Last modified by kai on 2025/06/30 10:31

From version 122.1
edited by Mengting Qiu
on 2025/04/02 11:17
Change comment: There is no comment for this version
To version 36.1
edited by Saxer Lin
on 2023/05/13 11:59
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Saxer
Content
... ... @@ -1,40 +1,37 @@
1 -
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
2 2  
3 -(% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
5 5  
6 6  
5 +**Table of Contents:**
7 7  
7 +{{toc/}}
8 8  
9 9  
10 10  
11 -**Table of Contents:**
12 12  
13 -{{toc/}}
14 14  
15 15  
14 += 1. Introduction =
16 16  
16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
18 18  
19 19  
20 -= 1. Introduction =
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23 23  
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + Li-ion battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
35 35  == 1.2 ​Features ==
36 36  
37 -
38 38  * LoRaWAN 1.0.3 Class A
39 39  * Ultra-low power consumption
40 40  * Open-Source hardware/software
... ... @@ -43,15 +43,13 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-ion battery (SN50v3-LS)
43 +* 8500mAh Battery for long term use
48 48  
49 49  == 1.3 Specification ==
50 50  
51 -
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -85,7 +85,6 @@
85 85  
86 86  == 1.4 Sleep mode and working mode ==
87 87  
88 -
89 89  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90 90  
91 91  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -94,10 +94,11 @@
94 94  == 1.5 Button & LEDs ==
95 95  
96 96  
97 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
98 98  
99 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
93 +
94 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 101  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 102  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 103  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -112,7 +112,7 @@
112 112  == 1.6 BLE connection ==
113 113  
114 114  
115 -SN50v3-LB/LS supports BLE remote configure.
110 +SN50v3-LB supports BLE remote configure.
116 116  
117 117  
118 118  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -127,39 +127,34 @@
127 127  == 1.7 Pin Definitions ==
128 128  
129 129  
130 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230513102034-2.png]]
131 131  
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 -=== 1.8.1 for LB version ===
136 136  
131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:image-20240924112806-1.png||height="548" width="894"]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
135 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140 140  
141 141  
142 -=== 1.8.2 for LS version ===
138 +== Hole Option ==
143 143  
144 -[[image:image-20231231203439-3.png||height="385" width="886"]]
140 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
145 145  
142 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
146 146  
147 -== 1.9 Hole Option ==
144 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
148 148  
149 149  
150 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
147 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
151 151  
152 -[[image:image-20250329085729-1.jpeg]]
153 -
154 -[[image:image-20250329085744-2.jpeg]]
155 -
156 -
157 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
158 -
159 159  == 2.1 How it works ==
160 160  
161 161  
162 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 163  
164 164  
165 165  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -167,15 +167,14 @@
167 167  
168 168  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
169 169  
170 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
171 171  
172 -[[image:image-20250329090241-3.png]]
173 173  
174 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 175  
176 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
165 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 177  
178 -[[image:image-20250329090300-4.jpeg]]
167 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
179 179  
180 180  
181 181  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -183,28 +183,30 @@
183 183  
184 184  (% style="color:blue" %)**Register the device**
185 185  
186 -[[image:image-20250329090324-5.jpeg]]
175 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
187 187  
188 188  
189 189  (% style="color:blue" %)**Add APP EUI and DEV EUI**
190 190  
191 -[[image:image-20250329090341-6.jpeg]]
180 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
192 192  
193 193  
194 194  (% style="color:blue" %)**Add APP EUI in the application**
195 195  
196 196  
197 -[[image:image-20250329090403-7.jpeg]]
186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
198 198  
199 199  
200 200  (% style="color:blue" %)**Add APP KEY**
201 201  
202 -[[image:image-20250329090417-8.jpeg]]
191 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
203 203  
204 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
205 205  
206 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
194 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
207 207  
196 +
197 +Press the button for 5 seconds to activate the SN50v3-LB.
198 +
208 208  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
209 209  
210 210  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
... ... @@ -215,52 +215,52 @@
215 215  === 2.3.1 Device Status, FPORT~=5 ===
216 216  
217 217  
218 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
219 219  
220 220  The Payload format is as below.
221 221  
222 222  
223 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
224 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
215 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
225 225  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
226 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
227 227  
228 228  Example parse in TTNv3
229 229  
230 230  
231 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
232 232  
233 233  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
234 234  
235 235  (% style="color:#037691" %)**Frequency Band**:
236 236  
237 -0x01: EU868
228 +*0x01: EU868
238 238  
239 -0x02: US915
230 +*0x02: US915
240 240  
241 -0x03: IN865
232 +*0x03: IN865
242 242  
243 -0x04: AU915
234 +*0x04: AU915
244 244  
245 -0x05: KZ865
236 +*0x05: KZ865
246 246  
247 -0x06: RU864
238 +*0x06: RU864
248 248  
249 -0x07: AS923
240 +*0x07: AS923
250 250  
251 -0x08: AS923-1
242 +*0x08: AS923-1
252 252  
253 -0x09: AS923-2
244 +*0x09: AS923-2
254 254  
255 -0x0a: AS923-3
246 +*0x0a: AS923-3
256 256  
257 -0x0b: CN470
248 +*0x0b: CN470
258 258  
259 -0x0c: EU433
250 +*0x0c: EU433
260 260  
261 -0x0d: KR920
252 +*0x0d: KR920
262 262  
263 -0x0e: MA869
254 +*0x0e: MA869
264 264  
265 265  
266 266  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -284,39 +284,46 @@
284 284  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
285 285  
286 286  
287 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
288 288  
289 289  For example:
290 290  
291 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
292 292  
293 293  
294 294  (% style="color:red" %) **Important Notice:**
295 295  
296 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
297 297  
298 -2. All modes share the same Payload Explanation from HERE.
291 +==== 2.3.2.1  MOD~=1 (Default Mode) ====
299 299  
300 -3. By default, the device will send an uplink message every 20 minutes.
