Last modified by kai on 2025/06/30 10:31

From version 116.1
edited by Xiaoling
on 2025/03/29 09:04
Change comment: Uploaded new attachment "image-20250329090403-7.jpeg", version {1}
To version 14.1
edited by Edwin Chen
on 2023/05/11 23:21
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Edwin
Content
... ... @@ -1,40 +1,37 @@
1 -
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
2 2  
3 -(% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
5 5  
6 6  
5 +**Table of Contents:**
7 7  
7 +{{toc/}}
8 8  
9 9  
10 10  
11 -**Table of Contents:**
12 12  
13 -{{toc/}}
14 14  
15 15  
14 += 1. Introduction =
16 16  
16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
18 18  
19 19  
20 -= 1. Introduction =
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23 23  
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + Li-ion battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
35 35  == 1.2 ​Features ==
36 36  
37 -
38 38  * LoRaWAN 1.0.3 Class A
39 39  * Ultra-low power consumption
40 40  * Open-Source hardware/software
... ... @@ -43,15 +43,13 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-ion battery (SN50v3-LS)
43 +* 8500mAh Battery for long term use
48 48  
49 49  == 1.3 Specification ==
50 50  
51 -
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -85,7 +85,6 @@
85 85  
86 86  == 1.4 Sleep mode and working mode ==
87 87  
88 -
89 89  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90 90  
91 91  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -94,10 +94,11 @@
94 94  == 1.5 Button & LEDs ==
95 95  
96 96  
97 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
98 98  
99 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
93 +
94 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 101  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 102  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 103  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -112,7 +112,7 @@
112 112  == 1.6 BLE connection ==
113 113  
114 114  
115 -SN50v3-LB/LS supports BLE remote configure.
110 +SN50v3-LB supports BLE remote configure.
116 116  
117 117  
118 118  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -127,39 +127,34 @@
127 127  == 1.7 Pin Definitions ==
128 128  
129 129  
130 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
131 131  
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 -=== 1.8.1 for LB version ===
136 136  
131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:image-20240924112806-1.png||height="548" width="894"]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
135 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140 140  
141 141  
142 -=== 1.8.2 for LS version ===
138 +== Hole Option ==
143 143  
144 -[[image:image-20231231203439-3.png||height="385" width="886"]]
140 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
145 145  
142 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
146 146  
147 -== 1.9 Hole Option ==
144 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
148 148  
149 149  
150 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
147 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
151 151  
152 -[[image:image-20250329085729-1.jpeg]]
153 -
154 -[[image:image-20250329085744-2.jpeg]]
155 -
156 -
157 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
158 -
159 159  == 2.1 How it works ==
160 160  
161 161  
162 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 163  
164 164  
165 165  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -167,15 +167,14 @@
167 167  
168 168  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
169 169  
170 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
171 171  
172 -[[image:image-20250329090241-3.png]]
173 173  
174 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 175  
176 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
165 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 177  
178 -[[image:image-20250329090300-4.jpeg]]
167 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
179 179  
180 180  
181 181  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -201,10 +201,12 @@
201 201  
202 202  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
203 203  
204 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
205 205  
206 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
194 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
207 207  
196 +
197 +Press the button for 5 seconds to activate the SN50v3-LB.
198 +
208 208  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
209 209  
210 210  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
... ... @@ -215,52 +215,52 @@
215 215  === 2.3.1 Device Status, FPORT~=5 ===
216 216  
217 217  
218 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
219 219  
220 220  The Payload format is as below.
221 221  
222 222  
223 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
224 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
215 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
225 225  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
226 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
227 227  
228 228  Example parse in TTNv3
229 229  
230 230  
231 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
232 232  
233 233  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
234 234  
235 235  (% style="color:#037691" %)**Frequency Band**:
236 236  
237 -0x01: EU868
228 +*0x01: EU868
238 238  
239 -0x02: US915
230 +*0x02: US915
240 240  
241 -0x03: IN865
232 +*0x03: IN865
242 242  
243 -0x04: AU915
234 +*0x04: AU915
244 244  
245 -0x05: KZ865
236 +*0x05: KZ865
246 246  
247 -0x06: RU864
238 +*0x06: RU864
248 248  
249 -0x07: AS923
240 +*0x07: AS923
250 250  
251 -0x08: AS923-1
242 +*0x08: AS923-1
252 252  
253 -0x09: AS923-2
244 +*0x09: AS923-2
254 254  
255 -0x0a: AS923-3
246 +*0x0a: AS923-3
256 256  
257 -0x0b: CN470
248 +*0x0b: CN470
258 258  
259 -0x0c: EU433
250 +*0x0c: EU433
260 260  
261 -0x0d: KR920
252 +*0x0d: KR920
262 262  
263 -0x0e: MA869
254 +*0x0e: MA869
264 264  
265 265  
266 266  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -284,40 +284,25 @@
284 284  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
285 285  
286 286  
287 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
288 288  
289 289  For example:
290 290  
291 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
292 292  
293 293  
294 294  (% style="color:red" %) **Important Notice:**
295 295  
296 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
297 297  
298 -2. All modes share the same Payload Explanation from HERE.
299 -
300 -3. By default, the device will send an uplink message every 20 minutes.
