Last modified by kai on 2025/06/30 10:31

From version 113.2
edited by Xiaoling
on 2025/03/29 09:03
Change comment: There is no comment for this version
To version 44.5
edited by Saxer Lin
on 2023/05/23 17:48
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Xiaoling
1 +XWiki.Saxer
Content
... ... @@ -1,15 +3,10 @@
1 -
2 -
3 3  (% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
5 5  
6 6  
7 7  
6 +**Table of Contents:**
8 8  
9 -
10 -
11 -**Table of Contents:**
12 -
13 13  {{toc/}}
14 14  
15 15  
... ... @@ -19,19 +19,20 @@
19 19  
20 20  = 1. Introduction =
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
17 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
23 23  
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + Li-ion battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
20 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
26 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
28 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
30 +
35 35  == 1.2 ​Features ==
36 36  
37 37  
... ... @@ -43,15 +43,15 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-ion battery (SN50v3-LS)
42 +* 8500mAh Battery for long term use
48 48  
44 +
49 49  == 1.3 Specification ==
50 50  
51 51  
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
50 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -83,6 +83,7 @@
83 83  * Sleep Mode: 5uA @ 3.3v
84 84  * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
85 85  
82 +
86 86  == 1.4 Sleep mode and working mode ==
87 87  
88 88  
... ... @@ -94,10 +94,11 @@
94 94  == 1.5 Button & LEDs ==
95 95  
96 96  
97 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
94 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
98 98  
99 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
96 +
97 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
98 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 101  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 102  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 103  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -109,10 +109,11 @@
109 109  )))
110 110  |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
111 111  
110 +
112 112  == 1.6 BLE connection ==
113 113  
114 114  
115 -SN50v3-LB/LS supports BLE remote configure.
114 +SN50v3-LB supports BLE remote configure.
116 116  
117 117  
118 118  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -127,39 +127,35 @@
127 127  == 1.7 Pin Definitions ==
128 128  
129 129  
130 -[[image:image-20230610163213-1.png||height="404" width="699"]]
129 +[[image:image-20230513102034-2.png]]
131 131  
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 -=== 1.8.1 for LB version ===
136 136  
135 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:image-20240924112806-1.png||height="548" width="894"]]
137 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
139 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140 140  
141 141  
142 -=== 1.8.2 for LS version ===
143 -
144 -[[image:image-20231231203439-3.png||height="385" width="886"]]
145 -
146 -
147 147  == 1.9 Hole Option ==
148 148  
149 149  
150 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
145 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
151 151  
152 -[[image:image-20250329085729-1.jpeg]]
147 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
153 153  
154 -[[image:image-20250329085744-2.jpeg]]
149 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
155 155  
156 156  
157 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
152 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
158 158  
159 159  == 2.1 How it works ==
160 160  
161 161  
162 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
157 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 163  
164 164  
165 165  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -169,13 +169,12 @@
169 169  
170 170  The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
171 171  
172 -[[image:image-20250329090241-3.png]]
173 173  
174 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
168 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
175 175  
176 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
170 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
177 177  
178 -[[image:image-20250329090300-4.jpeg]]
172 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
179 179  
180 180  
181 181  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -201,10 +201,12 @@
201 201  
202 202  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
203 203  
204 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
205 205  
206 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
199 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
207 207  
201 +
202 +Press the button for 5 seconds to activate the SN50v3-LB.
203 +
208 208  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
209 209  
210 210  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
... ... @@ -215,52 +215,52 @@
215 215  === 2.3.1 Device Status, FPORT~=5 ===
216 216  
217 217  
218 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
214 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
219 219  
220 220  The Payload format is as below.
