Last modified by kai on 2025/06/30 10:31

From version 126.1
edited by Xiaoling
on 2025/04/23 16:56
Change comment: There is no comment for this version
To version 36.1
edited by Saxer Lin
on 2023/05/13 11:59
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,40 +1,37 @@
1 -
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
2 2  
3 -(% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
5 5  
6 6  
5 +**Table of Contents:**
7 7  
7 +{{toc/}}
8 8  
9 9  
10 10  
11 -**Table of Contents:**
12 12  
13 -{{toc/}}
14 14  
15 15  
14 += 1. Introduction =
16 16  
16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
18 18  
19 19  
20 -= 1. Introduction =
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23 23  
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + Li-ion battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
35 35  == 1.2 ​Features ==
36 36  
37 -
38 38  * LoRaWAN 1.0.3 Class A
39 39  * Ultra-low power consumption
40 40  * Open-Source hardware/software
... ... @@ -43,15 +43,13 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-ion battery (SN50v3-LS)
43 +* 8500mAh Battery for long term use
48 48  
49 49  == 1.3 Specification ==
50 50  
51 -
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -85,7 +85,6 @@
85 85  
86 86  == 1.4 Sleep mode and working mode ==
87 87  
88 -
89 89  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90 90  
91 91  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -94,10 +94,11 @@
94 94  == 1.5 Button & LEDs ==
95 95  
96 96  
97 -[[image:image-20250415113729-1.jpeg]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
98 98  
99 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
93 +
94 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 101  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 102  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 103  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -112,7 +112,7 @@
112 112  == 1.6 BLE connection ==
113 113  
114 114  
115 -SN50v3-LB/LS supports BLE remote configure.
110 +SN50v3-LB supports BLE remote configure.
116 116  
117 117  
118 118  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -127,39 +127,34 @@
127 127  == 1.7 Pin Definitions ==
128 128  
129 129  
130 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230513102034-2.png]]
131 131  
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 -=== 1.8.1 for LB version ===
136 136  
131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:image-20240924112806-1.png||height="548" width="894"]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
135 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140 140  
141 141  
142 -=== 1.8.2 for LS version ===
138 +== Hole Option ==
143 143  
144 -[[image:image-20231231203439-3.png||height="385" width="886"]]
140 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
145 145  
142 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
146 146  
147 -== 1.9 Hole Option ==
144 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
148 148  
149 149  
150 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
147 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
151 151  
152 -[[image:image-20250329085729-1.jpeg]]
153 -
154 -[[image:image-20250329085744-2.jpeg]]
155 -
156 -
157 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
158 -
159 159  == 2.1 How it works ==
160 160  
161 161  
162 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 163  
164 164  
165 165  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -167,62 +167,45 @@
167 167  
168 168  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
169 169  
170 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
171 171  
172 -[[image:image-20250329090241-3.png]]
173 173  
174 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 175  
176 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
165 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 177  
178 -[[image:image-20250329090300-4.jpeg]]
167 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
179 179  
180 180  
181 181  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
182 182  
183 -**Create the application.**
184 184  
185 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/SAC01L_LoRaWAN_Temperature%26Humidity_Sensor_User_Manual/WebHome/image-20250423093843-1.png?width=756&height=264&rev=1.1||alt="image-20250423093843-1.png"]]
173 +(% style="color:blue" %)**Register the device**
186 186  
187 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111305-2.png?width=1000&height=572&rev=1.1||alt="image-20240907111305-2.png"]]
175 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
188 188  
189 189  
190 -**Add devices to the created Application.**
178 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
191 191  
192 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111659-3.png?width=977&height=185&rev=1.1||alt="image-20240907111659-3.png"]]
180 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
193 193  
194 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907111820-5.png?width=975&height=377&rev=1.1||alt="image-20240907111820-5.png"]]
195 195  
183 +(% style="color:blue" %)**Add APP EUI in the application**
196 196  
197 -**Enter end device specifics manually.**
198 198  
199 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112136-6.png?width=697&height=687&rev=1.1||alt="image-20240907112136-6.png"]]
186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
200 200  
201 201  
202 -**Add DevEUI and AppKey.**
189 +(% style="color:blue" %)**Add APP KEY**
203 203  
204 -**Customize a platform ID for the device.**
191 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
205 205  
206 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LTC2-LB--LoRaWAN_Temperature_Transmitter_User_Manual/WebHome/image-20240907112427-7.png?rev=1.1||alt="image-20240907112427-7.png"]]
207 207  
194 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
208 208  
209 -(% style="color:blue" %)**Step 2: **(%%)Add decoder.
210 210  
211 -In TTN, user can add a custom payload so it shows friendly reading.
197 +Press the button for 5 seconds to activate the SN50v3-LB.
212 212  
213 -Click this link to get the decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/>>url:https://github.com/dragino/dragino-end-node-decoder/tree/main/]]
214 -
215 -Below is TTN screen shot:
216 -
217 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140556-1.png?width=1184&height=488&rev=1.1||alt="image-20241009140556-1.png" height="488" width="1184"]]
218 -
219 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LDS25-LBLDS25-LS--LoRaWAN_LiDAR_Distance_Auto-Clean_Sensor_User_Manual/WebHome/image-20241009140603-2.png?width=1168&height=562&rev=1.1||alt="image-20241009140603-2.png" height="562" width="1168"]]
220 -
221 -
222 -(% style="color:blue" %)**Step 3:**(%%) Activate SN50v3-LB/LS
223 -
224 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
225 -
226 226  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
227 227  
228 228  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
... ... @@ -233,52 +233,52 @@
233 233  === 2.3.1 Device Status, FPORT~=5 ===
234 234  
235 235  
236 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
237 237  
238 238  The Payload format is as below.