301 -
302 -
303 303  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
304 304  
305 -
306 306  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
307 307  
308 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
309 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
310 -|Value|Bat|(% style="width:191px" %)(((
311 -Temperature(DS18B20)(PC13)
312 -)))|(% style="width:78px" %)(((
313 -ADC(PA4)
314 -)))|(% style="width:216px" %)(((
315 -Digital in(PB15)&Digital Interrupt(PA8)
316 -)))|(% style="width:308px" %)(((
317 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
318 -)))|(% style="width:154px" %)(((
319 -Humidity(SHT20 or SHT31)
320 -)))
295 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
296 +|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20)
321 321  
322 322  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
323 323  
... ... @@ -324,152 +324,128 @@
324 324  
325 325  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
326 326  
327 -
328 328  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
329 329  
330 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
331 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
332 -|Value|BAT|(% style="width:196px" %)(((
333 -Temperature(DS18B20)(PC13)
334 -)))|(% style="width:87px" %)(((
335 -ADC(PA4)
336 -)))|(% style="width:189px" %)(((
337 -Digital in(PB15) & Digital Interrupt(PA8)
338 -)))|(% style="width:208px" %)(((
339 -Distance measure by: 1) LIDAR-Lite V3HP
340 -Or 2) Ultrasonic Sensor
341 -)))|(% style="width:117px" %)Reserved
305 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
306 +|**Value**|BAT|(((
307 +Temperature(DS18B20)
308 +)))|ADC|Digital in & Digital Interrupt|(((
309 +Distance measure by:
310 +1) LIDAR-Lite V3HP
311 +Or
312 +2) Ultrasonic Sensor
313 +)))|Reserved
342 342  
343 343  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
344 344  
317 +**Connection of LIDAR-Lite V3HP:**
345 345  
346 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
319 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]]
347 347  
348 -[[image:image-20230512173758-5.png||height="563" width="712"]]
321 +**Connection to Ultrasonic Sensor:**
349 349  
323 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]]
350 350  
351 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
352 -
353 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
354 -
355 -[[image:image-20230512173903-6.png||height="596" width="715"]]
356 -
357 -
358 358  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
359 359  
360 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
361 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
362 -|Value|BAT|(% style="width:183px" %)(((
363 -Temperature(DS18B20)(PC13)
364 -)))|(% style="width:173px" %)(((
365 -Digital in(PB15) & Digital Interrupt(PA8)
366 -)))|(% style="width:84px" %)(((
367 -ADC(PA4)
368 -)))|(% style="width:323px" %)(((
327 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
328 +|**Value**|BAT|(((
329 +Temperature(DS18B20)
330 +)))|Digital in & Digital Interrupt|ADC|(((
369 369  Distance measure by:1)TF-Mini plus LiDAR
370 -Or 2) TF-Luna LiDAR
371 -)))|(% style="width:188px" %)Distance signal  strength
332 +Or 
333 +2) TF-Luna LiDAR
334 +)))|Distance signal  strength
372 372  
373 373  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
374 374  
375 -
376 376  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
377 377  
378 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
340 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
379 379  
380 -[[image:image-20230512180609-7.png||height="555" width="802"]]
342 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]]
381 381  
382 -
383 383  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
384 384  
385 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
346 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
386 386  
387 -[[image:image-20230610170047-1.png||height="452" width="799"]]
348 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
388 388  
350 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
389 389  
352 +
390 390  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
391 391  
392 -
393 393  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394 394  
395 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
396 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
357 +|=(((
397 397  **Size(bytes)**
398 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
399 -|Value|(% style="width:68px" %)(((
400 -ADC1(PA4)
401 -)))|(% style="width:75px" %)(((
402 -ADC2(PA5)
403 -)))|(((
404 -ADC3(PA8)
405 -)))|(((
406 -Digital Interrupt(PB15)
407 -)))|(% style="width:304px" %)(((
408 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
409 -)))|(% style="width:163px" %)(((
410 -Humidity(SHT20 or SHT31)
411 -)))|(% style="width:53px" %)Bat
359 +)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1
360 +|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|(((
361 +Digital in(PA12)&Digital Interrupt1(PB14)
362 +)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat
412 412  
413 -[[image:image-20230513110214-6.png]]
364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
414 414  
415 415  
416 416  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
417 417  
369 +This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4
418 418  
419 -This mode has total 11 bytes. As shown below:
371 +Hardware connection is as below,
420 420  
421 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
422 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
423 -|Value|BAT|(% style="width:186px" %)(((
424 -Temperature1(DS18B20)(PC13)
425 -)))|(% style="width:82px" %)(((
426 -ADC(PA4)
427 -)))|(% style="width:210px" %)(((
428 -Digital in(PB15) & Digital Interrupt(PA8) 
429 -)))|(% style="width:191px" %)Temperature2(DS18B20)
430 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
373 +**( Note:**
431 431  
432 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
375 +* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes.
376 +* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already.
433 433  
378 +See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) **
434 434  
435 -[[image:image-20230513134006-1.png||height="559" width="736"]]
380 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]]
436 436  
382 +This mode has total 11 bytes. As shown below:
437 437  
384 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
385 +|**Value**|BAT|(((
386 +Temperature1
387 +(DS18B20)
388 +(PB3)
389 +)))|ADC|Digital in & Digital Interrupt|Temperature2
390 +(DS18B20)
391 +(PA9)|Temperature3
392 +(DS18B20)
393 +(PA10)
394 +
395 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
396 +
397 +
438 438  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
439 439  
400 +This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection.
440 440  
441 -[[image:image-20230512164658-2.png||height="532" width="729"]]
442 442  
403 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]]
404 +
443 443  Each HX711 need to be calibrated before used. User need to do below two steps:
444 444  
445 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
446 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
407 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
408 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
447 447  1. (((
448 -Weight has 4 bytes, the unit is g.
449 -
450 -
451 -
410 +Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0)
452 452  )))
453 453  
454 454  For example:
455 455  
456 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
415 +**AT+WEIGAP =403.0**
457 457  
458 458  Response:  Weight is 401 g
459 459  
460 460  Check the response of this command and adjust the value to match the real value for thing.