293 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
301 301  
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
302 302  
303 -==== 2.3.2.1  MOD~=1 (Default Mode) ====
299 +(PC13)
300 +)))|(((
301 +ADC
304 304  
303 +(PA4)
304 +)))|(% style="width:216px" %)(((
305 +Digital in(PB15) &
305 305  
306 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
307 +Digital Interrupt(PA8)
307 307  
308 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
309 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
310 -|Value|Bat|(% style="width:191px" %)(((
311 -Temperature(DS18B20)(PC13)
312 -)))|(% style="width:78px" %)(((
313 -ADC(PA4)
314 -)))|(% style="width:216px" %)(((
315 -Digital in(PB15)&Digital Interrupt(PA8)
316 -)))|(% style="width:308px" %)(((
317 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
318 -)))|(% style="width:154px" %)(((
319 -Humidity(SHT20 or SHT31)
309 +
310 +)))|(% style="width:342px" %)(((
311 +Temperature
312 +
313 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
314 +)))|(% style="width:171px" %)(((
315 +Humidity
316 +
317 +(SHT20 or SHT31)
320 320  )))
321 321  
322 322  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
... ... @@ -324,90 +324,106 @@
324 324  
325 325  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
326 326  
327 -
328 328  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
329 329  
330 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
331 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
332 -|Value|BAT|(% style="width:196px" %)(((
333 -Temperature(DS18B20)(PC13)
334 -)))|(% style="width:87px" %)(((
335 -ADC(PA4)
336 -)))|(% style="width:189px" %)(((
337 -Digital in(PB15) & Digital Interrupt(PA8)
338 -)))|(% style="width:208px" %)(((
339 -Distance measure by: 1) LIDAR-Lite V3HP
340 -Or 2) Ultrasonic Sensor
341 -)))|(% style="width:117px" %)Reserved
327 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
328 +|**Value**|BAT|(((
329 +Temperature(DS18B20)
342 342  
343 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
331 +(PC13)
332 +)))|(((
333 +ADC
344 344  
335 +(PA4)
336 +)))|(((
337 +Digital in(PB15) &
345 345  
346 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
339 +Digital Interrupt(PA8)
340 +)))|(((
341 +Distance measure by:
342 +1) LIDAR-Lite V3HP
343 +Or
344 +2) Ultrasonic Sensor
345 +)))|Reserved
347 347  
348 -[[image:image-20230512173758-5.png||height="563" width="712"]]
347 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
349 349  
349 +**Connection of LIDAR-Lite V3HP:**
350 350  
351 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351 +[[image:image-20230512173758-5.png||height="563" width="712"]]
352 352  
353 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353 +**Connection to Ultrasonic Sensor:**
354 354  
355 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
356 +
355 355  [[image:image-20230512173903-6.png||height="596" width="715"]]
356 356  
357 -
358 358  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
359 359  
360 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
361 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
362 -|Value|BAT|(% style="width:183px" %)(((
363 -Temperature(DS18B20)(PC13)
364 -)))|(% style="width:173px" %)(((
365 -Digital in(PB15) & Digital Interrupt(PA8)
366 -)))|(% style="width:84px" %)(((
367 -ADC(PA4)
368 -)))|(% style="width:323px" %)(((
361 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
362 +|**Value**|BAT|(((
363 +Temperature(DS18B20)
364 +
365 +(PC13)
366 +)))|(((
367 +Digital in(PB15) &
368 +
369 +Digital Interrupt(PA8)
370 +)))|(((
371 +ADC
372 +
373 +(PA4)
374 +)))|(((
369 369  Distance measure by:1)TF-Mini plus LiDAR
370 -Or 2) TF-Luna LiDAR
371 -)))|(% style="width:188px" %)Distance signal  strength
376 +Or 
377 +2) TF-Luna LiDAR
378 +)))|Distance signal  strength
372 372  
373 373  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
374 374  
375 -
376 376  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377 377  
378 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
384 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
379 379  
380 380  [[image:image-20230512180609-7.png||height="555" width="802"]]
381 381  
382 -
383 383  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384 384  
385 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
390 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
386 386  
387 -[[image:image-20230610170047-1.png||height="452" width="799"]]
392 +[[image:image-20230513105207-4.png||height="469" width="802"]]
388 388  
389 389  
390 390  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
391 391  
392 -
393 393  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394 394  
395 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
396 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
399 +(% style="width:1031px" %)
400 +|=(((
397 397  **Size(bytes)**
398 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
399 -|Value|(% style="width:68px" %)(((
400 -ADC1(PA4)
402 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
403 +|**Value**|(% style="width:68px" %)(((
404 +ADC1
405 +
406 +(PA4)
401 401  )))|(% style="width:75px" %)(((
402 -ADC2(PA5)
408 +ADC2
409 +
410 +(PA5)
403 403  )))|(((
404 -ADC3(PA8)
412 +ADC3
413 +
414 +(PA8)
405 405  )))|(((
406 406  Digital Interrupt(PB15)
407 407  )))|(% style="width:304px" %)(((
408 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
418 +Temperature
419 +
420 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
409 409  )))|(% style="width:163px" %)(((
410 -Humidity(SHT20 or SHT31)
422 +Humidity
423 +
424 +(SHT20 or SHT31)
411 411  )))|(% style="width:53px" %)Bat
412 412  
413 413  [[image:image-20230513110214-6.png]]
... ... @@ -415,68 +415,75 @@
415 415  
416 416  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
417 417  
432 +[[image:image-20230512170701-3.png||height="565" width="743"]]
418 418  
419 419  This mode has total 11 bytes. As shown below:
420 420  
421 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
422 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
423 -|Value|BAT|(% style="width:186px" %)(((
424 -Temperature1(DS18B20)(PC13)
436 +(% style="width:1017px" %)
437 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
438 +|**Value**|BAT|(% style="width:186px" %)(((
439 +Temperature1(DS18B20)
440 +(PC13)
425 425  )))|(% style="width:82px" %)(((
426 -ADC(PA4)
442 +ADC
443 +
444 +(PA4)
427 427  )))|(% style="width:210px" %)(((
428 -Digital in(PB15) & Digital Interrupt(PA8) 
446 +Digital in(PB15) &
447 +
448 +Digital Interrupt(PA8) 
429 429  )))|(% style="width:191px" %)Temperature2(DS18B20)
430 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
450 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
451 +(PB8)
431 431  
432 432  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
433 433  
434 434  
435 -[[image:image-20230513134006-1.png||height="559" width="736"]]
436 -
437 -
438 438  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
439 439  
440 -
441 441  [[image:image-20230512164658-2.png||height="532" width="729"]]
442 442  
443 443  Each HX711 need to be calibrated before used. User need to do below two steps:
444 444  
445 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
446 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
462 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
463 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
447 447  1. (((
448 448  Weight has 4 bytes, the unit is g.