239 239  
240 240  
241 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
242 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
215 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
243 243  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
244 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
245 245  
246 246  Example parse in TTNv3
247 247  
248 248  
249 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
250 250  
251 251  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
252 252  
253 253  (% style="color:#037691" %)**Frequency Band**:
254 254  
255 -0x01: EU868
228 +*0x01: EU868
256 256  
257 -0x02: US915
230 +*0x02: US915
258 258  
259 -0x03: IN865
232 +*0x03: IN865
260 260  
261 -0x04: AU915
234 +*0x04: AU915
262 262  
263 -0x05: KZ865
236 +*0x05: KZ865
264 264  
265 -0x06: RU864
238 +*0x06: RU864
266 266  
267 -0x07: AS923
240 +*0x07: AS923
268 268  
269 -0x08: AS923-1
242 +*0x08: AS923-1
270 270  
271 -0x09: AS923-2
244 +*0x09: AS923-2
272 272  
273 -0x0a: AS923-3
246 +*0x0a: AS923-3
274 274  
275 -0x0b: CN470
248 +*0x0b: CN470
276 276  
277 -0x0c: EU433
250 +*0x0c: EU433
278 278  
279 -0x0d: KR920
252 +*0x0d: KR920
280 280  
281 -0x0e: MA869
254 +*0x0e: MA869
282 282  
283 283  
284 284  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -302,39 +302,46 @@
302 302  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
303 303  
304 304  
305 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
306 306  
307 307  For example:
308 308  
309 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
310 310  
311 311  
312 312  (% style="color:red" %) **Important Notice:**
313 313  
314 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
315 315  
316 -2. All modes share the same Payload Explanation from HERE.
291 +==== 2.3.2.1  MOD~=1 (Default Mode) ====
317 317  
318 -3. By default, the device will send an uplink message every 20 minutes.
293 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
319 319  
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
320 320  
321 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
299 +(PC13)
300 +)))|(((
301 +ADC
322 322  
303 +(PA4)
304 +)))|(% style="width:216px" %)(((
305 +Digital in(PB15) &
323 323  
324 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
307 +Digital Interrupt(PA8)
325 325  
326 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
327 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
328 -|Value|Bat|(% style="width:191px" %)(((
329 -Temperature(DS18B20)(PC13)
330 -)))|(% style="width:78px" %)(((
331 -ADC(PA4)
332 -)))|(% style="width:216px" %)(((
333 -Digital in(PB15)&Digital Interrupt(PA8)
334 -)))|(% style="width:308px" %)(((
335 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
336 -)))|(% style="width:154px" %)(((
337 -Humidity(SHT20 or SHT31)
309 +
310 +)))|(% style="width:342px" %)(((
311 +Temperature
312 +
313 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
314 +)))|(% style="width:171px" %)(((
315 +Humidity
316 +
317 +(SHT20 or SHT31)
338 338  )))
339 339  
340 340  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -342,90 +342,106 @@
342 342  
343 343  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
344 344  
345 -
346 346  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
347 347  
348 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
349 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
350 -|Value|BAT|(% style="width:196px" %)(((
351 -Temperature(DS18B20)(PC13)
352 -)))|(% style="width:87px" %)(((
353 -ADC(PA4)
354 -)))|(% style="width:189px" %)(((
355 -Digital in(PB15) & Digital Interrupt(PA8)
356 -)))|(% style="width:208px" %)(((
357 -Distance measure by: 1) LIDAR-Lite V3HP
358 -Or 2) Ultrasonic Sensor
359 -)))|(% style="width:117px" %)Reserved
327 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
328 +|**Value**|BAT|(((
329 +Temperature(DS18B20)
360 360  
361 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
331 +(PC13)
332 +)))|(((
333 +ADC
362 362  
335 +(PA4)
336 +)))|(((
337 +Digital in(PB15) &
363 363  
364 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
339 +Digital Interrupt(PA8)
340 +)))|(((
341 +Distance measure by:
342 +1) LIDAR-Lite V3HP
343 +Or
344 +2) Ultrasonic Sensor
345 +)))|Reserved
365 365  
366 -[[image:image-20230512173758-5.png||height="563" width="712"]]
347 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
367 367  
349 +**Connection of LIDAR-Lite V3HP:**
368 368  
369 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351 +[[image:image-20230512173758-5.png||height="563" width="712"]]
370 370  
371 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353 +**Connection to Ultrasonic Sensor:**
372 372  
355 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
356 +
373 373  [[image:image-20230512173903-6.png||height="596" width="715"]]
374 374  
375 -
376 376  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
377 377  
378 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
379 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
380 -|Value|BAT|(% style="width:183px" %)(((
381 -Temperature(DS18B20)(PC13)
382 -)))|(% style="width:173px" %)(((
383 -Digital in(PB15) & Digital Interrupt(PA8)
384 -)))|(% style="width:84px" %)(((
385 -ADC(PA4)
386 -)))|(% style="width:323px" %)(((
361 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
362 +|**Value**|BAT|(((
363 +Temperature(DS18B20)
364 +
365 +(PC13)
366 +)))|(((
367 +Digital in(PB15) &
368 +
369 +Digital Interrupt(PA8)
370 +)))|(((
371 +ADC
372 +
373 +(PA4)
374 +)))|(((
387 387  Distance measure by:1)TF-Mini plus LiDAR
388 -Or 2) TF-Luna LiDAR
389 -)))|(% style="width:188px" %)Distance signal  strength
376 +Or 
377 +2) TF-Luna LiDAR
378 +)))|Distance signal  strength
390 390  
391 391  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
392 392  
393 -
394 394  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
395 395  
396 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
384 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
397 397  
398 398  [[image:image-20230512180609-7.png||height="555" width="802"]]
399 399  
400 -
401 401  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
402 402  
403 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
390 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
404 404  
405 -[[image:image-20230610170047-1.png||height="452" width="799"]]
392 +[[image:image-20230513105207-4.png||height="469" width="802"]]
406 406  
407 407  
408 408  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
409 409  
410 -
411 411  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
412 412  
413 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
414 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
399 +(% style="width:1031px" %)
400 +|=(((
415 415  **Size(bytes)**
416 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
417 -|Value|(% style="width:68px" %)(((
418 -ADC1(PA4)
402 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
403 +|**Value**|(% style="width:68px" %)(((
404 +ADC1
405 +
406 +(PA4)
419 419  )))|(% style="width:75px" %)(((
420 -ADC2(PA5)
408 +ADC2
409 +
410 +(PA5)
421 421  )))|(((
422 -ADC3(PA8)
412 +ADC3
413 +
414 +(PA8)
423 423  )))|(((
424 424  Digital Interrupt(PB15)
425 425  )))|(% style="width:304px" %)(((
426 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
418 +Temperature
419 +
420 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
427 427  )))|(% style="width:163px" %)(((
428 -Humidity(SHT20 or SHT31)
422 +Humidity
423 +
424 +(SHT20 or SHT31)
429 429  )))|(% style="width:53px" %)Bat
430 430  
431 431  [[image:image-20230513110214-6.png]]
... ... @@ -433,68 +433,75 @@
433 433  
434 434  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
435 435  
432 +[[image:image-20230512170701-3.png||height="565" width="743"]]
436 436  
437 437  This mode has total 11 bytes. As shown below:
438 438  
439 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
440 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
441 -|Value|BAT|(% style="width:186px" %)(((
442 -Temperature1(DS18B20)(PC13)
436 +(% style="width:1017px" %)
437 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
438 +|**Value**|BAT|(% style="width:186px" %)(((
439 +Temperature1(DS18B20)
440 +(PC13)
443 443  )))|(% style="width:82px" %)(((
444 -ADC(PA4)
442 +ADC
443 +
444 +(PA4)
445 445  )))|(% style="width:210px" %)(((
446 -Digital in(PB15) & Digital Interrupt(PA8) 
446 +Digital in(PB15) &
447 +
448 +Digital Interrupt(PA8) 
447 447  )))|(% style="width:191px" %)Temperature2(DS18B20)
448 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
450 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
451 +(PB8)
449 449  
450 450  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
451 451  
452 452  
453 -[[image:image-20230513134006-1.png||height="559" width="736"]]
454 -
455 -
456 456  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
457 457  
458 -
459 459  [[image:image-20230512164658-2.png||height="532" width="729"]]
460 460  
461 461  Each HX711 need to be calibrated before used. User need to do below two steps:
462 462  
463 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
464 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
462 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
463 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
465 465  1. (((
466 466  Weight has 4 bytes, the unit is g.