221 221  
222 222  
223 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
224 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
219 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
220 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
225 225  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
226 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
222 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
227 227  
228 228  Example parse in TTNv3
229 229  
230 230  
231 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
227 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
232 232  
233 233  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
234 234  
235 235  (% style="color:#037691" %)**Frequency Band**:
236 236  
237 -0x01: EU868
233 +*0x01: EU868
238 238  
239 -0x02: US915
235 +*0x02: US915
240 240  
241 -0x03: IN865
237 +*0x03: IN865
242 242  
243 -0x04: AU915
239 +*0x04: AU915
244 244  
245 -0x05: KZ865
241 +*0x05: KZ865
246 246  
247 -0x06: RU864
243 +*0x06: RU864
248 248  
249 -0x07: AS923
245 +*0x07: AS923
250 250  
251 -0x08: AS923-1
247 +*0x08: AS923-1
252 252  
253 -0x09: AS923-2
249 +*0x09: AS923-2
254 254  
255 -0x0a: AS923-3
251 +*0x0a: AS923-3
256 256  
257 -0x0b: CN470
253 +*0x0b: CN470
258 258  
259 -0x0c: EU433
255 +*0x0c: EU433
260 260  
261 -0x0d: KR920
257 +*0x0d: KR920
262 262  
263 -0x0e: MA869
259 +*0x0e: MA869
264 264  
265 265  
266 266  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -284,7 +284,7 @@
284 284  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
285 285  
286 286  
287 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
283 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
288 288  
289 289  For example:
290 290  
... ... @@ -293,7 +293,7 @@
293 293  
294 294  (% style="color:red" %) **Important Notice:**
295 295  
296 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
292 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
297 297  
298 298  2. All modes share the same Payload Explanation from HERE.
299 299  
... ... @@ -305,9 +305,9 @@
305 305  
306 306  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
307 307  
308 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
309 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
310 -|Value|Bat|(% style="width:191px" %)(((
304 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
305 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
306 +|**Value**|Bat|(% style="width:191px" %)(((
311 311  Temperature(DS18B20)(PC13)
312 312  )))|(% style="width:78px" %)(((
313 313  ADC(PA4)
... ... @@ -327,9 +327,9 @@
327 327  
328 328  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
329 329  
330 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
331 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
332 -|Value|BAT|(% style="width:196px" %)(((
326 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
327 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
328 +|**Value**|BAT|(% style="width:196px" %)(((
333 333  Temperature(DS18B20)(PC13)
334 334  )))|(% style="width:87px" %)(((
335 335  ADC(PA4)
... ... @@ -336,8 +336,9 @@
336 336  )))|(% style="width:189px" %)(((
337 337  Digital in(PB15) & Digital Interrupt(PA8)
338 338  )))|(% style="width:208px" %)(((
339 -Distance measure by: 1) LIDAR-Lite V3HP
340 -Or 2) Ultrasonic Sensor
335 +Distance measure by:1) LIDAR-Lite V3HP
336 +Or
337 +2) Ultrasonic Sensor
341 341  )))|(% style="width:117px" %)Reserved
342 342  
343 343  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
... ... @@ -357,9 +357,9 @@
357 357  
358 358  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
359 359  
360 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
361 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
362 -|Value|BAT|(% style="width:183px" %)(((
357 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
358 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
359 +|**Value**|BAT|(% style="width:183px" %)(((
363 363  Temperature(DS18B20)(PC13)
364 364  )))|(% style="width:173px" %)(((
365 365  Digital in(PB15) & Digital Interrupt(PA8)
... ... @@ -367,7 +367,8 @@
367 367  ADC(PA4)
368 368  )))|(% style="width:323px" %)(((
369 369  Distance measure by:1)TF-Mini plus LiDAR
370 -Or 2) TF-Luna LiDAR
367 +Or 
368 +2) TF-Luna LiDAR
371 371  )))|(% style="width:188px" %)Distance signal  strength
372 372  
373 373  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
... ... @@ -384,7 +384,7 @@
384 384  
385 385  (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
386 386  
387 -[[image:image-20230610170047-1.png||height="452" width="799"]]
385 +[[image:image-20230513105207-4.png||height="469" width="802"]]
388 388  
389 389  
390 390  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
... ... @@ -392,11 +392,11 @@
392 392  
393 393  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
394 394  
395 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
396 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
393 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
394 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
397 397  **Size(bytes)**
398 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
399 -|Value|(% style="width:68px" %)(((
396 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
397 +|**Value**|(% style="width:68px" %)(((
400 400  ADC1(PA4)
401 401  )))|(% style="width:75px" %)(((
402 402  ADC2(PA5)
... ... @@ -418,9 +418,9 @@
418 418  
419 419  This mode has total 11 bytes. As shown below:
420 420  
421 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
422 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
423 -|Value|BAT|(% style="width:186px" %)(((
419 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
420 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
421 +|**Value**|BAT|(% style="width:186px" %)(((
424 424  Temperature1(DS18B20)(PC13)
425 425  )))|(% style="width:82px" %)(((
426 426  ADC(PA4)
... ... @@ -459,11 +459,11 @@
459 459  
460 460  Check the response of this command and adjust the value to match the real value for thing.