449 -
450 -
451 -
452 452  )))
453 453  
454 454  For example:
455 455  
456 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
470 +**AT+GETSENSORVALUE =0**
457 457  
458 458  Response:  Weight is 401 g
459 459  
460 460  Check the response of this command and adjust the value to match the real value for thing.
461 461  
462 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
463 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
476 +(% style="width:982px" %)
477 +|=(((
464 464  **Size(bytes)**
465 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
466 -|Value|BAT|(% style="width:193px" %)(((
467 -Temperature(DS18B20)(PC13)
468 -)))|(% style="width:85px" %)(((
469 -ADC(PA4)
470 -)))|(% style="width:186px" %)(((
471 -Digital in(PB15) & Digital Interrupt(PA8)
472 -)))|(% style="width:100px" %)Weight
479 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
480 +|**Value**|BAT|(% style="width:282px" %)(((
481 +Temperature(DS18B20)
473 473  
483 +(PC13)
484 +
485 +
486 +)))|(% style="width:119px" %)(((
487 +ADC
488 +
489 +(PA4)
490 +)))|(% style="width:279px" %)(((
491 +Digital in(PB15) &
492 +
493 +Digital Interrupt(PA8)
494 +)))|(% style="width:106px" %)Weight
495 +
474 474  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475 475  
476 476  
477 477  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478 478  
479 -
480 480  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
481 481  
482 482  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
... ... @@ -483,19 +483,26 @@
483 483  
484 484  [[image:image-20230512181814-9.png||height="543" width="697"]]
485 485  
507 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
486 486  
487 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
509 +(% style="width:961px" %)
510 +|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
511 +|**Value**|BAT|(% style="width:256px" %)(((
512 +Temperature(DS18B20)
488 488  
489 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
490 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
491 -|Value|BAT|(% style="width:256px" %)(((
492 -Temperature(DS18B20)(PC13)
514 +(PC13)
493 493  )))|(% style="width:108px" %)(((
494 -ADC(PA4)
516 +ADC
517 +
518 +(PA4)
495 495  )))|(% style="width:126px" %)(((
496 -Digital in(PB15)
520 +Digital in
521 +
522 +(PB15)
497 497  )))|(% style="width:145px" %)(((
498 -Count(PA8)
524 +Count
525 +
526 +(PA8)
499 499  )))
500 500  
501 501  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
... ... @@ -503,41 +503,47 @@
503 503  
504 504  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
505 505  
506 -
507 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
508 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
534 +|=(((
509 509  **Size(bytes)**
510 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
511 -|Value|BAT|(% style="width:188px" %)(((
536 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
537 +|**Value**|BAT|(((
512 512  Temperature(DS18B20)
539 +
513 513  (PC13)
514 -)))|(% style="width:83px" %)(((
515 -ADC(PA5)
516 -)))|(% style="width:184px" %)(((
541 +)))|(((
542 +ADC
543 +
544 +(PA5)
545 +)))|(((
517 517  Digital Interrupt1(PA8)
518 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
547 +)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved
519 519  
520 520  [[image:image-20230513111203-7.png||height="324" width="975"]]
521 521  
522 -
523 523  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524 524  
525 -
526 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
527 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
553 +(% style="width:917px" %)
554 +|=(((
528 528  **Size(bytes)**
529 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
530 -|Value|BAT|(% style="width:207px" %)(((
556 +)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 79px;" %)2
557 +|**Value**|BAT|(% style="width:207px" %)(((
531 531  Temperature(DS18B20)
559 +
532 532  (PC13)
533 533  )))|(% style="width:94px" %)(((
534 -ADC1(PA4)
562 +ADC1
563 +
564 +(PA4)
535 535  )))|(% style="width:198px" %)(((
536 536  Digital Interrupt(PB15)
537 537  )))|(% style="width:84px" %)(((
538 -ADC2(PA5)
539 -)))|(% style="width:82px" %)(((
540 -ADC3(PA8)
568 +ADC2
569 +
570 +(PA5)
571 +)))|(% style="width:79px" %)(((
572 +ADC3
573 +
574 +(PA8)
541 541  )))
542 542  
543 543  [[image:image-20230513111231-8.png||height="335" width="900"]]
... ... @@ -545,205 +545,56 @@
545 545  
546 546  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
547 547  
548 -
549 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
550 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
582 +(% style="width:1010px" %)
583 +|=(((
551 551  **Size(bytes)**
552 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
553 -|Value|BAT|(((
554 -Temperature
555 -(DS18B20)(PC13)
585 +)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
586 +|**Value**|BAT|(((
587 +Temperature1(DS18B20)
588 +
589 +(PC13)
556 556  )))|(((
557 -Temperature2
558 -(DS18B20)(PB9)
591 +Temperature2(DS18B20)
592 +
593 +(PB9)
559 559  )))|(((
560 560  Digital Interrupt
596 +
561 561  (PB15)
562 562  )))|(% style="width:193px" %)(((
563 -Temperature3
564 -(DS18B20)(PB8)
599 +Temperature3(DS18B20)
600 +
601 +(PB8)
565 565  )))|(% style="width:78px" %)(((
566 -Count1(PA8)
603 +Count1
604 +
605 +(PA8)
567 567  )))|(% style="width:78px" %)(((
568 -Count2(PA4)
607 +Count2
608 +
609 +(PA4)
569 569  )))
570 570  
571 571  [[image:image-20230513111255-9.png||height="341" width="899"]]
572 572  
573 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
614 +**The newly added AT command is issued correspondingly:**
574 574  
575 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
616 +**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
576 576  
577 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
618 +**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
578 578  
579 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
620 +**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
580 580  
622 +**AT+SETCNT=aa,bb** 
581 581  
582 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
583 -
584 584  When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
585 585  
586 586  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
587 587  
588 588  
589 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
590 590  
591 -
592 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
593 -
594 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
595 -
596 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
597 -
598 -
599 -===== 2.3.2.10.a  Uplink, PWM input capture =====
600 -
601 -
602 -[[image:image-20230817172209-2.png||height="439" width="683"]]
603 -
604 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
605 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
606 -|Value|Bat|(% style="width:191px" %)(((
607 -Temperature(DS18B20)(PC13)
608 -)))|(% style="width:78px" %)(((
609 -ADC(PA4)
610 -)))|(% style="width:135px" %)(((
611 -PWM_Setting
612 -&Digital Interrupt(PA8)
613 -)))|(% style="width:70px" %)(((
614 -Pulse period
615 -)))|(% style="width:89px" %)(((
616 -Duration of high level
617 -)))
618 -
619 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
620 -
621 -
622 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
623 -
624 -**Frequency:**
625 -
626 -(% class="MsoNormal" %)
627 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
628 -
629 -(% class="MsoNormal" %)
630 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
631 -
632 -
633 -(% class="MsoNormal" %)
634 -**Duty cycle:**
635 -
636 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
637 -
638 -[[image:image-20230818092200-1.png||height="344" width="627"]]
639 -
640 -
641 -===== 2.3.2.10.b  Uplink, PWM output =====
642 -
643 -
644 -[[image:image-20230817172209-2.png||height="439" width="683"]]
645 -
646 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
647 -
648 -a is the time delay of the output, the unit is ms.