467 -
468 -
469 -
470 470  )))
471 471  
472 472  For example:
473 473  
474 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
470 +**AT+GETSENSORVALUE =0**
475 475  
476 476  Response:  Weight is 401 g
477 477  
478 478  Check the response of this command and adjust the value to match the real value for thing.
479 479  
480 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
481 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
476 +(% style="width:982px" %)
477 +|=(((
482 482  **Size(bytes)**
483 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
484 -|Value|BAT|(% style="width:193px" %)(((
485 -Temperature(DS18B20)(PC13)
486 -)))|(% style="width:85px" %)(((
487 -ADC(PA4)
488 -)))|(% style="width:186px" %)(((
489 -Digital in(PB15) & Digital Interrupt(PA8)
490 -)))|(% style="width:100px" %)Weight
479 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
480 +|**Value**|BAT|(% style="width:282px" %)(((
481 +Temperature(DS18B20)
491 491  
483 +(PC13)
484 +
485 +
486 +)))|(% style="width:119px" %)(((
487 +ADC
488 +
489 +(PA4)
490 +)))|(% style="width:279px" %)(((
491 +Digital in(PB15) &
492 +
493 +Digital Interrupt(PA8)
494 +)))|(% style="width:106px" %)Weight
495 +
492 492  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
493 493  
494 494  
495 495  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
496 496  
497 -
498 498  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
499 499  
500 500  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -501,19 +501,26 @@
501 501  
502 502  [[image:image-20230512181814-9.png||height="543" width="697"]]
503 503  
507 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
504 504  
505 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
509 +(% style="width:961px" %)
510 +|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
511 +|**Value**|BAT|(% style="width:256px" %)(((
512 +Temperature(DS18B20)
506 506  
507 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
508 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
509 -|Value|BAT|(% style="width:256px" %)(((
510 -Temperature(DS18B20)(PC13)
514 +(PC13)
511 511  )))|(% style="width:108px" %)(((
512 -ADC(PA4)
516 +ADC
517 +
518 +(PA4)
513 513  )))|(% style="width:126px" %)(((
514 -Digital in(PB15)
520 +Digital in
521 +
522 +(PB15)
515 515  )))|(% style="width:145px" %)(((
516 -Count(PA8)
524 +Count
525 +
526 +(PA8)
517 517  )))
518 518  
519 519  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -521,41 +521,47 @@
521 521  
522 522  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
523 523  
524 -
525 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
526 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
534 +|=(((
527 527  **Size(bytes)**
528 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
529 -|Value|BAT|(% style="width:188px" %)(((
536 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
537 +|**Value**|BAT|(((
530 530  Temperature(DS18B20)
539 +
531 531  (PC13)
532 -)))|(% style="width:83px" %)(((
533 -ADC(PA5)
534 -)))|(% style="width:184px" %)(((
541 +)))|(((
542 +ADC
543 +
544 +(PA5)
545 +)))|(((
535 535  Digital Interrupt1(PA8)
536 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
547 +)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved
537 537  
538 538  [[image:image-20230513111203-7.png||height="324" width="975"]]
539 539  
540 -
541 541  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
542 542  
543 -
544 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
545 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
553 +(% style="width:917px" %)
554 +|=(((
546 546  **Size(bytes)**
547 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
548 -|Value|BAT|(% style="width:207px" %)(((
556 +)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 79px;" %)2
557 +|**Value**|BAT|(% style="width:207px" %)(((
549 549  Temperature(DS18B20)
559 +
550 550  (PC13)
551 551  )))|(% style="width:94px" %)(((
552 -ADC1(PA4)
562 +ADC1
563 +
564 +(PA4)
553 553  )))|(% style="width:198px" %)(((
554 554  Digital Interrupt(PB15)
555 555  )))|(% style="width:84px" %)(((
556 -ADC2(PA5)
557 -)))|(% style="width:82px" %)(((
558 -ADC3(PA8)
568 +ADC2
569 +
570 +(PA5)
571 +)))|(% style="width:79px" %)(((
572 +ADC3
573 +
574 +(PA8)
559 559  )))
560 560  
561 561  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -563,205 +563,56 @@
563 563  
564 564  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
565 565  
566 -
567 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
568 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
582 +(% style="width:1010px" %)
583 +|=(((
569 569  **Size(bytes)**
570 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
571 -|Value|BAT|(((
572 -Temperature
573 -(DS18B20)(PC13)
585 +)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
586 +|**Value**|BAT|(((
587 +Temperature1(DS18B20)
588 +
589 +(PC13)
574 574  )))|(((
575 -Temperature2
576 -(DS18B20)(PB9)
591 +Temperature2(DS18B20)
592 +
593 +(PB9)
577 577  )))|(((
578 578  Digital Interrupt
596 +
579 579  (PB15)
580 580  )))|(% style="width:193px" %)(((
581 -Temperature3
582 -(DS18B20)(PB8)
599 +Temperature3(DS18B20)
600 +
601 +(PB8)
583 583  )))|(% style="width:78px" %)(((
584 -Count1(PA8)
603 +Count1
604 +
605 +(PA8)
585 585  )))|(% style="width:78px" %)(((
586 -Count2(PA4)
607 +Count2
608 +
609 +(PA4)
587 587  )))
588 588  
589 589  [[image:image-20230513111255-9.png||height="341" width="899"]]
590 590  
591 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
614 +**The newly added AT command is issued correspondingly:**
592 592  