461 461  
462 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
463 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
421 +|=(((
464 464  **Size(bytes)**
465 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
466 -|Value|BAT|(% style="width:193px" %)(((
467 -Temperature(DS18B20)(PC13)
468 -)))|(% style="width:85px" %)(((
469 -ADC(PA4)
470 -)))|(% style="width:186px" %)(((
471 -Digital in(PB15) & Digital Interrupt(PA8)
472 -)))|(% style="width:100px" %)Weight
423 +)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2
424 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved
473 473  
474 474  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475 475  
... ... @@ -476,276 +476,92 @@
476 476  
477 477  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478 478  
479 -
480 480  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
481 481  
482 482  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
483 483  
484 -[[image:image-20230512181814-9.png||height="543" width="697"]]
435 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]]
485 485  
437 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
486 486  
487 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
439 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
440 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
441 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
442 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
488 488  
489 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
490 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
491 -|Value|BAT|(% style="width:256px" %)(((
492 -Temperature(DS18B20)(PC13)
493 -)))|(% style="width:108px" %)(((
494 -ADC(PA4)
495 -)))|(% style="width:126px" %)(((
496 -Digital in(PB15)
497 -)))|(% style="width:145px" %)(((
498 -Count(PA8)
499 -)))
500 -
501 501  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
502 502  
503 503  
504 504  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
505 505  
449 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
506 506  
507 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
508 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
451 +|=(((
509 509  **Size(bytes)**
510 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
511 -|Value|BAT|(% style="width:188px" %)(((
512 -Temperature(DS18B20)
513 -(PC13)
514 -)))|(% style="width:83px" %)(((
515 -ADC(PA5)
516 -)))|(% style="width:184px" %)(((
517 -Digital Interrupt1(PA8)
518 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
453 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
454 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
455 +Digital in(PA12)&Digital Interrupt1(PB14)
456 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
519 519  
520 -[[image:image-20230513111203-7.png||height="324" width="975"]]
521 -
522 -
523 523  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524 524  
525 -
526 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
527 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
460 +|=(((
528 528  **Size(bytes)**
529 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
530 -|Value|BAT|(% style="width:207px" %)(((
531 -Temperature(DS18B20)
532 -(PC13)
533 -)))|(% style="width:94px" %)(((
534 -ADC1(PA4)
535 -)))|(% style="width:198px" %)(((
536 -Digital Interrupt(PB15)
537 -)))|(% style="width:84px" %)(((
538 -ADC2(PA5)
539 -)))|(% style="width:82px" %)(((
540 -ADC3(PA8)
462 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
463 +|**Value**|BAT|Temperature(DS18B20)|(((
464 +ADC1(PA0)
465 +)))|(((
466 +Digital in
467 +& Digital Interrupt(PB14)
468 +)))|(((
469 +ADC2(PA1)
470 +)))|(((
471 +ADC3(PA4)
541 541  )))
542 542  
543 -[[image:image-20230513111231-8.png||height="335" width="900"]]
474 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
544 544  
545 545  
546 546  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
547 547  
548 -
549 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
550 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
479 +|=(((
551 551  **Size(bytes)**
552 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
553 -|Value|BAT|(((
554 -Temperature
555 -(DS18B20)(PC13)
481 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
482 +|**Value**|BAT|(((
483 +Temperature1(PB3)
556 556  )))|(((
557 -Temperature2
558 -(DS18B20)(PB9)
485 +Temperature2(PA9)
559 559  )))|(((
560 -Digital Interrupt
561 -(PB15)
562 -)))|(% style="width:193px" %)(((
563 -Temperature3
564 -(DS18B20)(PB8)
565 -)))|(% style="width:78px" %)(((
566 -Count1(PA8)
567 -)))|(% style="width:78px" %)(((
568 -Count2(PA4)
487 +Digital in
488 +& Digital Interrupt(PA4)
489 +)))|(((
490 +Temperature3(PA10)
491 +)))|(((
492 +Count1(PB14)
493 +)))|(((
494 +Count2(PB15)
569 569  )))
570 570  
571 -[[image:image-20230513111255-9.png||height="341" width="899"]]
497 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
572 572  
573 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
499 +**The newly added AT command is issued correspondingly:**
574 574  
575 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
501 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
576 576  
577 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
503 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
578 578  
579 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
505 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
580 580  
507 +**AT+SETCNT=aa,bb** 
581 581  
582 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
509 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
583 583  
584 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
511 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
585 585  
586 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
587 587  
588 588  
589 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
590 -
591 -
592 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
593 -
594 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
595 -
596 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
597 -
598 -
599 -===== 2.3.2.10.a  Uplink, PWM input capture =====
600 -
601 -
602 -[[image:image-20230817172209-2.png||height="439" width="683"]]
603 -
604 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
605 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
606 -|Value|Bat|(% style="width:191px" %)(((
607 -Temperature(DS18B20)(PC13)
608 -)))|(% style="width:78px" %)(((
609 -ADC(PA4)
610 -)))|(% style="width:135px" %)(((
611 -PWM_Setting
612 -&Digital Interrupt(PA8)
613 -)))|(% style="width:70px" %)(((
614 -Pulse period
615 -)))|(% style="width:89px" %)(((
616 -Duration of high level
617 -)))
618 -
619 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
620 -
621 -
622 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
623 -
624 -**Frequency:**
625 -
626 -(% class="MsoNormal" %)
627 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
628 -
629 -(% class="MsoNormal" %)
630 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
631 -
632 -
633 -(% class="MsoNormal" %)
634 -**Duty cycle:**
635 -
636 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
637 -
638 -[[image:image-20230818092200-1.png||height="344" width="627"]]
639 -
640 -
641 -===== 2.3.2.10.b  Uplink, PWM output =====
642 -
643 -
644 -[[image:image-20230817172209-2.png||height="439" width="683"]]
645 -
646 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
647 -
648 -a is the time delay of the output, the unit is ms.
649 -
650 -b is the output frequency, the unit is HZ.
651 -
652 -c is the duty cycle of the output, the unit is %.
653 -
654 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
655 -
656 -aa is the time delay of the output, the unit is ms.
657 -
658 -bb is the output frequency, the unit is HZ.
659 -
660 -cc is the duty cycle of the output, the unit is %.
661 -
662 -
663 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
664 -
665 -The oscilloscope displays as follows:
666 -
667 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
668 -
669 -
670 -===== 2.3.2.10.c  Downlink, PWM output =====
671 -
672 -
673 -[[image:image-20230817173800-3.png||height="412" width="685"]]
674 -
675 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
676 -
677 - xx xx xx is the output frequency, the unit is HZ.
678 -
679 - yy is the duty cycle of the output, the unit is %.
680 -
681 - zz zz is the time delay of the output, the unit is ms.
682 -
683 -
684 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
685 -
686 -The oscilloscope displays as follows:
687 -
688 -[[image:image-20230817173858-5.png||height="634" width="843"]]
689 -
690 -
691 -
692 -==== 2.3.2.11  MOD~=11 (TEMP117)(Since firmware V1.3.0) ====
693 -
694 -
695 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
696 -
697 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
698 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
699 -|Value|Bat|(% style="width:191px" %)(((
700 -Temperature(DS18B20)(PC13)
701 -)))|(% style="width:78px" %)(((
702 -ADC(PA4)
703 -)))|(% style="width:216px" %)(((
704 -Digital in(PB15)&Digital Interrupt(PA8)
705 -)))|(% style="width:308px" %)(((
706 -Temperature
707 -
708 -(TEMP117)
709 -)))|(% style="width:154px" %)(((
710 -Reserved position, meaningless
711 -
712 -(0x0000)
713 -)))
714 -
715 -[[image:image-20240717113113-1.png||height="352" width="793"]]
716 -
717 -Connection:
718 -
719 -[[image:image-20240717141528-2.jpeg||height="430" width="654"]]
720 -
721 -
722 -==== 2.3.2.12  MOD~=12 (Count+SHT31)(Since firmware V1.3.1) ====
723 -
724 -
725 -This mode has total 11 bytes. As shown below:
726 -
727 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
728 -|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
729 -|Value|BAT|(% style="width:86px" %)(((
730 - Temperature_SHT31
731 -)))|(% style="width:86px" %)(((
732 -Humidity_SHT31
733 -)))|(% style="width:86px" %)(((
734 - Digital in(PB15)
735 -)))|(% style="width:86px" %)(((
736 -Count(PA8)
737 -)))
738 -
739 -[[image:image-20240717150948-5.png||height="389" width="979"]]
740 -
741 -Wiring example:
742 -
743 -[[image:image-20240717152224-6.jpeg||height="359" width="680"]]
744 -
745 -
746 746  === 2.3.3  ​Decode payload ===
747 747  
748 -
749 749  While using TTN V3 network, you can add the payload format to decode the payload.