461 461  
462 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
463 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
460 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
461 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
464 464  **Size(bytes)**
465 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
466 -|Value|BAT|(% style="width:193px" %)(((
463 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
464 +|**Value**|BAT|(% style="width:193px" %)(((
467 467  Temperature(DS18B20)(PC13)
468 468  )))|(% style="width:85px" %)(((
469 469  ADC(PA4)
... ... @@ -474,6 +474,7 @@
474 474  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
475 475  
476 476  
475 +
477 477  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
478 478  
479 479  
... ... @@ -486,9 +486,9 @@
486 486  
487 487  (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
488 488  
489 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
490 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
491 -|Value|BAT|(% style="width:256px" %)(((
488 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
489 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
490 +|**Value**|BAT|(% style="width:256px" %)(((
492 492  Temperature(DS18B20)(PC13)
493 493  )))|(% style="width:108px" %)(((
494 494  ADC(PA4)
... ... @@ -504,11 +504,11 @@
504 504  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
505 505  
506 506  
507 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
508 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
506 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
507 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
509 509  **Size(bytes)**
510 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
511 -|Value|BAT|(% style="width:188px" %)(((
509 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
510 +|**Value**|BAT|(% style="width:188px" %)(((
512 512  Temperature(DS18B20)
513 513  (PC13)
514 514  )))|(% style="width:83px" %)(((
... ... @@ -523,11 +523,11 @@
523 523  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
524 524  
525 525  
526 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
527 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
525 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
526 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
528 528  **Size(bytes)**
529 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
530 -|Value|BAT|(% style="width:207px" %)(((
528 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
529 +|**Value**|BAT|(% style="width:207px" %)(((
531 531  Temperature(DS18B20)
532 532  (PC13)
533 533  )))|(% style="width:94px" %)(((
... ... @@ -546,11 +546,11 @@
546 546  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
547 547  
548 548  
549 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
550 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
548 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
549 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
551 551  **Size(bytes)**
552 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
553 -|Value|BAT|(((
551 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
552 +|**Value**|BAT|(((
554 554  Temperature
555 555  (DS18B20)(PC13)
556 556  )))|(((
... ... @@ -586,163 +586,6 @@
586 586  When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
587 587  
588 588  
589 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
590 -
591 -
592 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
593 -
594 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
595 -
596 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
597 -
598 -
599 -===== 2.3.2.10.a  Uplink, PWM input capture =====
600 -
601 -
602 -[[image:image-20230817172209-2.png||height="439" width="683"]]
603 -
604 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
605 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
606 -|Value|Bat|(% style="width:191px" %)(((
607 -Temperature(DS18B20)(PC13)
608 -)))|(% style="width:78px" %)(((
609 -ADC(PA4)
610 -)))|(% style="width:135px" %)(((
611 -PWM_Setting
612 -&Digital Interrupt(PA8)
613 -)))|(% style="width:70px" %)(((
614 -Pulse period
615 -)))|(% style="width:89px" %)(((
616 -Duration of high level
617 -)))
618 -
619 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
620 -
621 -
622 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
623 -
624 -**Frequency:**
625 -
626 -(% class="MsoNormal" %)
627 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
628 -
629 -(% class="MsoNormal" %)
630 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
631 -
632 -
633 -(% class="MsoNormal" %)
634 -**Duty cycle:**
635 -
636 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
637 -
638 -[[image:image-20230818092200-1.png||height="344" width="627"]]
639 -
640 -
641 -===== 2.3.2.10.b  Uplink, PWM output =====
642 -
643 -
644 -[[image:image-20230817172209-2.png||height="439" width="683"]]
645 -
646 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
647 -
648 -a is the time delay of the output, the unit is ms.
649 -
650 -b is the output frequency, the unit is HZ.
651 -
652 -c is the duty cycle of the output, the unit is %.
653 -
654 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
655 -
656 -aa is the time delay of the output, the unit is ms.
657 -
658 -bb is the output frequency, the unit is HZ.
659 -
660 -cc is the duty cycle of the output, the unit is %.
661 -
662 -
663 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
664 -
665 -The oscilloscope displays as follows:
666 -
667 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
668 -
669 -
670 -===== 2.3.2.10.c  Downlink, PWM output =====
671 -
672 -
673 -[[image:image-20230817173800-3.png||height="412" width="685"]]
674 -
675 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
676 -
677 - xx xx xx is the output frequency, the unit is HZ.
678 -
679 - yy is the duty cycle of the output, the unit is %.
680 -
681 - zz zz is the time delay of the output, the unit is ms.