593 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
616 +**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
594 594  
595 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
618 +**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
596 596  
597 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
620 +**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
598 598  
622 +**AT+SETCNT=aa,bb** 
599 599  
600 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
601 -
602 602  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
603 603  
604 604  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
605 605  
606 606  
607 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
608 608  
609 -
610 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
611 -
612 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
613 -
614 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
615 -
616 -
617 -===== 2.3.2.10.a  Uplink, PWM input capture =====
618 -
619 -
620 -[[image:image-20230817172209-2.png||height="439" width="683"]]
621 -
622 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
623 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
624 -|Value|Bat|(% style="width:191px" %)(((
625 -Temperature(DS18B20)(PC13)
626 -)))|(% style="width:78px" %)(((
627 -ADC(PA4)
628 -)))|(% style="width:135px" %)(((
629 -PWM_Setting
630 -&Digital Interrupt(PA8)
631 -)))|(% style="width:70px" %)(((
632 -Pulse period
633 -)))|(% style="width:89px" %)(((
634 -Duration of high level
635 -)))
636 -
637 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
638 -
639 -
640 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
641 -
642 -**Frequency:**
643 -
644 -(% class="MsoNormal" %)
645 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
646 -
647 -(% class="MsoNormal" %)
648 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
649 -
650 -
651 -(% class="MsoNormal" %)
652 -**Duty cycle:**
653 -
654 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
655 -
656 -[[image:image-20230818092200-1.png||height="344" width="627"]]
657 -
658 -
659 -===== 2.3.2.10.b  Uplink, PWM output =====
660 -
661 -
662 -[[image:image-20230817172209-2.png||height="439" width="683"]]
663 -
664 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
665 -
666 -a is the time delay of the output, the unit is ms.
667 -
668 -b is the output frequency, the unit is HZ.
669 -
670 -c is the duty cycle of the output, the unit is %.
671 -
672 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
673 -
674 -aa is the time delay of the output, the unit is ms.
675 -
676 -bb is the output frequency, the unit is HZ.
677 -
678 -cc is the duty cycle of the output, the unit is %.
679 -
680 -
681 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
682 -
683 -The oscilloscope displays as follows:
684 -
685 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
686 -
687 -
688 -===== 2.3.2.10.c  Downlink, PWM output =====
689 -
690 -
691 -[[image:image-20230817173800-3.png||height="412" width="685"]]
692 -
693 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
694 -
695 - xx xx xx is the output frequency, the unit is HZ.
696 -
697 - yy is the duty cycle of the output, the unit is %.
698 -
699 - zz zz is the time delay of the output, the unit is ms.
700 -
701 -
702 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
703 -
704 -The oscilloscope displays as follows:
705 -
706 -[[image:image-20230817173858-5.png||height="634" width="843"]]
707 -
708 -
709 -
710 -==== 2.3.2.11  MOD~=11 (TEMP117)(Since firmware V1.3.0) ====
711 -
712 -
713 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
714 -
715 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
716 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
717 -|Value|Bat|(% style="width:191px" %)(((
718 -Temperature(DS18B20)(PC13)
719 -)))|(% style="width:78px" %)(((
720 -ADC(PA4)
721 -)))|(% style="width:216px" %)(((
722 -Digital in(PB15)&Digital Interrupt(PA8)
723 -)))|(% style="width:308px" %)(((
724 -Temperature
725 -(TEMP117)
726 -)))|(% style="width:154px" %)(((
727 -Reserved position, meaningless
728 -(0x0000)
729 -)))
730 -
731 -[[image:image-20240717113113-1.png||height="352" width="793"]]
732 -
733 -Connection:
734 -
735 -[[image:image-20240717141528-2.jpeg||height="430" width="654"]]
736 -
737 -
738 -==== 2.3.2.12  MOD~=12 (Count+SHT31)(Since firmware V1.3.1) ====
739 -
740 -
741 -This mode has total 11 bytes. As shown below:
742 -
743 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
744 -|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
745 -|Value|BAT|(% style="width:86px" %)(((
746 - Temperature_SHT31
747 -)))|(% style="width:86px" %)(((
748 -Humidity_SHT31
749 -)))|(% style="width:86px" %)(((
750 - Digital in(PB15)
751 -)))|(% style="width:86px" %)(((
752 -Count(PA8)
753 -)))
754 -
755 -[[image:image-20240717150948-5.png||height="389" width="979"]]
756 -
757 -Wiring example:
758 -
759 -[[image:image-20240717152224-6.jpeg||height="359" width="680"]]
760 -
761 -
762 762  === 2.3.3  ​Decode payload ===
763 763  
764 -
765 765  While using TTN V3 network, you can add the payload format to decode the payload.
766 766  
767 767  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -768,14 +768,13 @@
768 768  
769 769  The payload decoder function for TTN V3 are here:
770 770  
771 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
638 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
772 772  
773 773  
774 774  ==== 2.3.3.1 Battery Info ====
775 775  
643 +Check the battery voltage for SN50v3.
776 776  
777 -Check the battery voltage for SN50v3-LB/LS.