649 -
650 -b is the output frequency, the unit is HZ.
651 -
652 -c is the duty cycle of the output, the unit is %.
653 -
654 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
655 -
656 -aa is the time delay of the output, the unit is ms.
657 -
658 -bb is the output frequency, the unit is HZ.
659 -
660 -cc is the duty cycle of the output, the unit is %.
661 -
662 -
663 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
664 -
665 -The oscilloscope displays as follows:
666 -
667 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
668 -
669 -
670 -===== 2.3.2.10.c  Downlink, PWM output =====
671 -
672 -
673 -[[image:image-20230817173800-3.png||height="412" width="685"]]
674 -
675 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
676 -
677 - xx xx xx is the output frequency, the unit is HZ.
678 -
679 - yy is the duty cycle of the output, the unit is %.
680 -
681 - zz zz is the time delay of the output, the unit is ms.
682 -
683 -
684 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
685 -
686 -The oscilloscope displays as follows:
687 -
688 -[[image:image-20230817173858-5.png||height="634" width="843"]]
689 -
690 -
691 -
692 -==== 2.3.2.11  MOD~=11 (TEMP117)(Since firmware V1.3.0) ====
693 -
694 -
695 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
696 -
697 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
698 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
699 -|Value|Bat|(% style="width:191px" %)(((
700 -Temperature(DS18B20)(PC13)
701 -)))|(% style="width:78px" %)(((
702 -ADC(PA4)
703 -)))|(% style="width:216px" %)(((
704 -Digital in(PB15)&Digital Interrupt(PA8)
705 -)))|(% style="width:308px" %)(((
706 -Temperature
707 -(TEMP117)
708 -)))|(% style="width:154px" %)(((
709 -Reserved position, meaningless
710 -(0x0000)
711 -)))
712 -
713 -[[image:image-20240717113113-1.png||height="352" width="793"]]
714 -
715 -Connection:
716 -
717 -[[image:image-20240717141528-2.jpeg||height="430" width="654"]]
718 -
719 -
720 -==== 2.3.2.12  MOD~=12 (Count+SHT31)(Since firmware V1.3.1) ====
721 -
722 -
723 -This mode has total 11 bytes. As shown below:
724 -
725 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
726 -|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
727 -|Value|BAT|(% style="width:86px" %)(((
728 - Temperature_SHT31
729 -)))|(% style="width:86px" %)(((
730 -Humidity_SHT31
731 -)))|(% style="width:86px" %)(((
732 - Digital in(PB15)
733 -)))|(% style="width:86px" %)(((
734 -Count(PA8)
735 -)))
736 -
737 -[[image:image-20240717150948-5.png||height="389" width="979"]]
738 -
739 -Wiring example:
740 -
741 -[[image:image-20240717152224-6.jpeg||height="359" width="680"]]
742 -
743 -
744 744  === 2.3.3  ​Decode payload ===
745 745  
746 -
747 747  While using TTN V3 network, you can add the payload format to decode the payload.
748 748  
749 749  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -750,14 +750,13 @@
750 750  
751 751  The payload decoder function for TTN V3 are here:
752 752  
753 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
638 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
754 754  
755 755  
756 756  ==== 2.3.3.1 Battery Info ====
757 757  
643 +Check the battery voltage for SN50v3.
758 758  
759 -Check the battery voltage for SN50v3-LB/LS.
760 -
761 761  Ex1: 0x0B45 = 2885mV
762 762  
763 763  Ex2: 0x0B49 = 2889mV
... ... @@ -765,28 +765,25 @@
765 765  
766 766  ==== 2.3.3.2  Temperature (DS18B20) ====
767 767  
652 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
768 768  
769 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
654 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
770 770  
771 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
656 +**Connection:**
772 772  
773 -(% style="color:blue" %)**Connection:**
774 -
775 775  [[image:image-20230512180718-8.png||height="538" width="647"]]
776 776  
660 +**Example**:
777 777  
778 -(% style="color:blue" %)**Example**:
779 -
780 780  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
781 781  
782 782  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
783 783  
784 -(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
666 +FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative
785 785  
786 786  
787 787  ==== 2.3.3.3 Digital Input ====
788 788  
789 -
790 790  The digital input for pin PB15,
791 791  
792 792  * When PB15 is high, the bit 1 of payload byte 6 is 1.