682 -
683 -
684 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
685 -
686 -The oscilloscope displays as follows:
687 -
688 -[[image:image-20230817173858-5.png||height="634" width="843"]]
689 -
690 -
691 -
692 -==== 2.3.2.11  MOD~=11 (TEMP117)(Since firmware V1.3.0) ====
693 -
694 -
695 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
696 -
697 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
698 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
699 -|Value|Bat|(% style="width:191px" %)(((
700 -Temperature(DS18B20)(PC13)
701 -)))|(% style="width:78px" %)(((
702 -ADC(PA4)
703 -)))|(% style="width:216px" %)(((
704 -Digital in(PB15)&Digital Interrupt(PA8)
705 -)))|(% style="width:308px" %)(((
706 -Temperature
707 -
708 -(TEMP117)
709 -)))|(% style="width:154px" %)(((
710 -Reserved position, meaningless
711 -
712 -(0x0000)
713 -)))
714 -
715 -[[image:image-20240717113113-1.png||height="352" width="793"]]
716 -
717 -Connection:
718 -
719 -[[image:image-20240717141528-2.jpeg||height="430" width="654"]]
720 -
721 -
722 -==== 2.3.2.12  MOD~=12 (Count+SHT31)(Since firmware V1.3.1) ====
723 -
724 -
725 -This mode has total 11 bytes. As shown below:
726 -
727 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
728 -|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
729 -|Value|BAT|(% style="width:86px" %)(((
730 - Temperature_SHT31
731 -)))|(% style="width:86px" %)(((
732 -Humidity_SHT31
733 -)))|(% style="width:86px" %)(((
734 - Digital in(PB15)
735 -)))|(% style="width:86px" %)(((
736 -Count(PA8)
737 -)))
738 -
739 -[[image:image-20240717150948-5.png||height="389" width="979"]]
740 -
741 -Wiring example:
742 -
743 -[[image:image-20240717152224-6.jpeg||height="359" width="680"]]
744 -
745 -
746 746  === 2.3.3  ​Decode payload ===
747 747  
748 748  
... ... @@ -752,13 +752,13 @@
752 752  
753 753  The payload decoder function for TTN V3 are here:
754 754  
755 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
597 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
756 756  
757 757  
758 758  ==== 2.3.3.1 Battery Info ====
759 759  
760 760  
761 -Check the battery voltage for SN50v3-LB/LS.
603 +Check the battery voltage for SN50v3-LB.
762 762  
763 763  Ex1: 0x0B45 = 2885mV
764 764  
... ... @@ -806,9 +806,9 @@
806 806  ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
807 807  
808 808  
809 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
651 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
810 810  
811 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
653 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
812 812  
813 813  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
814 814  
... ... @@ -816,16 +816,10 @@
816 816  (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
817 817  
818 818  
819 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
820 -
821 -[[image:image-20230811113449-1.png||height="370" width="608"]]
822 -
823 -
824 -
825 825  ==== 2.3.3.5 Digital Interrupt ====
826 826  
827 827  
828 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
664 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
829 829  
830 830  (% style="color:blue" %)** Interrupt connection method:**
831 831  
... ... @@ -838,18 +838,18 @@
838 838  
839 839  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
840 840  
841 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
677 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
842 842  
843 843  
844 844  (% style="color:blue" %)**Below is the installation example:**
845 845  
846 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
682 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
847 847  
848 848  * (((
849 -One pin to SN50v3-LB/LS's PA8 pin
685 +One pin to SN50v3-LB's PA8 pin
850 850  )))
851 851  * (((
852 -The other pin to SN50v3-LB/LS's VDD pin
688 +The other pin to SN50v3-LB's VDD pin
853 853  )))
854 854  
855 855  Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
... ... @@ -885,12 +885,12 @@
885 885  
886 886  We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
887 887  
888 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
724 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
889 889  
890 890  
891 891  Below is the connection to SHT20/ SHT31. The connection is as below:
892 892  
893 -[[image:image-20230610170152-2.png||height="501" width="846"]]
729 +[[image:image-20230513103633-3.png||height="448" width="716"]]
894 894  
895 895  
896 896  The device will be able to get the I2C sensor data now and upload to IoT Server.