750 750  
751 751  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
... ... @@ -752,14 +752,13 @@
752 752  
753 753  The payload decoder function for TTN V3 are here:
754 754  
755 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
523 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
756 756  
757 757  
758 758  ==== 2.3.3.1 Battery Info ====
759 759  
528 +Check the battery voltage for SN50v3.
760 760  
761 -Check the battery voltage for SN50v3-LB/LS.
762 -
763 763  Ex1: 0x0B45 = 2885mV
764 764  
765 765  Ex2: 0x0B49 = 2889mV
... ... @@ -767,18 +767,16 @@
767 767  
768 768  ==== 2.3.3.2  Temperature (DS18B20) ====
769 769  
537 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
770 770  
771 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
539 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
772 772  
773 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
541 +**Connection:**
774 774  
775 -(% style="color:blue" %)**Connection:**
543 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378573379-646.png?rev=1.1||alt="1656378573379-646.png"]]
776 776  
777 -[[image:image-20230512180718-8.png||height="538" width="647"]]
545 +**Example**:
778 778  
779 -
780 -(% style="color:blue" %)**Example**:
781 -
782 782  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
783 783  
784 784  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -788,75 +788,88 @@
788 788  
789 789  ==== 2.3.3.3 Digital Input ====
790 790  
556 +The digital input for pin PA12,
791 791  
792 -The digital input for pin PB15,
558 +* When PA12 is high, the bit 1 of payload byte 6 is 1.
559 +* When PA12 is low, the bit 1 of payload byte 6 is 0.
793 793  
794 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
795 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
796 796  
797 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
798 -(((
799 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
562 +==== 2.3.3.4  Analogue Digital Converter (ADC) ====
800 800  
801 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
564 +The ADC pins in LSN50 can measure range from 0~~Vbat, it use reference voltage from . If user need to measure a voltage > VBat, please use resistors to divide this voltage to lower than VBat, otherwise, it may destroy the ADC pin.
802 802  
803 -
804 -)))
566 +Note: minimum VBat is 2.5v, when batrrey lower than this value. Device won't be able to send LoRa Uplink.
805 805  
806 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
568 +The ADC monitors the voltage on the PA0 line, in mV.
807 807  
570 +Ex: 0x021F = 543mv,
808 808  
809 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
572 +**~ Example1:**  Reading an Oil Sensor (Read a resistance value):
810 810  
811 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
812 812  
813 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
575 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172409-28.png?rev=1.1||alt="image-20220627172409-28.png"]]
814 814  
577 +In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor.
578 +
815 815  
816 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
580 +**Steps:**
817 817  
582 +1. Solder a 10K resistor between PA0 and VCC.
583 +1. Screw oil sensor's two pins to PA0 and PB4.
818 818  
819 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
585 +The equipment circuit is as below:
820 820  
821 -[[image:image-20230811113449-1.png||height="370" width="608"]]
587 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172500-29.png?rev=1.1||alt="image-20220627172500-29.png"]]
822 822  
589 +According to above diagram:
823 823  
591 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091043-4.png?rev=1.1||alt="image-20220628091043-4.png"]]
824 824  
825 -==== 2.3.3.5 Digital Interrupt ====
593 +So
826 826  
595 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091344-6.png?rev=1.1||alt="image-20220628091344-6.png"]]
827 827  
828 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
597 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091621-8.png?rev=1.1||alt="image-20220628091621-8.png"]] is the reading of ADC. So if ADC=0x05DC=0.9 v and VCC (BAT) is 2.9v
829 829  
830 -(% style="color:blue" %)** Interrupt connection method:**
599 +The [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091702-9.png?rev=1.1||alt="image-20220628091702-9.png"]] 4.5K ohm
831 831  
832 -[[image:image-20230513105351-5.png||height="147" width="485"]]
601 +Since the Bouy is linear resistance from 10 ~~ 70cm.
833 833  
603 +The position of Bouy is [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091824-10.png?rev=1.1||alt="image-20220628091824-10.png"]] , from the bottom of Bouy.
834 834  
835 -(% style="color:blue" %)**Example to use with door sensor :**
836 836  
606 +==== 2.3.3.5 Digital Interrupt ====
607 +
608 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
609 +
610 +**~ Interrupt connection method:**
611 +
612 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
613 +
614 +**Example to use with door sensor :**
615 +
837 837  The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
838 838  
839 839  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
840 840  
841 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
620 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
842 842  
622 +**~ Below is the installation example:**
843 843  
844 -(% style="color:blue" %)**Below is the installation example:**
624 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
845 845  
846 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
847 -
848 848  * (((
849 -One pin to SN50v3-LB/LS's PA8 pin
627 +One pin to LSN50's PB14 pin
850 850  )))
851 851  * (((
852 -The other pin to SN50v3-LB/LS's VDD pin
630 +The other pin to LSN50's VCC pin
853 853  )))
854 854  
855 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
633 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
856 856  
857 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
635 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
858 858  
859 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
637 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
860 860  
861 861  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
862 862  
... ... @@ -866,33 +866,35 @@
866 866  
867 867  The command is:
868 868  
869 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
647 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
870 870  
871 871  Below shows some screen captures in TTN V3:
872 872  
873 873  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
874 874  
653 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
875 875  
876 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
877 -
878 878  door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
879 879  
657 +**Notice for hardware version LSN50 v1 < v1.3** (produced before 2018-Nov).
880 880  
881 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
659 +In this hardware version, there is no R14 resistance solder. When use the latest firmware, it should set AT+INTMOD=0 to close the interrupt. If user need to use Interrupt in this hardware version, user need to solder R14 with 10M resistor and C1 (0.1uF) on board.
882 882  
661 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379563303-771.png?rev=1.1||alt="1656379563303-771.png"]]
883 883  
884 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
885 885  
886 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
664 +==== 2.3.3.6 I2C Interface (SHT20) ====
887 887  
888 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
666 +The PB6(SDA) and PB7(SCK) are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
889 889  
668 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with **AT+MOD=1 (default value).**
890 890  
670 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in LSN50 will be a good reference.
