set the interrupt of the PA4 pin to be triggered by the falling edge
1176 -* AT+INTMOD3=3  ~/~/Set the interrupt of the PB15 pin to be triggered by the rising edge
1177 -
1178 -(% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb**
1179 -
1180 -Format: Command Code (0x06 00) followed by 2 bytes.
1181 -
1182 -(% style="color:#4472c4" %)**aa:**(%%) Set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
1183 -
1184 -(% style="color:#4472c4" %)**bb: **(%%)Set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
1185 -
1186 -**Example:**
1187 -
1188 -* Downlink Payload: **06 00 00 01     **~/~/ Equal to AT+INTMOD1=1
1189 -* Downlink Payload: **06 00 01 02     **~/~/ Equal to AT+INTMOD2=2
1190 -* Downlink Payload: **06 00 02 03     **~/~/ Equal to AT+INTMOD3=3
1191 -
1192 -==== 3.3.3.2 Since V1.3.4 firmware ====
1193 -
1194 -(% style="color:red" %)**Note: Since V1.3.4 firmware, the Interrupt function has added a new parameter to set the delay time, i.e. the state hold time.**
1195 -
1196 -(% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a,b**
1197 -
1198 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
1199 -|=(% style="width: 116px; background-color: rgb(79, 129, 189); color: white;" %)**Parameter **|=(% style="width: 304px; background-color: rgb(79, 129, 189); color: white;" %)**Values and functions**
1200 -|(% style="width:116px" %)(((
1201 -
1202 -
1203 -**x**
1204 -)))|(% style="width:392px" %)(((
1205 -1: Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
1206 -
1207 -2:  Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1208 -
1209 -3: Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
939 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
940 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
941 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
942 +0
943 +OK
944 +the mode is 0 =Disable Interrupt
1210 1210  )))
1211 -|(% style="width:116px" %)(((
1212 -
946 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
947 +Set Transmit Interval
948 +0. (Disable Interrupt),
949 +~1. (Trigger by rising and falling edge)
950 +2. (Trigger by falling edge)
951 +3. (Trigger by rising edge)
952 +)))|(% style="width:157px" %)OK
953 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
954 +Set Transmit Interval
1213 1213  
1214 -**a**
1215 -)))|(% style="width:392px" %)(((
1216 -**0:** Disable Interrupt
956 +trigger by rising edge.
957 +)))|(% style="width:157px" %)OK
958 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1217 1217  
1218 -**1:** Trigger by rising and falling edge
960 +(% style="color:blue" %)**Downlink Command: 0x06**
1219 1219  
1220 -**2:** Trigger by falling edge
962 +Format: Command Code (0x06) followed by 3 bytes.
1221 1221  
1222 -**3: **Trigger by rising edge
1223 -)))
1224 -|(% style="width:116px" %)**b**|(% style="width:392px" %)(((
1225 -Set the delay time. (Default: 0)
964 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1226 1226  
1227 -**Value range: 0~~65535 ms**
1228 -)))
966 +* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
967 +* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
968 +* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
969 +* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1229 1229  
1230 -**Example:**
1231 -
1232 -* AT+INTMOD1=0,0  ~/~/ Disable the PA8 pin interrupt function
1233 -* AT+INTMOD2=2,1000  ~/~/ Set the interrupt of the PA4 pin to be triggered by the falling edge, however, the interrupt will only be triggered if the low level state remains 1000ms
1234 -* AT+INTMOD3=3,2500  ~/~/ Set the interrupt of the PB15 pin to be triggered by the rising edge, however, the interrupt will only be triggered if the high level state remains 2500ms
1235 -
1236 -(% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb cc**
1237 -
1238 -Format: Command Code (0x06 00) followed by 4 bytes.
1239 -
1240 -(% style="color:#4472c4" %)**aa:**(%%) **1 byte**, set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
1241 -
1242 -(% style="color:#4472c4" %)**bb: **(%%)**1 byte**, set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
1243 -
1244 -(% style="color:#4472c4" %)**cc: **(%%)**2 bytes**, Set the delay time. (0x00~~0xFFFF)
1245 -
1246 -**Example:**
1247 -
1248 -* Downlink Payload: **06 00 00 01 00 00     **~/~/ Equal to AT+INTMOD1=1,0
1249 -* Downlink Payload: **06 00 01 02 0B B8     **~/~/ Equal to AT+INTMOD2=2,3000
1250 -* Downlink Payload: **06 00 02 03 03 E8   **~/~/ Equal to AT+INTMOD3=3,1000
1251 -
971 +(% class="wikigeneratedid" %)
1252 1252  === 3.3.4 Set Power Output Duration ===
1253 1253  
1254 -
1255 1255  Control the output duration 5V . Before each sampling, device will
1256 1256  
1257 1257  ~1. first enable the power output to external sensor,
... ... @@ -1263,9 +1263,10 @@
1263 1263  (% style="color:blue" %)**AT Command: AT+5VT**
1264 1264  
1265 1265  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1266 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
985 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1267 1267  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1268 1268  500(default)
988 +
1269 1269  OK
1270 1270  )))
1271 1271  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -1278,176 +1278,83 @@
1278 1278  
1279 1279  The first and second bytes are the time to turn on.