... ... @@ -796,63 +796,49 @@
796 796  (((
797 797  When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
798 798  
799 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
800 -
801 -
680 +**Note:**The maximum voltage input supports 3.6V.
802 802  )))
803 803  
804 804  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
805 805  
685 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
806 806  
807 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
687 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
808 808  
809 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
810 -
811 811  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
812 812  
691 +**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
813 813  
814 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
815 -
816 -
817 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
818 -
819 -[[image:image-20230811113449-1.png||height="370" width="608"]]
820 -
821 -
822 -
823 823  ==== 2.3.3.5 Digital Interrupt ====
824 824  
695 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
825 825  
826 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
697 +**~ Interrupt connection method:**
827 827  
828 -(% style="color:blue" %)** Interrupt connection method:**
829 -
830 830  [[image:image-20230513105351-5.png||height="147" width="485"]]
831 831  
701 +**Example to use with door sensor :**
832 832  
833 -(% style="color:blue" %)**Example to use with door sensor :**
834 -
835 835  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
836 836  
837 837  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
838 838  
839 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
707 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
840 840  
709 +**~ Below is the installation example:**
841 841  
842 -(% style="color:blue" %)**Below is the installation example:**
711 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
843 843  
844 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
845 -
846 846  * (((
847 -One pin to SN50v3-LB/LS's PA8 pin
714 +One pin to SN50_v3's PA8 pin
848 848  )))
849 849  * (((
850 -The other pin to SN50v3-LB/LS's VDD pin
717 +The other pin to SN50_v3's VDD pin
851 851  )))
852 852  
853 853  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
854 854  
855 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
722 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
856 856  
857 857  When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
858 858  
... ... @@ -864,55 +864,29 @@
864 864  
865 865  The command is:
866 866  
867 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
734 +**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
868 868  
869 869  Below shows some screen captures in TTN V3:
870 870  
871 871  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
872 872  
740 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
873 873  
874 -(% style="color:blue" %)**Application in different modes:**
742 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
875 875  
876 -* In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
877 877  
878 - door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
879 -
880 -
881 -* In **MOD=7**, there are three interrupt pins in effect.
882 -
883 -See the AT+INTMODx command explained to set the three pin interrupt modes.
884 -
885 -As you can see from the byte parsing table of pattern 7, the seventh byte of the original load is used to display the PA8 pin interrupt flag and status, the eighth byte of the original load is used to display the PA4 pin interrupt flag and status, and the ninth byte of the original load is used to display the PB15 pin interrupt flag and status.
886 -
887 -[[image:image-20250402103902-1.png]]
888 -
889 -TTN V3 decoder is as below:
890 -
891 -[[image:image-20250402104508-2.png||height="255" width="579"]]
892 -
893 -(% style="color:red" %)**Note: mode in decoding is sorted from 0, so it corresponds to the actual working mode AT+MOD=7.**
894 -
895 -
896 -(% style="color:#037691" %)**Interrupt flag: **(%%)"EXTI1/2/3_Trigger", indicates whether the uplink packet is generated by an interrupt on the PA8/PA4/PB15 pin.
897 -
898 -
899 -(% style="color:#037691" %)**Interrupt status: **(%%)"EXTI1/2/3_Status", Displays the status of the interrupt sensors connected to the PA4/PA8/PB15 interrupt pins when the packet is uplinked.
900 -
901 -
902 902  ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
903 903  
904 -
905 905  The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
906 906  
907 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
749 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
908 908  
909 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
751 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
910 910  
911 -
912 912  Below is the connection to SHT20/ SHT31. The connection is as below:
913 913  
914 -[[image:image-20230610170152-2.png||height="501" width="846"]]
915 915  
756 +[[image:image-20230513103633-3.png||height="636" width="1017"]]
916 916  
917 917  The device will be able to get the I2C sensor data now and upload to IoT Server.
918 918  
... ... @@ -931,26 +931,23 @@
931 931  
932 932  ==== 2.3.3.7  ​Distance Reading ====
933 933  
775 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
934 934  
935 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
936 936  
937 -
938 938  ==== 2.3.3.8 Ultrasonic Sensor ====
939 939  
940 -
941 941  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
942 942  
943 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
782 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
944 944  
945 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
784 +The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
946 946  
947 947  The picture below shows the connection:
948 948  
949 949  [[image:image-20230512173903-6.png||height="596" width="715"]]
950 950  
790 +Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
951 951  
952 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
953 -
954 954  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
955 955  
956 956  **Example:**
... ... @@ -958,71 +958,37 @@
958 958  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
959 959  
960 960  
799 +
961 961  ==== 2.3.3.9  Battery Output - BAT pin ====
962 962  
802 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
963 963  
964 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
965 965  
966 -
967 967  ==== 2.3.3.10  +5V Output ====
968 968  
807 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
969 969  
970 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
971 -
972 972  The 5V output time can be controlled by AT Command.
973 973  
974 -(% style="color:blue" %)**AT+5VT=1000**
811 +**AT+5VT=1000**
975 975  
976 976  Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
977 977  
978 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
815 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
979 979  
980 980  
818 +
981 981  ==== 2.3.3.11  BH1750 Illumination Sensor ====
982 982  
983 -
984 984  MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
985 985  
986 -[[image:image-20230512172447-4.png||height="416" width="712"]]
823 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
987 987  
825 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
988 988  
989 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
990 990  
828 +==== 2.3.3.12  Working MOD ====
991 991  
992 -==== 2.3.3.12  PWM MOD ====
993 -
994 -
995 -* (((
996 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
997 -)))
998 -* (((
999 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
1000 -)))
1001 -
1002 - [[image:image-20230817183249-3.png||height="320" width="417"]]
1003 -
1004 -* (((
1005 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
1006 -)))
1007 -* (((
1008 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
1009 -)))
1010 -* (((
1011 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
1012 -
1013 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
1014 -
1015 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
1016 -
1017 -b) If the output duration is more than 30 seconds, better to use external power source. 