778 -
779 779  Ex1: 0x0B45 = 2885mV
780 780  
781 781  Ex2: 0x0B49 = 2889mV
... ... @@ -783,28 +783,25 @@
783 783  
784 784  ==== 2.3.3.2  Temperature (DS18B20) ====
785 785  
652 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
786 786  
787 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
654 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
788 788  
789 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
656 +**Connection:**
790 790  
791 -(% style="color:blue" %)**Connection:**
792 -
793 793  [[image:image-20230512180718-8.png||height="538" width="647"]]
794 794  
660 +**Example**:
795 795  
796 -(% style="color:blue" %)**Example**:
797 -
798 798  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
799 799  
800 800  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
801 801  
802 -(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
666 +FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative
803 803  
804 804  
805 805  ==== 2.3.3.3 Digital Input ====
806 806  
807 -
808 808  The digital input for pin PB15,
809 809  
810 810  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -814,63 +814,49 @@
814 814  (((
815 815  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
816 816  
817 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
818 -
819 -
680 +**Note:**The maximum voltage input supports 3.6V.
820 820  )))
821 821  
822 822  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
823 823  
685 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
824 824  
825 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
687 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
826 826  
827 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
828 -
829 829  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
830 830  
691 +**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
831 831  
832 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
833 -
834 -
835 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
836 -
837 -[[image:image-20230811113449-1.png||height="370" width="608"]]
838 -
839 -
840 -
841 841  ==== 2.3.3.5 Digital Interrupt ====
842 842  
695 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
843 843  
844 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
697 +**~ Interrupt connection method:**
845 845  
846 -(% style="color:blue" %)** Interrupt connection method:**
847 -
848 848  [[image:image-20230513105351-5.png||height="147" width="485"]]
849 849  
701 +**Example to use with door sensor :**
850 850  
851 -(% style="color:blue" %)**Example to use with door sensor :**
852 -
853 853  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
854 854  
855 855  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
856 856  
857 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
707 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
858 858  
709 +**~ Below is the installation example:**
859 859  
860 -(% style="color:blue" %)**Below is the installation example:**
711 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
861 861  
862 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
863 -
864 864  * (((
865 -One pin to SN50v3-LB/LS's PA8 pin
714 +One pin to SN50_v3's PA8 pin
866 866  )))
867 867  * (((
868 -The other pin to SN50v3-LB/LS's VDD pin
717 +The other pin to SN50_v3's VDD pin
869 869  )))
870 870  
871 871  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
872 872  
873 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
722 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
874 874  
875 875  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
876 876  
... ... @@ -882,55 +882,29 @@
882 882  
883 883  The command is:
884 884  
885 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
734 +**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
886 886  
887 887  Below shows some screen captures in TTN V3:
888 888  
889 889  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
890 890  
740 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
891 891  
892 -(% style="color:blue" %)**Application in different modes:**
742 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
893 893  
894 -* In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
895 895  
896 - door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
897 -
898 -
899 -* In **MOD=7**, there are three interrupt pins in effect.
900 -
901 -See the **[[AT+INTMODx>>||anchor="H3.3.3SetInterruptMode"]] **command explained to set the three pin interrupt modes.
902 -
903 -As you can see from the byte parsing table of pattern 7, the seventh byte of the original load is used to display the PA8 pin interrupt flag and status, the eighth byte of the original load is used to display the PA4 pin interrupt flag and status, and the ninth byte of the original load is used to display the PB15 pin interrupt flag and status.
904 -
905 -[[image:image-20250402103902-1.png]]
906 -
907 -TTN V3 decoder is as below:
908 -
909 -[[image:image-20250402104508-2.png||height="255" width="579"]]
910 -
911 -(% style="color:red" %)**Note: mode in decoding is sorted from 0, so it corresponds to the actual working mode AT+MOD=7.**
912 -
913 -
914 -(% style="color:#037691" %)**Interrupt flag: **(%%)"EXTI1/2/3_Trigger", indicates whether the uplink packet is generated by an interrupt on the PA8/PA4/PB15 pin.
915 -
916 -
917 -(% style="color:#037691" %)**Interrupt status: **(%%)"EXTI1/2/3_Status", Displays the status of the interrupt sensors connected to the PA4/PA8/PB15 interrupt pins when the packet is uplinked.
918 -
919 -
920 920  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
921 921  
922 -
923 923  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
924 924  
925 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
749 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
926 926  
927 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
751 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
928 928  
929 -
930 930  Below is the connection to SHT20/ SHT31. The connection is as below:
931 931  
932 -[[image:image-20230610170152-2.png||height="501" width="846"]]
933 933  
756 +[[image:image-20230513103633-3.png||height="636" width="1017"]]
934 934  
935 935  The device will be able to get the I2C sensor data now and upload to IoT Server.
936 936  
... ... @@ -949,26 +949,23 @@
949 949  
950 950  ==== 2.3.3.7  ​Distance Reading ====
951 951  
775 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
952 952  
953 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
954 954  
955 -
956 956  ==== 2.3.3.8 Ultrasonic Sensor ====
957 957  
958 -
959 959  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
960 960  
961 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
782 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
962 962  
963 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
784 +The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
964 964  
965 965  The picture below shows the connection:
966 966  
967 967  [[image:image-20230512173903-6.png||height="596" width="715"]]
968 968  
790 +Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
969 969  
970 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
971 -
972 972  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
973 973  
974 974  **Example:**
... ... @@ -976,71 +976,37 @@
976 976  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
977 977  
978 978  
799 +
979 979  ==== 2.3.3.9  Battery Output - BAT pin ====
980 980  
802 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
981 981  
982 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
983 983  
984 -
985 985  ==== 2.3.3.10  +5V Output ====
986 986  
807 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
987 987  
988 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
989 -
990 990  The 5V output time can be controlled by AT Command.
991 991  
992 -(% style="color:blue" %)**AT+5VT=1000**
811 +**AT+5VT=1000**
993 993  
994 994  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
995 995  
996 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
815 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
997 997  
998 998  
818 +
999 999  ==== 2.3.3.11  BH1750 Illumination Sensor ====
1000 1000  
1001 -
1002 1002  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
1003 1003  
1004 -[[image:image-20230512172447-4.png||height="416" width="712"]]
823 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
1005 1005  
825 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
1006 1006  
1007 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
1008 1008  
828 +==== 2.3.3.12  Working MOD ====
1009 1009  
1010 -==== 2.3.3.12  PWM MOD ====
1011 -
1012 -
1013 -* (((
1014 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
1015 -)))
1016 -* (((
1017 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
1018 -)))
1019 -
1020 - [[image:image-20230817183249-3.png||height="320" width="417"]]
1021 -
1022 -* (((
1023 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
1024 -)))
1025 -* (((
1026 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
1027 -)))
1028 -* (((
1029 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
1030 -
1031 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
1032 -
1033 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
1034 -
1035 -b) If the output duration is more than 30 seconds, better to use external power source. 