1280 1280  
1281 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1282 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1001 +* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1002 +* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1283 1283  
1004 +(% class="wikigeneratedid" %)
1284 1284  === 3.3.5 Set Weighing parameters ===
1285 1285  
1007 +Feature: Working mode 5 is effective, hair removal and setting of weight factor of HX711.
1286 1286  
1287 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1288 -
1289 1289  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1290 1290  
1291 1291  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1292 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1293 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1294 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1295 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1012 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1013 +|(% style="width:154px" %) |(% style="width:196px" %) |(% style="width:157px" %)
1014 +|(% style="width:154px" %) |(% style="width:196px" %) |(% style="width:157px" %)
1296 1296  
1016 +
1297 1297  (% style="color:blue" %)**Downlink Command: 0x08**
1298 1298  
1299 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1300 1300  
1301 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1020 +Format: Command Code (0x07) followed by 2 bytes.
1302 1302  
1303 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1022 +The first and second bytes are the time to turn on.
1304 1304  
1305 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1306 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1307 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1308 1308  
1309 1309  === 3.3.6 Set Digital pulse count value ===
1310 1310  
1311 -
1312 1312  Feature: Set the pulse count value.
1313 1313  
1314 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1315 -
1316 1316  (% style="color:blue" %)**AT Command: AT+SETCNT**
1317 1317  
1318 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1319 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1031 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1032 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1320 1320  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1321 1321  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1322 1322  
1036 +
1323 1323  (% style="color:blue" %)**Downlink Command: 0x09**
1324 1324  
1039 +
1325 1325  Format: Command Code (0x09) followed by 5 bytes.
1326 1326  
1327 1327  The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1328 1328  
1329 1329  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1330 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1045 +* Example 2: Downlink Payload: 090200000000  **~-~-->**  AT+5VT=500
1331 1331  
1332 1332  === 3.3.7 Set Workmode ===
1333 1333  
1049 +Feature: switch working mode.
1334 1334  
1335 -Feature: Switch working mode.
1336 -
1337 1337  (% style="color:blue" %)**AT Command: AT+MOD**
1338 1338  
1339 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1340 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1053 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1054 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1341 1341  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1342 1342  OK
1343 1343  )))
1344 1344  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1345 1345  OK
1060 +
1346 1346  Attention:Take effect after ATZ
1347 1347  )))
1348 1348  
1064 +
1349 1349  (% style="color:blue" %)**Downlink Command: 0x0A**
1350 1350  
1067 +
1351 1351  Format: Command Code (0x0A) followed by 1 bytes.
1352 1352  
1353 1353  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1354 1354  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1355 1355  
1356 -=== 3.3.8 PWM setting ===
1073 += 4. Battery & Power Consumption =
1357 1357  
1358 1358  
1359 -Feature: Set the time acquisition unit for PWM input capture.
1076 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1360 1360  
1361 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1362 -
1363 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1364 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1365 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1366 -0(default)
1367 -OK
1368 -)))
1369 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1370 -OK
1371 -
1372 -)))
1373 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1374 -
1375 -(% style="color:blue" %)**Downlink Command: 0x0C**
1376 -
1377 -Format: Command Code (0x0C) followed by 1 bytes.
1378 -
1379 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1380 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1381 -
1382 -**Feature: Set PWM output time, output frequency and output duty cycle.**
1383 -
1384 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1385 -
1386 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1387 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1388 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1389 -0,0,0(default)
1390 -OK
1391 -)))
1392 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1393 -OK
1394 -
1395 -)))
1396 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1397 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1398 -
1399 -
1400 -)))|(% style="width:137px" %)(((
1401 -OK
1402 -)))
1403 -
1404 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1405 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 243px; background-color:#4F81BD;color:white" %)**parameters**
1406 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1407 -AT+PWMOUT=a,b,c
1408 -
1409 -
1410 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1411 -Set PWM output time, output frequency and output duty cycle.
1412 -
1413 -(((
1414 -
1415 -)))
1416 -
1417 -(((
1418 -
1419 -)))
1420 -)))|(% style="width:242px" %)(((
1421 -a: Output time (unit: seconds)
1422 -The value ranges from 0 to 65535.
1423 -When a=65535, PWM will always output.
1424 -)))
1425 -|(% style="width:242px" %)(((
1426 -b: Output frequency (unit: HZ)
1427 -
1428 -range 5~~100000HZ
1429 -)))
1430 -|(% style="width:242px" %)(((
1431 -c: Output duty cycle (unit: %)
1432 -The value ranges from 0 to 100.
1433 -)))
1434 -
1435 -(% style="color:blue" %)**Downlink Command: 0x0B**
1436 -
1437 -Format: Command Code (0x0B) followed by 6 bytes.