671 +
891 891  Below is the connection to SHT20/ SHT31. The connection is as below:
892 892  
893 -[[image:image-20230610170152-2.png||height="501" width="846"]]
674 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
894 894  
895 -
896 896  The device will be able to get the I2C sensor data now and upload to IoT Server.
897 897  
898 898  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
... ... @@ -910,26 +910,21 @@
910 910  
911 911  ==== 2.3.3.7  ​Distance Reading ====
912 912  
693 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
913 913  
914 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
915 915  
916 -
917 917  ==== 2.3.3.8 Ultrasonic Sensor ====
918 918  
698 +The LSN50 v1.5 firmware supports ultrasonic sensor (with AT+MOD=2) such as SEN0208 from DF-Robot. This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
919 919  
920 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
700 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
921 921  
922 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
923 -
924 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
925 -
926 926  The picture below shows the connection:
927 927  
928 -[[image:image-20230512173903-6.png||height="596" width="715"]]
704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656380061365-178.png?rev=1.1||alt="1656380061365-178.png"]]
929 929  
706 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
930 930  
931 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
932 -
933 933  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
934 934  
935 935  **Example:**
... ... @@ -936,69 +936,50 @@
936 936  
937 937  Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
938 938  
714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
939 939  
940 -==== 2.3.3.9  Battery Output - BAT pin ====
716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
941 941  
718 +You can see the serial output in ULT mode as below:
942 942  
943 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
720 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
944 944  
722 +**In TTN V3 server:**
945 945  
946 -==== 2.3.3.10  +5V Output ====
724 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
947 947  
726 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
948 948  
949 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
728 +==== 2.3.3.9  Battery Output - BAT pin ====
950 950  
951 -The 5V output time can be controlled by AT Command.
730 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
952 952  
953 -(% style="color:blue" %)**AT+5VT=1000**
954 954  
955 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
733 +==== 2.3.3.10  +5V Output ====
956 956  
957 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
735 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
958 958  
737 +The 5V output time can be controlled by AT Command.
959 959  
960 -==== 2.3.3.11  BH1750 Illumination Sensor ====
739 +**AT+5VT=1000**
961 961  
741 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
962 962  
963 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
743 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
964 964  
965 -[[image:image-20230512172447-4.png||height="416" width="712"]]
966 966  
967 967  
968 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
747 +==== 2.3.3.11  BH1750 Illumination Sensor ====
969 969  
749 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
970 970  
971 -==== 2.3.3.12  PWM MOD ====
751 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-11.jpeg?rev=1.1||alt="image-20220628110012-11.jpeg"]]
972 972  
753 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
973 973  
974 -* (((
975 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
976 -)))
977 -* (((
978 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
979 -)))
980 980  
981 - [[image:image-20230817183249-3.png||height="320" width="417"]]
756 +==== 2.3.3.12  Working MOD ====
982 982  
983 -* (((
984 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
985 -)))
986 -* (((
987 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
988 -)))
989 -* (((
990 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
991 -
992 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
993 -
994 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
995 -
996 -b) If the output duration is more than 30 seconds, better to use external power source. 
997 -)))
998 -
999 -==== 2.3.3.13  Working MOD ====
1000 -
1001 -
1002 1002  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
1003 1003  
1004 1004  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -1011,11 +1011,8 @@
1011 1011  * 3: MOD4
1012 1012  * 4: MOD5
1013 1013  * 5: MOD6
1014 -* 6: MOD7
1015 -* 7: MOD8
1016 -* 8: MOD9
1017 -* 9: MOD10
1018 1018  
771 +
1019 1019  == 2.4 Payload Decoder file ==
1020 1020  
1021 1021  
... ... @@ -1023,456 +1023,366 @@
1023 1023  
1024 1024  In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
1025 1025  
1026 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
779 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
1027 1027  
1028 1028  
1029 -== 2.5 Frequency Plans ==
782 +== 2.5 Datalog Feature ==
1030 1030  
1031 1031  
1032 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
785 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
1033 1033  
1034 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1035 1035  
788 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
1036 1036  
1037 -= 3. Configure SN50v3-LB/LS =
1038 1038  
1039 -== 3.1 Configure Methods ==
791 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
1040 1040  
793 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
794 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
1041 1041  
1042 -SN50v3-LB/LS supports below configure method:
796 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
1043 1043  
1044 -* AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1045 -* AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
1046 -* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
798 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
1047 1047  
1048 -== 3.2 General Commands ==
800 +=== 2.5.2 Unix TimeStamp ===
1049 1049  
1050 1050  
1051 -These commands are to configure:
803 +S31x-LB uses Unix TimeStamp format based on
1052 1052  
1053 -* General system settings like: uplink interval.
1054 -* LoRaWAN protocol & radio related command.
805 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
1055 1055  
1056 -They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
807 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
1057 1057  
1058 -[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
809 +Below is the converter example
1059 1059  
811 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
1060 1060  
1061 -== 3.3 Commands special design for SN50v3-LB/LS ==
813 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
1062 1062  
1063 1063  
1064 -These commands only valid for SN50v3-LB/LS, as below:
816 +=== 2.5.3 Set Device Time ===
1065 1065  
1066 1066  
1067 -=== 3.3.1 Set Transmit Interval Time ===
819 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
1068 1068  
821 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
1069 1069  
1070 -Feature: Change LoRaWAN End Node Transmit Interval.
823 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
1071 1071  
1072 -(% style="color:blue" %)**AT Command: AT+TDC**
1073 1073  
1074 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1075 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
1076 -|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1077 -30000
1078 -OK
1079 -the interval is 30000ms = 30s
1080 -)))
1081 -|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1082 -OK
1083 -Set transmit interval to 60000ms = 60 seconds
1084 -)))
826 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
1085 1085  
1086 -(% style="color:blue" %)**Downlink Command: 0x01**
1087 1087  
1088 -Format: Command Code (0x01) followed by 3 bytes time value.
829 +The Datalog uplinks will use below payload format.
1089 1089  
1090 -If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
831 +**Retrieval data payload:**
1091 1091  
1092 -* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1093 -* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
833 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
834 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
835 +**Size(bytes)**
836 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
837 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
838 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
839 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
1094 1094  
1095 -=== 3.3.2 Get Device Status ===
841 +**Poll message flag & Ext:**
1096 1096  
843 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
1097 1097  
1098 -Send a LoRaWAN downlink to ask the device to send its status.
845 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
1099 1099  
1100 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
847 +**Poll Message Flag**: 1: This message is a poll message reply.