1018 -
1019 -
1020 -
1021 -)))
1022 -
1023 -==== 2.3.3.13  Working MOD ====
1024 -
1025 -
1026 1026  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
1027 1027  
1028 1028  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -1038,7 +1038,6 @@
1038 1038  * 6: MOD7
1039 1039  * 7: MOD8
1040 1040  * 8: MOD9
1041 -* 9: MOD10
1042 1042  
1043 1043  == 2.4 Payload Decoder file ==
1044 1044  
... ... @@ -1047,23 +1047,24 @@
1047 1047  
1048 1048  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
1049 1049  
1050 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
853 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
1051 1051  
1052 1052  
856 +
1053 1053  == 2.5 Frequency Plans ==
1054 1054  
1055 1055  
1056 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
860 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
1057 1057  
1058 1058  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1059 1059  
1060 1060  
1061 -= 3. Configure SN50v3-LB/LS =
865 += 3. Configure SN50v3-LB =
1062 1062  
1063 1063  == 3.1 Configure Methods ==
1064 1064  
1065 1065  
1066 -SN50v3-LB/LS supports below configure method:
870 +SN50v3-LB supports below configure method:
1067 1067  
1068 1068  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1069 1069  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -1082,10 +1082,10 @@
1082 1082  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1083 1083  
1084 1084  
1085 -== 3.3 Commands special design for SN50v3-LB/LS ==
889 +== 3.3 Commands special design for SN50v3-LB ==
1086 1086  
1087 1087  
1088 -These commands only valid for SN50v3-LB/LS, as below:
892 +These commands only valid for S31x-LB, as below:
1089 1089  
1090 1090  
1091 1091  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1096,7 +1096,7 @@
1096 1096  (% style="color:blue" %)**AT Command: AT+TDC**
1097 1097  
1098 1098  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1099 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
903 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1100 1100  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1101 1101  30000
1102 1102  OK
... ... @@ -1118,124 +1118,55 @@
1118 1118  
1119 1119  === 3.3.2 Get Device Status ===
1120 1120  
925 +Send a LoRaWAN downlink to ask device send Alarm settings.
1121 1121  
1122 -Send a LoRaWAN downlink to ask the device to send its status.
927 +(% style="color:blue" %)**Downlink Payload **(%%)0x26 01
1123 1123  
1124 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
929 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1125 1125  
1126 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1127 1127  
1128 -
1129 1129  === 3.3.3 Set Interrupt Mode ===
1130 1130  
1131 1131  
1132 -==== 3.3.3.1 Before V1.3.4 firmware ====
935 +Feature, Set Interrupt mode for GPIO_EXIT.
1133 1133  
1134 -(% style="color:red" %)**Note: Before V1.3.4 firmware, the interrupt function of PA8,PA4,PB15 had only one parameter to set, which was used to set the interrupt trigger mode.**
937 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1135 1135  
1136 -Feature, Set Interrupt mode for PA8, PA4, PB15.
1137 -
1138 -Before using the interrupt function of the **INT** pin, users can set the interrupt triggering mode as required.
1139 -
1140 -(% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a**
1141 -
1142 -(% style="color:#4472c4" %)**AT+INTMODx:**
1143 -
1144 -* (% style="color:#4472c4" %)**AT+INTMOD1   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
1145 -* (% style="color:#4472c4" %)**AT+INTMOD2   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1146 -* (% style="color:#4472c4" %)**AT+INTMOD3   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
1147 -
1148 -**Parameter a setting:**
1149 -
1150 -* **0:** Disable Interrupt
1151 -* **1:** Trigger by rising and falling edge
1152 -* **2:** Trigger by falling edge
1153 -* **3: **Trigger by rising edge
1154 -
1155 -**Example:**
1156 -
1157 -* AT+INTMOD1=0  ~/~/Disable the PA8 pin interrupt function
1158 -* AT+INTMOD2=2  ~/~/Set the interrupt of the PA4 pin to be triggered by the falling edge
1159 -* AT+INTMOD3=3  ~/~/Set the interrupt of the PB15 pin to be triggered by the rising edge
1160 -
1161 -(% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb**
1162 -
1163 -Format: Command Code (0x06 00) followed by 2 bytes.
1164 -
1165 -(% style="color:#4472c4" %)**aa:**(%%) Set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
1166 -
1167 -(% style="color:#4472c4" %)**bb: **(%%)Set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
1168 -
1169 -**Example:**
1170 -
1171 -* Downlink Payload: **06 00 00 01     **~/~/ Equal to AT+INTMOD1=1
1172 -* Downlink Payload: **06 00 01 02     **~/~/ Equal to AT+INTMOD2=2
1173 -* Downlink Payload: **06 00 02 03     **~/~/ Equal to AT+INTMOD3=3
1174 -
1175 -
1176 -==== 3.3.3.2 Since V1.3.4 firmware ====
1177 -
1178 -(% style="color:red" %)**Note: Since V1.3.4 firmware, the Interrupt function has added a new parameter to set the delay time, i.e. the state hold time.**
1179 -
1180 -(% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a,b**
1181 -
1182 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:420px" %)
1183 -|=(% style="width: 116px; background-color: rgb(79, 129, 189); color: white;" %)**Parameter **|=(% style="width: 304px; background-color: rgb(79, 129, 189); color: white;" %)**Values and functions**
1184 -|(% style="width:116px" %)(((
1185 -
1186 -
1187 -**x**
1188 -)))|(% style="width:392px" %)(((
1189 -1: Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
1190 -
1191 -2:  Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1192 -
1193 -3: Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
939 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
940 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
941 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
942 +0
943 +OK
944 +the mode is 0 =Disable Interrupt
1194 1194  )))
1195 -|(% style="width:116px" %)(((
1196 -
946 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
947 +Set Transmit Interval
948 +0. (Disable Interrupt),
949 +~1. (Trigger by rising and falling edge)
950 +2. (Trigger by falling edge)
951 +3. (Trigger by rising edge)
952 +)))|(% style="width:157px" %)OK
953 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
954 +Set Transmit Interval
1197 1197  
1198 -**a**
1199 -)))|(% style="width:392px" %)(((
1200 -**0:** Disable Interrupt
956 +trigger by rising edge.