1036 -
1037 -
1038 -
1039 -)))
1040 -
1041 -==== 2.3.3.13  Working MOD ====
1042 -
1043 -
1044 1044  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
1045 1045  
1046 1046  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -1056,7 +1056,6 @@
1056 1056  * 6: MOD7
1057 1057  * 7: MOD8
1058 1058  * 8: MOD9
1059 -* 9: MOD10
1060 1060  
1061 1061  == 2.4 Payload Decoder file ==
1062 1062  
... ... @@ -1065,23 +1065,24 @@
1065 1065  
1066 1066  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
1067 1067  
1068 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
853 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
1069 1069  
1070 1070  
856 +
1071 1071  == 2.5 Frequency Plans ==
1072 1072  
1073 1073  
1074 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
860 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
1075 1075  
1076 1076  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1077 1077  
1078 1078  
1079 -= 3. Configure SN50v3-LB/LS =
865 += 3. Configure SN50v3-LB =
1080 1080  
1081 1081  == 3.1 Configure Methods ==
1082 1082  
1083 1083  
1084 -SN50v3-LB/LS supports below configure method:
870 +SN50v3-LB supports below configure method:
1085 1085  
1086 1086  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1087 1087  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -1100,10 +1100,10 @@
1100 1100  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1101 1101  
1102 1102  
1103 -== 3.3 Commands special design for SN50v3-LB/LS ==
889 +== 3.3 Commands special design for SN50v3-LB ==
1104 1104  
1105 1105  
1106 -These commands only valid for SN50v3-LB/LS, as below:
892 +These commands only valid for S31x-LB, as below:
1107 1107  
1108 1108  
1109 1109  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1114,7 +1114,7 @@
1114 1114  (% style="color:blue" %)**AT Command: AT+TDC**
1115 1115  
1116 1116  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1117 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
903 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1118 1118  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1119 1119  30000
1120 1120  OK
... ... @@ -1136,123 +1136,55 @@
1136 1136  
1137 1137  === 3.3.2 Get Device Status ===
1138 1138  
925 +Send a LoRaWAN downlink to ask device send Alarm settings.
1139 1139  
1140 -Send a LoRaWAN downlink to ask the device to send its status.
927 +(% style="color:blue" %)**Downlink Payload **(%%)0x26 01
1141 1141  
1142 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
929 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1143 1143  
1144 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1145 1145  
1146 -
1147 1147  === 3.3.3 Set Interrupt Mode ===
1148 1148  
1149 1149  
1150 -==== 3.3.3.1 Before V1.3.4 firmware ====
935 +Feature, Set Interrupt mode for GPIO_EXIT.
1151 1151  
1152 -(% style="color:red" %)**Note: Before V1.3.4 firmware, the interrupt function of PA8,PA4,PB15 had only one parameter to set, which was used to set the interrupt trigger mode.**
937 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1153 1153  
1154 -Feature, Set Interrupt mode for PA8, PA4, PB15.
1155 -
1156 -Before using the interrupt function of the **INT** pin, users can set the interrupt triggering mode as required.
1157 -
1158 -(% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a**
1159 -
1160 -(% style="color:#4472c4" %)**AT+INTMODx:**
1161 -
1162 -* (% style="color:#4472c4" %)**AT+INTMOD1   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
1163 -* (% style="color:#4472c4" %)**AT+INTMOD2   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1164 -* (% style="color:#4472c4" %)**AT+INTMOD3   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
1165 -
1166 -**Parameter a setting:**
1167 -
1168 -* **0:** Disable Interrupt
1169 -* **1:** Trigger by rising and falling edge
1170 -* **2:** Trigger by falling edge
1171 -* **3: **Trigger by rising edge
1172 -
1173 -**Example:**
1174 -
1175 -* AT+INTMOD1=0  ~/~/Disable the PA8 pin interrupt function
1176 -* AT+INTMOD2=2  ~/~/Set the interrupt of the PA4 pin to be triggered by the falling edge
1177 -* AT+INTMOD3=3  ~/~/Set the interrupt of the PB15 pin to be triggered by the rising edge
1178 -
1179 -(% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb**
1180 -
1181 -Format: Command Code (0x06 00) followed by 2 bytes.
1182 -
1183 -(% style="color:#4472c4" %)**aa:**(%%) Set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
1184 -
1185 -(% style="color:#4472c4" %)**bb: **(%%)Set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
1186 -
1187 -**Example:**
1188 -
1189 -* Downlink Payload: **06 00 00 01     **~/~/ Equal to AT+INTMOD1=1
1190 -* Downlink Payload: **06 00 01 02     **~/~/ Equal to AT+INTMOD2=2
1191 -* Downlink Payload: **06 00 02 03     **~/~/ Equal to AT+INTMOD3=3
1192 -
1193 -==== 3.3.3.2 Since V1.3.4 firmware ====
1194 -
1195 -(% style="color:red" %)**Note: Since V1.3.4 firmware, the Interrupt function has added a new parameter to set the delay time, i.e. the state hold time.**
1196 -
1197 -(% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a,b**
1198 -
1199 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
1200 -|=(% style="width: 116px; background-color: rgb(79, 129, 189); color: white;" %)**Parameter **|=(% style="width: 304px; background-color: rgb(79, 129, 189); color: white;" %)**Values and functions**
1201 -|(% style="width:116px" %)(((
1202 -
1203 -
1204 -**x**
1205 -)))|(% style="width:392px" %)(((
1206 -1: Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
1207 -
1208 -2:  Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1209 -
1210 -3: Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
939 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
940 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
941 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
942 +0
943 +OK
944 +the mode is 0 =Disable Interrupt
1211 1211  )))
1212 -|(% style="width:116px" %)(((
1213 -
946 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
947 +Set Transmit Interval
948 +0. (Disable Interrupt),
949 +~1. (Trigger by rising and falling edge)
950 +2. (Trigger by falling edge)
951 +3. (Trigger by rising edge)
952 +)))|(% style="width:157px" %)OK
953 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
954 +Set Transmit Interval
1214 1214  
1215 -**a**
1216 -)))|(% style="width:392px" %)(((
1217 -**0:** Disable Interrupt
956 +trigger by rising edge.