1101 1101  
1102 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
849 +* Poll Message Flag is set to 1.
1103 1103  
851 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
1104 1104  
1105 -=== 3.3.3 Set Interrupt Mode ===
853 +For example, in US915 band, the max payload for different DR is:
1106 1106  
855 +**a) DR0:** max is 11 bytes so one entry of data
1107 1107  
1108 -==== 3.3.3.1 Before V1.3.4 firmware ====
857 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
1109 1109  
1110 -(% style="color:red" %)**Note: Before V1.3.4 firmware, the interrupt function of PA8,PA4,PB15 had only one parameter to set, which was used to set the interrupt trigger mode.**
859 +**c) DR2:** total payload includes 11 entries of data
1111 1111  
1112 -Feature, Set Interrupt mode for PA8, PA4, PB15.
861 +**d) DR3: **total payload includes 22 entries of data.
1113 1113  
1114 -Before using the interrupt function of the **INT** pin, users can set the interrupt triggering mode as required.
863 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
1115 1115  
1116 -(% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a**
1117 1117  
1118 -(% style="color:#4472c4" %)**AT+INTMODx:**
1119 -
1120 -* (% style="color:#4472c4" %)**AT+INTMOD1   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
1121 -* (% style="color:#4472c4" %)**AT+INTMOD2   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1122 -* (% style="color:#4472c4" %)**AT+INTMOD3   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
1123 -
1124 -**Parameter a setting:**
1125 -
1126 -* **0:** Disable Interrupt
1127 -* **1:** Trigger by rising and falling edge
1128 -* **2:** Trigger by falling edge
1129 -* **3: **Trigger by rising edge
1130 -
1131 1131  **Example:**
1132 1132  
1133 -* AT+INTMOD1=0  ~/~/Disable the PA8 pin interrupt function
1134 -* AT+INTMOD2=2  ~/~/Set the interrupt of the PA4 pin to be triggered by the falling edge
1135 -* AT+INTMOD3=3  ~/~/Set the interrupt of the PB15 pin to be triggered by the rising edge
868 +If S31x-LB has below data inside Flash:
1136 1136  
1137 -(% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb**
870 +[[image:1682646494051-944.png]]
1138 1138  
1139 -Format: Command Code (0x06 00) followed by 2 bytes.
872 +If user sends below downlink command: 3160065F9760066DA705
1140 1140  
1141 -(% style="color:#4472c4" %)**aa:**(%%) Set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
874 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
1142 1142  
1143 -(% style="color:#4472c4" %)**bb: **(%%)Set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
876 + Stop time: 60066DA7= time 21/1/19 05:27:03
1144 1144  
1145 -**Example:**
1146 1146  
1147 -* Downlink Payload: **06 00 00 01     **~/~/ Equal to AT+INTMOD1=1
1148 -* Downlink Payload: **06 00 01 02     **~/~/ Equal to AT+INTMOD2=2
1149 -* Downlink Payload: **06 00 02 03     **~/~/ Equal to AT+INTMOD3=3
879 +**S31x-LB will uplink this payload.**
1150 1150  
1151 -==== 3.3.3.2 Since V1.3.4 firmware ====
881 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
1152 1152  
1153 -(% style="color:red" %)**Note: Since V1.3.4 firmware, the Interrupt function has added a new parameter to set the delay time, i.e. the state hold time.**
883 +(((
884 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
885 +)))
1154 1154  
1155 -(% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a,b**
887 +(((
888 +Where the first 11 bytes is for the first entry:
889 +)))
1156 1156  
1157 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:420px" %)
1158 -|=(% style="width: 116px; background-color: rgb(79, 129, 189); color: white;" %)**Parameter **|=(% style="width: 392px; background-color: rgb(79, 129, 189); color: white;" %)**Values and functions**
1159 -|(% style="width:116px" %)(((
1160 -
891 +(((
892 +7FFF089801464160065F97
893 +)))
1161 1161  
1162 -**x**
1163 -)))|(% style="width:392px" %)(((
1164 -1: Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
895 +(((
896 +**Ext sensor data**=0x7FFF/100=327.67
897 +)))
1165 1165  
1166 -2:  Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
899 +(((
900 +**Temp**=0x088E/100=22.00
901 +)))
1167 1167  
1168 -3: Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
903 +(((
904 +**Hum**=0x014B/10=32.6
1169 1169  )))
1170 -|(% style="width:116px" %)(((
1171 -
1172 1172  
1173 -**a**
1174 -)))|(% style="width:392px" %)(((
1175 -**0:** Disable Interrupt
907 +(((
908 +**poll message flag & Ext**=0x41,means reply data,Ext=1
909 +)))
1176 1176  
1177 -**1:** Trigger by rising and falling edge
911 +(((
912 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
913 +)))
1178 1178  
1179 -**2:** Trigger by falling edge
1180 1180  
1181 -**3: **Trigger by rising edge
1182 -)))
1183 -|(% style="width:116px" %)**b**|(% style="width:392px" %)(((
1184 -Set the delay time. (Default: 0)
916 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
1185 1185  
1186 -**Value range: 0~~65535 ms**
1187 -)))
918 +== 2.6 Temperature Alarm Feature ==
1188 1188  
1189 -**Example:**
1190 1190  
1191 -* AT+INTMOD1=0,0  ~/~/Disable the PA8 pin interrupt function
1192 -* AT+INTMOD2=2,1000  ~/~/Set the interrupt of the PA4 pin to be triggered by the falling edge, however, the interrupt will only be triggered if the low level state remains 1000ms
1193 -* AT+INTMOD3=3,2500  ~/~/Set the interrupt of the PB15 pin to be triggered by the rising edge, however, the interrupt will only be triggered if the high level state remains 2500ms
921 +S31x-LB work flow with Alarm feature.
1194 1194  
1195 -(% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb cc**
1196 1196  
1197 -Format: Command Code (0x06 00) followed by 4 bytes.