1438 -
1439 -0B + Output frequency (3bytes)+ Output duty cycle (1bytes)+Output time (2bytes)
1440 -
1441 -Downlink payload:0B bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1442 -
1443 -* Example 1: Downlink Payload: 0B 0003E8 32 0005 **~-~-->**  AT+PWMOUT=5,1000,50
1444 -* Example 2: Downlink Payload: 0B 0007D0 3C 000A **~-~-->**  AT+PWMOUT=10,2000,60
1445 -
1446 -= 4. Battery & Power Cons =
1447 -
1448 -
1449 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1450 -
1451 1451  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1452 1452  
1453 1453  
... ... @@ -1455,66 +1455,32 @@
1455 1455  
1456 1456  
1457 1457  (% class="wikigeneratedid" %)
1458 -**User can change firmware SN50v3-LB/LS to:**
1085 +User can change firmware SN50v3-LB to:
1459 1459  
1460 1460  * Change Frequency band/ region.
1461 1461  * Update with new features.
1462 1462  * Fix bugs.
1463 1463  
1464 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1091 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1465 1465  
1466 -**Methods to Update Firmware:**
1467 1467  
1468 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1469 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1094 +Methods to Update Firmware:
1470 1470  
1471 -= 6.  Developer Guide =
1096 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1097 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1472 1472  
1473 -SN50v3 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from:
1099 += 6. FAQ =
1474 1474  
1475 -* (((
1476 -Software Source Code: [[Releases · dragino/SN50v3 (github.com)>>url:https://github.com/dragino/SN50v3/releases]]
1477 -)))
1478 -* (((
1479 -Hardware Design files:  **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1480 -)))
1481 -* (((
1482 -Compile instruction:[[Compile instruction>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Module/Compile%20and%20Upload%20Code%20to%20ASR6601%20Platform/]]
1483 -)))
1101 +== 6.1 Where can i find source code of SN50v3-LB? ==
1484 1484  
1485 -**~1. If you want to change frequency, modify the Preprocessor Symbols.**
1103 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1104 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1486 1486  
1487 -For example, change EU868 to US915
1106 += 7. Order Info =
1488 1488  
1489 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656318662202-530.png?rev=1.1||alt="1656318662202-530.png"]]
1490 1490  
1491 -**2. Compile and build**
1109 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1492 1492  
1493 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627163212-17.png?rev=1.1||alt="image-20220627163212-17.png"]]
1494 -
1495 -= 7. FAQ =
1496 -
1497 -== 7.1 How to generate PWM Output in SN50v3-LB/LS? ==
1498 -
1499 -
1500 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1501 -
1502 -
1503 -== 7.2 How to put several sensors to a SN50v3-LB/LS? ==
1504 -
1505 -
1506 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1507 -
1508 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1509 -
1510 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1511 -
1512 -
1513 -= 8. Order Info =
1514 -
1515 -
1516 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1517 -
1518 1518  (% style="color:red" %)**XX**(%%): The default frequency band
1519 1519  
1520 1520  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
... ... @@ -1533,28 +1533,21 @@
1533 1533  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1534 1534  * (% style="color:red" %)**NH**(%%): No Hole
1535 1535  
1536 -= 9. ​Packing Info =
1129 += 8. ​Packing Info =
1537 1537  
1538 -
1539 1539  (% style="color:#037691" %)**Package Includes**:
1540 1540  
1541 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1133 +* SN50v3-LB LoRaWAN Generic Node
1542 1542  
1543 1543  (% style="color:#037691" %)**Dimension and weight**:
1544 1544  
1545 -(% style="color:blue" %)**Package Size / pcs :**
1137 +* Device Size: cm
1138 +* Device Weight: g
1139 +* Package Size / pcs : cm
1140 +* Weight / pcs : g
1546 1546  
1547 -* For SN50v3-LB: 140*80*50 mm
1548 -* For SN50v3-LS: 160*105*45 mm
1142 += 9. Support =
1549 1549  
1550 -(% style="color:blue" %)**Weight / pcs :**(%%)** **
1551 1551  
1552 -* For SN50v3-LB: 225 g
1553 -* For SN50v3-LS: 290 g
1554 -
1555 -= 10. Support =
1556 -
1557 -
1558 1558  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1559 -
1560 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
1146 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1749518618870-272.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 KB
Content
1749518621646-995.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
image-20240717113113-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -34.0 KB
Content
image-20240717141512-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -948.8 KB
Content
image-20240717141528-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -234.2 KB
Content
image-20240717145707-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.8 KB
Content
image-20240717150334-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20240717150948-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.3 KB
Content
image-20240717152224-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -238.1 KB
Content
image-20240924112806-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -140.2 KB
Content
image-20250329085729-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -363.5 KB
Content
image-20250329085744-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.1 KB
Content
image-20250329090241-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -67.5 KB
Content
image-20250329090300-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
image-20250329090324-5.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.6 KB
Content
image-20250329090341-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -40.6 KB
Content
image-20250329090403-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -55.2 KB
Content
image-20250329090417-8.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -43.4 KB
Content
image-20250402103902-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -20.0 KB
Content
image-20250402104508-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -17.7 KB
Content
image-20250415113729-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -47.6 KB
Content
image-20250609112201-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 KB
Content
image-20250609112206-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 KB
Content
image-20250609112209-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 KB
Content
image-20250609112212-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 KB
Content
image-20250609112308-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 KB
Content
image-20250609112311-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -1.4 KB
Content