957 +)))|(% style="width:157px" %)OK
958 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1218 1218  
1219 -**1:** Trigger by rising and falling edge
960 +(% style="color:blue" %)**Downlink Command: 0x06**
1220 1220  
1221 -**2:** Trigger by falling edge
962 +Format: Command Code (0x06) followed by 3 bytes.
1222 1222  
1223 -**3: **Trigger by rising edge
1224 -)))
1225 -|(% style="width:116px" %)**b**|(% style="width:392px" %)(((
1226 -Set the delay time. (Default: 0)
964 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1227 1227  
1228 -**Value range: 0~~65535 ms**
1229 -)))
966 +* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
967 +* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
968 +* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
969 +* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1230 1230  
1231 -**Example:**
1232 -
1233 -* AT+INTMOD1=0,0  ~/~/ Disable the PA8 pin interrupt function
1234 -* AT+INTMOD2=2,1000  ~/~/ Set the interrupt of the PA4 pin to be triggered by the falling edge, however, the interrupt will only be triggered if the low level state remains 1000ms
1235 -* AT+INTMOD3=3,2500  ~/~/ Set the interrupt of the PB15 pin to be triggered by the rising edge, however, the interrupt will only be triggered if the high level state remains 2500ms
1236 -
1237 -(% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb cc**
1238 -
1239 -Format: Command Code (0x06 00) followed by 4 bytes.
1240 -
1241 -(% style="color:#4472c4" %)**aa:**(%%) **1 byte**, set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
1242 -
1243 -(% style="color:#4472c4" %)**bb: **(%%)**1 byte**, set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
1244 -
1245 -(% style="color:#4472c4" %)**cc: **(%%)**2 bytes**, Set the delay time. (0x00~~0xFFFF)
1246 -
1247 -**Example:**
1248 -
1249 -* Downlink Payload: **06 00 00 01 00 00     **~/~/ Equal to AT+INTMOD1=1,0
1250 -* Downlink Payload: **06 00 01 02 0B B8     **~/~/ Equal to AT+INTMOD2=2,3000
1251 -* Downlink Payload: **06 00 02 03 03 E8   **~/~/ Equal to AT+INTMOD3=3,1000
1252 -
971 +(% class="wikigeneratedid" %)
1253 1253  === 3.3.4 Set Power Output Duration ===
1254 1254  
1255 -
1256 1256  Control the output duration 5V . Before each sampling, device will
1257 1257  
1258 1258  ~1. first enable the power output to external sensor,
... ... @@ -1264,9 +1264,10 @@
1264 1264  (% style="color:blue" %)**AT Command: AT+5VT**
1265 1265  
1266 1266  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1267 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
985 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1268 1268  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1269 1269  500(default)
988 +
1270 1270  OK
1271 1271  )))
1272 1272  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -1279,176 +1279,83 @@
1279 1279  
1280 1280  The first and second bytes are the time to turn on.
1281 1281  
1282 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1283 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1001 +* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1002 +* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1284 1284  
1004 +(% class="wikigeneratedid" %)
1285 1285  === 3.3.5 Set Weighing parameters ===
1286 1286  
1007 +Feature: Working mode 5 is effective, hair removal and setting of weight factor of HX711.
1287 1287  
1288 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1289 -
1290 1290  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1291 1291  
1292 1292  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1293 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1294 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1295 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1296 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1012 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1013 +|(% style="width:154px" %) |(% style="width:196px" %) |(% style="width:157px" %)
1014 +|(% style="width:154px" %) |(% style="width:196px" %) |(% style="width:157px" %)
1297 1297  
1016 +
1298 1298  (% style="color:blue" %)**Downlink Command: 0x08**
1299 1299  
1300 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1301 1301  
1302 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1020 +Format: Command Code (0x07) followed by 2 bytes.
1303 1303  
1304 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1022 +The first and second bytes are the time to turn on.
1305 1305  
1306 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1307 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1308 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1309 1309  
1310 1310  === 3.3.6 Set Digital pulse count value ===
1311 1311  
1312 -
1313 1313  Feature: Set the pulse count value.
1314 1314  
1315 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1316 -
1317 1317  (% style="color:blue" %)**AT Command: AT+SETCNT**
1318 1318  
1319 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1320 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1031 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1032 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1321 1321  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1322 1322  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1323 1323  
1036 +
1324 1324  (% style="color:blue" %)**Downlink Command: 0x09**
1325 1325  
1039 +
1326 1326  Format: Command Code (0x09) followed by 5 bytes.
1327 1327  
1328 1328  The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1329 1329  
1330 1330  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1331 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1045 +* Example 2: Downlink Payload: 090200000000  **~-~-->**  AT+5VT=500
1332 1332  
1333 1333  === 3.3.7 Set Workmode ===
1334 1334  
1049 +Feature: switch working mode.
1335 1335  
1336 -Feature: Switch working mode.
1337 -
1338 1338  (% style="color:blue" %)**AT Command: AT+MOD**
1339 1339  
1340 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1341 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1053 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1054 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1342 1342  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1343 1343  OK
1344 1344  )))
1345 1345  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1346 1346  OK
1060 +
1347 1347  Attention:Take effect after ATZ
1348 1348  )))
1349 1349  
1064 +
1350 1350  (% style="color:blue" %)**Downlink Command: 0x0A**
1351 1351  
1067 +
1352 1352  Format: Command Code (0x0A) followed by 1 bytes.
1353 1353  
1354 1354  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1355 1355  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1356 1356  
1357 -=== 3.3.8 PWM setting ===
1073 += 4. Battery & Power Consumption =
1358 1358  
1359 1359  
1360 -Feature: Set the time acquisition unit for PWM input capture.
1076 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1361 1361  
1362 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1363 -
1364 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1365 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1366 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1367 -0(default)
1368 -OK
1369 -)))
1370 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1371 -OK
1372 -
1373 -)))
1374 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1375 -
1376 -(% style="color:blue" %)**Downlink Command: 0x0C**
1377 -
1378 -Format: Command Code (0x0C) followed by 1 bytes.