924 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
1198 1198  
1199 -(% style="color:#4472c4" %)**aa:**(%%) **1 byte**, set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
1200 1200  
1201 -(% style="color:#4472c4" %)**bb: **(%%)**1 byte**, set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
927 +== 2.7 Frequency Plans ==
1202 1202  
1203 -(% style="color:#4472c4" %)**cc: **(%%)**2 bytes**, Set the delay time. (0x00~~0xFFFF)
1204 1204  
1205 -**Example:**
930 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
1206 1206  
1207 -* Downlink Payload: **06 00 00 01 00 00     **~/~/ Equal to AT+INTMOD1=1,0
1208 -* Downlink Payload: **06 00 01 02 0B B8     **~/~/ Equal to AT+INTMOD2=2,3000
1209 -* Downlink Payload: **06 00 02 03 03 E8   **~/~/ Equal to AT+INTMOD3=3,1000
932 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1210 1210  
1211 -=== 3.3.4 Set Power Output Duration ===
1212 1212  
935 += 3. Configure S31x-LB =
1213 1213  
1214 -Control the output duration 5V . Before each sampling, device will
937 +== 3.1 Configure Methods ==
1215 1215  
1216 -~1. first enable the power output to external sensor,
1217 1217  
1218 -2. keep it on as per duration, read sensor value and construct uplink payload
940 +S31x-LB supports below configure method:
1219 1219  
1220 -3. final, close the power output.
942 +* AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
943 +* AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
944 +* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1221 1221  
1222 -(% style="color:blue" %)**AT Command: AT+5VT**
946 +== 3.2 General Commands ==
1223 1223  
1224 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1226 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1227 -500(default)
1228 -OK
1229 -)))
1230 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1231 -Close after a delay of 1000 milliseconds.
1232 -)))|(% style="width:157px" %)OK
1233 1233  
1234 -(% style="color:blue" %)**Downlink Command: 0x07**
949 +These commands are to configure:
1235 1235  
1236 -Format: Command Code (0x07) followed by 2 bytes.
951 +* General system settings like: uplink interval.
952 +* LoRaWAN protocol & radio related command.
1237 1237  
1238 -The first and second bytes are the time to turn on.
954 +They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1239 1239  
1240 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1241 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
956 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1242 1242  
1243 -=== 3.3.5 Set Weighing parameters ===
1244 1244  
959 +== 3.3 Commands special design for S31x-LB ==
1245 1245  
1246 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1247 1247  
1248 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
962 +These commands only valid for S31x-LB, as below:
1249 1249  
1250 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1251 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1252 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1253 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1254 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1255 1255  
1256 -(% style="color:blue" %)**Downlink Command: 0x08**
965 +=== 3.3.1 Set Transmit Interval Time ===
1257 1257  
1258 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1259 1259  
1260 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
968 +Feature: Change LoRaWAN End Node Transmit Interval.
1261 1261  
1262 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
970 +(% style="color:blue" %)**AT Command: AT+TDC**
1263 1263  
1264 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1265 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1266 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
972 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
973 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
974 +|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
975 +30000
976 +OK
977 +the interval is 30000ms = 30s
978 +)))
979 +|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
980 +OK
981 +Set transmit interval to 60000ms = 60 seconds
982 +)))
1267 1267  
1268 -=== 3.3.6 Set Digital pulse count value ===
984 +(% style="color:blue" %)**Downlink Command: 0x01**
1269 1269  
986 +Format: Command Code (0x01) followed by 3 bytes time value.
1270 1270  
1271 -Feature: Set the pulse count value.
988 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1272 1272  
1273 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
990 +* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
991 +* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1274 1274  
1275 -(% style="color:blue" %)**AT Command: AT+SETCNT**
993 +=== 3.3.2 Get Device Status ===
1276 1276  
1277 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1278 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1279 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1280 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1281 1281  
1282 -(% style="color:blue" %)**Downlink Command: 0x09**
996 +Send a LoRaWAN downlink to ask device send Alarm settings.
1283 1283  
1284 -Format: Command Code (0x09) followed by 5 bytes.
998 +(% style="color:blue" %)**Downlink Payload **(%%)0x26 01
1285 1285  
1286 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1000 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1287 1287  
1288 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1289 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1290 1290  
1291 -=== 3.3.7 Set Workmode ===
1003 +=== 3.3.3 Set Temperature Alarm Threshold ===
1292 1292  
1005 +* (% style="color:blue" %)**AT Command:**
1293 1293  
1294 -Feature: Switch working mode.
1007 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
1295 1295  
1296 -(% style="color:blue" %)**AT Command: AT+MOD**
1009 +* When min=0, and max≠0, Alarm higher than max
1010 +* When min≠0, and max=0, Alarm lower than min
1011 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1297 1297  
1298 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1299 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1300 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1301 -OK
1302 -)))
1303 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1304 -OK
1305 -Attention:Take effect after ATZ
1306 -)))
1013 +Example:
1307 1307  
1308 -(% style="color:blue" %)**Downlink Command: 0x0A**
1015 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
1309 1309  
1310 -Format: Command Code (0x0A) followed by 1 bytes.
1017 +* (% style="color:blue" %)**Downlink Payload:**
1311 1311  
1312 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1313 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1019 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
1314 1314  
1315 -=== 3.3.8 PWM setting ===
1021 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
1316 1316  
1317 1317  
1318 -Feature: Set the time acquisition unit for PWM input capture.
1024 +=== 3.3.4 Set Humidity Alarm Threshold ===
1319 1319  
1320 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1026 +* (% style="color:blue" %)**AT Command:**
1321 1321  
1322 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1323 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1324 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1325 -0(default)
1326 -OK
1327 -)))
1328 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1329 -OK
1330 -
1331 -)))
1332 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1028 +(% style="color:#037691" %)**AT+SHHUM=min,max**
1333 1333  
1334 -(% style="color:blue" %)**Downlink Command: 0x0C**
1030 +* When min=0, and max≠0, Alarm higher than max
1031 +* When min≠0, and max=0, Alarm lower than min
1032 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1335 1335  
1336 -Format: Command Code (0x0C) followed by 1 bytes.
1034 +Example:
1337 1337  
1338 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1339 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1036 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
1340 1340  
1341 -**Feature: Set PWM output time, output frequency and output duty cycle.**
1038 +* (% style="color:blue" %)**Downlink Payload:**
1342 1342  
1343 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1040 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
1344 1344  
1345 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1346 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1347 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1348 -0,0,0(default)
1349 -OK
1350 -)))
1351 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1352 -OK
1353 -
1354 -)))
1355 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1356 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1042 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
1357 1357  
1358 -
1359 -)))|(% style="width:137px" %)(((
1360 -OK
1361 -)))
1362 1362  
1363 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1364 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1365 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1366 -AT+PWMOUT=a,b,c
1045 +=== 3.3.5 Set Alarm Interval ===
1367 1367  
1368 -
1369 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1370 -Set PWM output time, output frequency and output duty cycle.
1047 +The shortest time of two Alarm packet. (unit: min)
1371 1371  
1372 -(((
1373 -
1374 -)))
1049 +* (% style="color:blue" %)**AT Command:**
1375 1375  
1376 -(((
1377 -
1378 -)))
1379 -)))|(% style="width:242px" %)(((
1380 -a: Output time (unit: seconds)
1381 -The value ranges from 0 to 65535.