957 +)))|(% style="width:157px" %)OK
958 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1201 1201  
1202 -**1:** Trigger by rising and falling edge
960 +(% style="color:blue" %)**Downlink Command: 0x06**
1203 1203  
1204 -**2:** Trigger by falling edge
962 +Format: Command Code (0x06) followed by 3 bytes.
1205 1205  
1206 -**3: **Trigger by rising edge
1207 -)))
1208 -|(% style="width:116px" %)**b**|(% style="width:392px" %)(((
1209 -Set the delay time. (Default: 0)
964 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1210 1210  
1211 -**Value range: 0~~65535 ms**
1212 -)))
966 +* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
967 +* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
968 +* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
969 +* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1213 1213  
1214 -**Example:**
1215 -
1216 -* AT+INTMOD1=0,0  ~/~/ Disable the PA8 pin interrupt function
1217 -* AT+INTMOD2=2,1000  ~/~/ Set the interrupt of the PA4 pin to be triggered by the falling edge, however, the interrupt will only be triggered if the low level state remains 1000ms
1218 -* AT+INTMOD3=3,2500  ~/~/ Set the interrupt of the PB15 pin to be triggered by the rising edge, however, the interrupt will only be triggered if the high level state remains 2500ms
1219 -
1220 -(% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb cc**
1221 -
1222 -Format: Command Code (0x06 00) followed by 4 bytes.
1223 -
1224 -(% style="color:#4472c4" %)**aa:**(%%) **1 byte**, set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
1225 -
1226 -(% style="color:#4472c4" %)**bb: **(%%)**1 byte**, set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
1227 -
1228 -(% style="color:#4472c4" %)**cc: **(%%)**2 bytes**, Set the delay time. (0x00~~0xFFFF)
1229 -
1230 -**Example:**
1231 -
1232 -* Downlink Payload: **06 00 00 01 00 00     **~/~/ Equal to AT+INTMOD1=1,0
1233 -* Downlink Payload: **06 00 01 02 0B B8     **~/~/ Equal to AT+INTMOD2=2,3000
1234 -* Downlink Payload: **06 00 02 03 03 E8   **~/~/ Equal to AT+INTMOD3=3,1000
1235 -
971 +(% class="wikigeneratedid" %)
1236 1236  === 3.3.4 Set Power Output Duration ===
1237 1237  
1238 -
1239 1239  Control the output duration 5V . Before each sampling, device will
1240 1240  
1241 1241  ~1. first enable the power output to external sensor,
... ... @@ -1247,9 +1247,10 @@
1247 1247  (% style="color:blue" %)**AT Command: AT+5VT**
1248 1248  
1249 1249  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1250 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
985 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1251 1251  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1252 1252  500(default)
988 +
1253 1253  OK
1254 1254  )))
1255 1255  |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
... ... @@ -1262,176 +1262,83 @@
1262 1262  
1263 1263  The first and second bytes are the time to turn on.
1264 1264  
1265 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1266 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1001 +* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1002 +* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1267 1267  
1004 +(% class="wikigeneratedid" %)
1268 1268  === 3.3.5 Set Weighing parameters ===
1269 1269  
1007 +Feature: Working mode 5 is effective, hair removal and setting of weight factor of HX711.
1270 1270  
1271 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1272 -
1273 1273  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1274 1274  
1275 1275  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1276 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1277 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1278 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1279 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1012 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1013 +|(% style="width:154px" %) |(% style="width:196px" %) |(% style="width:157px" %)
1014 +|(% style="width:154px" %) |(% style="width:196px" %) |(% style="width:157px" %)
1280 1280  
1016 +
1281 1281  (% style="color:blue" %)**Downlink Command: 0x08**
1282 1282  
1283 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1284 1284  
1285 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1020 +Format: Command Code (0x07) followed by 2 bytes.
1286 1286  
1287 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1022 +The first and second bytes are the time to turn on.
1288 1288  
1289 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1290 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1291 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1292 1292  
1293 1293  === 3.3.6 Set Digital pulse count value ===
1294 1294  
1295 -
1296 1296  Feature: Set the pulse count value.
1297 1297  
1298 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1299 -
1300 1300  (% style="color:blue" %)**AT Command: AT+SETCNT**
1301 1301  
1302 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1303 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1031 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1032 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1304 1304  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1305 1305  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1306 1306  
1036 +
1307 1307  (% style="color:blue" %)**Downlink Command: 0x09**
1308 1308  
1039 +
1309 1309  Format: Command Code (0x09) followed by 5 bytes.
1310 1310  
1311 1311  The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1312 1312  
1313 1313  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1314 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1045 +* Example 2: Downlink Payload: 090200000000  **~-~-->**  AT+5VT=500
1315 1315  
1316 1316  === 3.3.7 Set Workmode ===
1317 1317  
1049 +Feature: switch working mode.
1318 1318  
1319 -Feature: Switch working mode.
1320 -
1321 1321  (% style="color:blue" %)**AT Command: AT+MOD**
1322 1322  
1323 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1324 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1053 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1054 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1325 1325  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1326 1326  OK
1327 1327  )))
1328 1328  |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1329 1329  OK
1060 +
1330 1330  Attention:Take effect after ATZ
1331 1331  )))
1332 1332  
1064 +
1333 1333  (% style="color:blue" %)**Downlink Command: 0x0A**
1334 1334  
1067 +
1335 1335  Format: Command Code (0x0A) followed by 1 bytes.
1336 1336  
1337 1337  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1338 1338  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1339 1339  
1340 -=== 3.3.8 PWM setting ===
1073 += 4. Battery & Power Consumption =
1341 1341  
1342 1342  
1343 -Feature: Set the time acquisition unit for PWM input capture.
1076 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1344 1344  
1345 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1346 -
1347 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1348 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1349 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1350 -0(default)
1351 -OK
1352 -)))
1353 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1354 -OK
1355 -
1356 -)))
1357 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1358 -
1359 -(% style="color:blue" %)**Downlink Command: 0x0C**
1360 -
1361 -Format: Command Code (0x0C) followed by 1 bytes.