1379 -
1380 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1381 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1382 -
1383 -**Feature: Set PWM output time, output frequency and output duty cycle.**
1384 -
1385 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1386 -
1387 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1388 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1389 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1390 -0,0,0(default)
1391 -OK
1392 -)))
1393 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1394 -OK
1395 -
1396 -)))
1397 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1398 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1399 -
1400 -
1401 -)))|(% style="width:137px" %)(((
1402 -OK
1403 -)))
1404 -
1405 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1406 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 243px; background-color:#4F81BD;color:white" %)**parameters**
1407 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1408 -AT+PWMOUT=a,b,c
1409 -
1410 -
1411 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1412 -Set PWM output time, output frequency and output duty cycle.
1413 -
1414 -(((
1415 -
1416 -)))
1417 -
1418 -(((
1419 -
1420 -)))
1421 -)))|(% style="width:242px" %)(((
1422 -a: Output time (unit: seconds)
1423 -The value ranges from 0 to 65535.
1424 -When a=65535, PWM will always output.
1425 -)))
1426 -|(% style="width:242px" %)(((
1427 -b: Output frequency (unit: HZ)
1428 -
1429 -range 5~~100000HZ
1430 -)))
1431 -|(% style="width:242px" %)(((
1432 -c: Output duty cycle (unit: %)
1433 -The value ranges from 0 to 100.
1434 -)))
1435 -
1436 -(% style="color:blue" %)**Downlink Command: 0x0B**
1437 -
1438 -Format: Command Code (0x0B) followed by 6 bytes.
1439 -
1440 -0B + Output frequency (3bytes)+ Output duty cycle (1bytes)+Output time (2bytes)
1441 -
1442 -Downlink payload:0B bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1443 -
1444 -* Example 1: Downlink Payload: 0B 0003E8 32 0005 **~-~-->**  AT+PWMOUT=5,1000,50
1445 -* Example 2: Downlink Payload: 0B 0007D0 3C 000A **~-~-->**  AT+PWMOUT=10,2000,60
1446 -
1447 -= 4. Battery & Power Cons =
1448 -
1449 -
1450 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1451 -
1452 1452  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1453 1453  
1454 1454  
... ... @@ -1456,66 +1456,32 @@
1456 1456  
1457 1457  
1458 1458  (% class="wikigeneratedid" %)
1459 -**User can change firmware SN50v3-LB/LS to:**
1085 +User can change firmware SN50v3-LB to:
1460 1460  
1461 1461  * Change Frequency band/ region.
1462 1462  * Update with new features.
1463 1463  * Fix bugs.
1464 1464  
1465 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1091 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1466 1466  
1467 -**Methods to Update Firmware:**
1468 1468  
1469 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1470 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1094 +Methods to Update Firmware:
1471 1471  
1472 -= 6.  Developer Guide =
1096 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1097 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1473 1473  
1474 -SN50v3 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from:
1099 += 6. FAQ =
1475 1475  
1476 -* (((
1477 -Software Source Code: [[Releases · dragino/SN50v3 (github.com)>>url:https://github.com/dragino/SN50v3/releases]]
1478 -)))
1479 -* (((
1480 -Hardware Design files:  **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1481 -)))
1482 -* (((
1483 -Compile instruction:[[Compile instruction>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Module/Compile%20and%20Upload%20Code%20to%20ASR6601%20Platform/]]
1484 -)))
1101 +== 6.1 Where can i find source code of SN50v3-LB? ==
1485 1485  
1486 -**~1. If you want to change frequency, modify the Preprocessor Symbols.**
1103 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1104 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1487 1487  
1488 -For example, change EU868 to US915
1106 += 7. Order Info =
1489 1489  
1490 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656318662202-530.png?rev=1.1||alt="1656318662202-530.png"]]
1491 1491  
1492 -**2. Compile and build**
1109 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1493 1493  
1494 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627163212-17.png?rev=1.1||alt="image-20220627163212-17.png"]]
1495 -
1496 -= 7. FAQ =
1497 -
1498 -== 7.1 How to generate PWM Output in SN50v3-LB/LS? ==
1499 -
1500 -
1501 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1502 -
1503 -
1504 -== 7.2 How to put several sensors to a SN50v3-LB/LS? ==
1505 -
1506 -
1507 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1508 -
1509 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1510 -
1511 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1512 -
1513 -
1514 -= 8. Order Info =
1515 -
1516 -
1517 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1518 -
1519 1519  (% style="color:red" %)**XX**(%%): The default frequency band
1520 1520  
1521 1521  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
... ... @@ -1534,12 +1534,11 @@
1534 1534  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1535 1535  * (% style="color:red" %)**NH**(%%): No Hole
1536 1536  
1537 -= 9. ​Packing Info =
1129 += 8. ​Packing Info =
1538 1538  
1539 -
1540 1540  (% style="color:#037691" %)**Package Includes**:
1541 1541  
1542 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1133 +* SN50v3-LB LoRaWAN Generic Node
1543 1543  
1544 1544  (% style="color:#037691" %)**Dimension and weight**:
1545 1545  
... ... @@ -1548,9 +1548,8 @@
1548 1548  * Package Size / pcs : cm
1549 1549  * Weight / pcs : g
1550 1550  
1551 -= 10. Support =
1142 += 9. Support =
1552 1552  
1553 1553  
1554 1554  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1555 -
1556 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
1146 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
image-20240717113113-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -34.0 KB
Content
image-20240717141512-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -948.8 KB
Content
image-20240717141528-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -234.2 KB
Content
image-20240717145707-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.8 KB
Content
image-20240717150334-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20240717150948-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.3 KB
Content
image-20240717152224-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -238.1 KB
Content
image-20240924112806-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -140.2 KB
Content
image-20250329085729-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -363.5 KB
Content
image-20250329085744-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.1 KB
Content
image-20250329090241-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -67.5 KB
Content
image-20250329090300-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
image-20250329090324-5.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.6 KB
Content
image-20250329090341-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -40.6 KB
Content
image-20250329090403-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -55.2 KB
Content
image-20250329090417-8.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -43.4 KB
Content
image-20250402103902-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -20.0 KB
Content
image-20250402104508-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -17.7 KB
Content
image-20250415113729-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -47.6 KB
Content