1382 -When a=65535, PWM will always output.
1383 -)))
1384 -|(% style="width:242px" %)(((
1385 -b: Output frequency (unit: HZ)
1051 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
1386 1386  
1387 -range 5~~100000HZ
1388 -)))
1389 -|(% style="width:242px" %)(((
1390 -c: Output duty cycle (unit: %)
1391 -The value ranges from 0 to 100.
1392 -)))
1053 +* (% style="color:blue" %)**Downlink Payload:**
1393 1393  
1394 -(% style="color:blue" %)**Downlink Command: 0x0B**
1055 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
1395 1395  
1396 -Format: Command Code (0x0B) followed by 6 bytes.
1397 1397  
1398 -0B + Output frequency (3bytes)+ Output duty cycle (1bytes)+Output time (2bytes)
1058 +=== 3.3.6 Get Alarm settings ===
1399 1399  
1400 -Downlink payload:0B bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1401 1401  
1402 -* Example 1: Downlink Payload: 0B 0003E8 32 0005 **~-~-->**  AT+PWMOUT=5,1000,50
1403 -* Example 2: Downlink Payload: 0B 0007D0 3C 000A **~-~-->**  AT+PWMOUT=10,2000,60
1061 +Send a LoRaWAN downlink to ask device send Alarm settings.
1404 1404  
1405 -= 4. Battery & Power Cons =
1063 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1406 1406  
1065 +**Example:**
1407 1407  
1408 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1067 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1409 1409  
1410 -[[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1411 1411  
1070 +**Explain:**
1412 1412  
1413 -= 5. OTA Firmware update =
1072 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1414 1414  
1074 +=== 3.3.7 Set Interrupt Mode ===
1415 1415  
1416 -(% class="wikigeneratedid" %)
1417 -**User can change firmware SN50v3-LB/LS to:**
1418 1418  
1419 -* Change Frequency band/ region.
1420 -* Update with new features.
1421 -* Fix bugs.
1077 +Feature, Set Interrupt mode for GPIO_EXIT.
1422 1422  
1423 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1079 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1424 1424  
1425 -**Methods to Update Firmware:**
1081 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1082 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1083 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1084 +0
1085 +OK
1086 +the mode is 0 =Disable Interrupt
1087 +)))
1088 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
1089 +Set Transmit Interval
1090 +0. (Disable Interrupt),
1091 +~1. (Trigger by rising and falling edge)
1092 +2. (Trigger by falling edge)
1093 +3. (Trigger by rising edge)
1094 +)))|(% style="width:157px" %)OK
1426 1426  
1427 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1428 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1096 +(% style="color:blue" %)**Downlink Command: 0x06**
1429 1429  
1430 -= 6.  Developer Guide =
1098 +Format: Command Code (0x06) followed by 3 bytes.
1431 1431  
1432 -SN50v3 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from:
1100 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1433 1433  
1434 -* (((
1435 -Software Source Code: [[Releases · dragino/SN50v3 (github.com)>>url:https://github.com/dragino/SN50v3/releases]]
1436 -)))
1437 -* (((
1438 -Hardware Design files:  **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1439 -)))
1440 -* (((
1441 -Compile instruction:[[Compile instruction>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Module/Compile%20and%20Upload%20Code%20to%20ASR6601%20Platform/]]
1442 -)))
1102 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
1103 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1443 1443  
1444 -**~1. If you want to change frequency, modify the Preprocessor Symbols.**
1105 += 4. Battery & Power Consumption =
1445 1445  
1446 -For example, change EU868 to US915
1447 1447  
1448 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656318662202-530.png?rev=1.1||alt="1656318662202-530.png"]]
1108 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1449 1449  
1450 -**2. Compile and build**
1110 +[[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1451 1451  
1452 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627163212-17.png?rev=1.1||alt="image-20220627163212-17.png"]]
1453 1453  
1454 -= 7. FAQ =
1113 += 5. OTA Firmware update =
1455 1455  
1456 -== 7.1 How to generate PWM Output in SN50v3-LB/LS? ==
1457 1457  
1116 +(% class="wikigeneratedid" %)
1117 +User can change firmware SN50v3-LB to:
1458 1458  
1459 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1119 +* Change Frequency band/ region.
1120 +* Update with new features.
1121 +* Fix bugs.
1460 1460  
1123 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1461 1461  
1462 -== 7.2 How to put several sensors to a SN50v3-LB/LS? ==
1463 1463  
1126 +Methods to Update Firmware:
1464 1464  
1465 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1128 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1129 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1466 1466  
1467 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1131 += 6. FAQ =
1468 1468  
1469 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1470 1470  
1471 1471  
1472 -= 8. Order Info =
1135 += 7. Order Info =
1473 1473  
1474 1474  
1475 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1138 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1476 1476  
1477 1477  (% style="color:red" %)**XX**(%%): The default frequency band
1478 1478  
... ... @@ -1492,12 +1492,11 @@
1492 1492  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1493 1493  * (% style="color:red" %)**NH**(%%): No Hole
1494 1494  
1495 -= 9. ​Packing Info =
1158 += 8. ​Packing Info =
1496 1496  
1497 -
1498 1498  (% style="color:#037691" %)**Package Includes**:
1499 1499  
1500 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1162 +* SN50v3-LB LoRaWAN Generic Node
1501 1501  
1502 1502  (% style="color:#037691" %)**Dimension and weight**:
1503 1503  
... ... @@ -1506,9 +1506,8 @@
1506 1506  * Package Size / pcs : cm
1507 1507  * Weight / pcs : g
1508 1508  
1509 -= 10. Support =
1171 += 9. Support =
1510 1510  
1511 1511  
1512 1512  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1513 -
1514 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
1175 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
image-20240717113113-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -34.0 KB
Content
image-20240717141512-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -948.8 KB
Content
image-20240717141528-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -234.2 KB
Content
image-20240717145707-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.8 KB
Content
image-20240717150334-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20240717150948-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.3 KB
Content
image-20240717152224-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -238.1 KB
Content
image-20240924112806-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -140.2 KB
Content
image-20250329085729-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -363.5 KB
Content
image-20250329085744-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.1 KB
Content
image-20250329090241-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -67.5 KB
Content
image-20250329090300-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
image-20250329090324-5.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -59.6 KB
Content
image-20250329090341-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -40.6 KB
Content
image-20250329090403-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -55.2 KB
Content