1362 -
1363 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1364 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1365 -
1366 -**Feature: Set PWM output time, output frequency and output duty cycle.**
1367 -
1368 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1369 -
1370 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1371 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1372 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1373 -0,0,0(default)
1374 -OK
1375 -)))
1376 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1377 -OK
1378 -
1379 -)))
1380 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1381 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1382 -
1383 -
1384 -)))|(% style="width:137px" %)(((
1385 -OK
1386 -)))
1387 -
1388 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1389 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 243px; background-color:#4F81BD;color:white" %)**parameters**
1390 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1391 -AT+PWMOUT=a,b,c
1392 -
1393 -
1394 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1395 -Set PWM output time, output frequency and output duty cycle.
1396 -
1397 -(((
1398 -
1399 -)))
1400 -
1401 -(((
1402 -
1403 -)))
1404 -)))|(% style="width:242px" %)(((
1405 -a: Output time (unit: seconds)
1406 -The value ranges from 0 to 65535.
1407 -When a=65535, PWM will always output.
1408 -)))
1409 -|(% style="width:242px" %)(((
1410 -b: Output frequency (unit: HZ)
1411 -
1412 -range 5~~100000HZ
1413 -)))
1414 -|(% style="width:242px" %)(((
1415 -c: Output duty cycle (unit: %)
1416 -The value ranges from 0 to 100.
1417 -)))
1418 -
1419 -(% style="color:blue" %)**Downlink Command: 0x0B**
1420 -
1421 -Format: Command Code (0x0B) followed by 6 bytes.
1422 -
1423 -0B + Output frequency (3bytes)+ Output duty cycle (1bytes)+Output time (2bytes)
1424 -
1425 -Downlink payload:0B bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1426 -
1427 -* Example 1: Downlink Payload: 0B 0003E8 32 0005 **~-~-->**  AT+PWMOUT=5,1000,50
1428 -* Example 2: Downlink Payload: 0B 0007D0 3C 000A **~-~-->**  AT+PWMOUT=10,2000,60
1429 -
1430 -= 4. Battery & Power Cons =
1431 -
1432 -
1433 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1434 -
1435 1435  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1436 1436  
1437 1437  
... ... @@ -1439,66 +1439,32 @@
1439 1439  
1440 1440  
1441 1441  (% class="wikigeneratedid" %)
1442 -**User can change firmware SN50v3-LB/LS to:**
1085 +User can change firmware SN50v3-LB to:
1443 1443  
1444 1444  * Change Frequency band/ region.
1445 1445  * Update with new features.
1446 1446  * Fix bugs.
1447 1447  
1448 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1091 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1449 1449  
1450 -**Methods to Update Firmware:**
1451 1451  
1452 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1453 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1094 +Methods to Update Firmware:
1454 1454  
1455 -= 6.  Developer Guide =
1096 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1097 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1456 1456  
1457 -SN50v3 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from:
1099 += 6. FAQ =
1458 1458  
1459 -* (((
1460 -Software Source Code: [[Releases · dragino/SN50v3 (github.com)>>url:https://github.com/dragino/SN50v3/releases]]
1461 -)))
1462 -* (((
1463 -Hardware Design files:  **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1464 -)))
1465 -* (((
1466 -Compile instruction:[[Compile instruction>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Module/Compile%20and%20Upload%20Code%20to%20ASR6601%20Platform/]]
1467 -)))
1101 +== 6.1 Where can i find source code of SN50v3-LB? ==
1468 1468  
1469 -**~1. If you want to change frequency, modify the Preprocessor Symbols.**
1103 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1104 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1470 1470  
1471 -For example, change EU868 to US915
1106 += 7. Order Info =
1472 1472  
1473 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656318662202-530.png?rev=1.1||alt="1656318662202-530.png"]]
1474 1474  
1475 -**2. Compile and build**
1109 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1476 1476  
1477 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627163212-17.png?rev=1.1||alt="image-20220627163212-17.png"]]
1478 -
1479 -= 7. FAQ =
1480 -
1481 -== 7.1 How to generate PWM Output in SN50v3-LB/LS? ==
1482 -
1483 -
1484 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1485 -
1486 -
1487 -== 7.2 How to put several sensors to a SN50v3-LB/LS? ==
1488 -
1489 -
1490 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1491 -
1492 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1493 -
1494 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1495 -
1496 -
1497 -= 8. Order Info =
1498 -
1499 -
1500 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1501 -
1502 1502  (% style="color:red" %)**XX**(%%): The default frequency band
1503 1503  
1504 1504  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
... ... @@ -1517,12 +1517,11 @@
1517 1517  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1518 1518  * (% style="color:red" %)**NH**(%%): No Hole
1519 1519  
1520 -= 9. ​Packing Info =
1129 += 8. ​Packing Info =
1521 1521  
1522 -
1523 1523  (% style="color:#037691" %)**Package Includes**:
1524 1524  
1525 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1133 +* SN50v3-LB LoRaWAN Generic Node
1526 1526  
1527 1527  (% style="color:#037691" %)**Dimension and weight**:
1528 1528  
... ... @@ -1531,9 +1531,8 @@
1531 1531  * Package Size / pcs : cm
1532 1532  * Weight / pcs : g
1533 1533  
1534 -= 10. Support =
1142 += 9. Support =
1535 1535  
1536 1536  
1537 1537  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1538 -
1539 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
1146 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
image-20240717113113-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -34.0 KB
Content
image-20240717141512-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -948.8 KB
Content
image-20240717141528-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -234.2 KB
Content
image-20240717145707-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.8 KB
Content
image-20240717150334-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20240717150948-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.3 KB
Content
image-20240717152224-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -238.1 KB
Content
image-20240924112806-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -140.2 KB
Content
image-20250329085729-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -363.5 KB
Content
image-20250329085744-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.1 KB
Content
image-20250329090241-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -67.5 KB
Content
image-20250329090300-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
image-20250329090324-5.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.6 KB
Content
image-20250329090341-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -40.6 KB
Content
image-20250329090403-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -55.2 KB
Content
image-20250329090417-8.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -43.4 KB
Content
image-20250402103902-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -20.0 KB
Content
image-20250402104508-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -17.7 KB
Content