... ... @@ -919,7 +919,7 @@
919 919  
920 920  This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
921 921  
922 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
758 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
923 923  
924 924  The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
925 925  
... ... @@ -928,7 +928,7 @@
928 928  [[image:image-20230512173903-6.png||height="596" width="715"]]
929 929  
930 930  
931 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
767 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
932 932  
933 933  The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
934 934  
... ... @@ -940,13 +940,13 @@
940 940  ==== 2.3.3.9  Battery Output - BAT pin ====
941 941  
942 942  
943 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
779 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
944 944  
945 945  
946 946  ==== 2.3.3.10  +5V Output ====
947 947  
948 948  
949 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
785 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
950 950  
951 951  The 5V output time can be controlled by AT Command.
952 952  
... ... @@ -968,37 +968,9 @@
968 968  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
969 969  
970 970  
971 -==== 2.3.3.12  PWM MOD ====
807 +==== 2.3.3.12  Working MOD ====
972 972  
973 973  
974 -* (((
975 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
976 -)))
977 -* (((
978 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
979 -)))
980 -
981 - [[image:image-20230817183249-3.png||height="320" width="417"]]
982 -
983 -* (((
984 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
985 -)))
986 -* (((
987 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
988 -)))
989 -* (((
990 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
991 -
992 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
993 -
994 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
995 -
996 -b) If the output duration is more than 30 seconds, better to use external power source. 
997 -)))
998 -
999 -==== 2.3.3.13  Working MOD ====
1000 -
1001 -
1002 1002  The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
1003 1003  
1004 1004  User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
... ... @@ -1014,8 +1014,8 @@
1014 1014  * 6: MOD7
1015 1015  * 7: MOD8
1016 1016  * 8: MOD9
1017 -* 9: MOD10
1018 1018  
826 +
1019 1019  == 2.4 Payload Decoder file ==
1020 1020  
1021 1021  
... ... @@ -1029,22 +1029,23 @@
1029 1029  == 2.5 Frequency Plans ==
1030 1030  
1031 1031  
1032 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
840 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
1033 1033  
1034 1034  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1035 1035  
1036 1036  
1037 -= 3. Configure SN50v3-LB/LS =
845 += 3. Configure SN50v3-LB =
1038 1038  
1039 1039  == 3.1 Configure Methods ==
1040 1040  
1041 1041  
1042 -SN50v3-LB/LS supports below configure method:
850 +SN50v3-LB supports below configure method:
1043 1043  
1044 1044  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1045 1045  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
1046 1046  * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
1047 1047  
856 +
1048 1048  == 3.2 General Commands ==
1049 1049  
1050 1050  
... ... @@ -1058,10 +1058,10 @@
1058 1058  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1059 1059  
1060 1060  
1061 -== 3.3 Commands special design for SN50v3-LB/LS ==
870 +== 3.3 Commands special design for SN50v3-LB ==
1062 1062  
1063 1063  
1064 -These commands only valid for SN50v3-LB/LS, as below:
873 +These commands only valid for SN50v3-LB, as below:
1065 1065  
1066 1066  
1067 1067  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1072,7 +1072,7 @@
1072 1072  (% style="color:blue" %)**AT Command: AT+TDC**
1073 1073  
1074 1074  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1075 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
884 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1076 1076  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1077 1077  30000
1078 1078  OK
... ... @@ -1092,6 +1092,7 @@
1092 1092  * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1093 1093  * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1094 1094  
904 +
1095 1095  === 3.3.2 Get Device Status ===
1096 1096  
1097 1097  
... ... @@ -1105,109 +1105,42 @@
1105 1105  === 3.3.3 Set Interrupt Mode ===
1106 1106  
1107 1107  
1108 -==== 3.3.3.1 Before V1.3.4 firmware ====
918 +Feature, Set Interrupt mode for GPIO_EXIT.
1109 1109  
1110 -(% style="color:red" %)**Note: Before V1.3.4 firmware, the interrupt function of PA8,PA4,PB15 had only one parameter to set, which was used to set the interrupt trigger mode.**
920 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1111 1111  
1112 -Feature, Set Interrupt mode for PA8, PA4, PB15.
1113 -
1114 -Before using the interrupt function of the **INT** pin, users can set the interrupt triggering mode as required.
1115 -
1116 -(% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a**
1117 -
1118 -(% style="color:#4472c4" %)**AT+INTMODx:**
1119 -
1120 -* (% style="color:#4472c4" %)**AT+INTMOD1   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
1121 -* (% style="color:#4472c4" %)**AT+INTMOD2   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1122 -* (% style="color:#4472c4" %)**AT+INTMOD3   **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
1123 -
1124 -**Parameter a setting:**
1125 -
1126 -* **0:** Disable Interrupt
1127 -* **1:** Trigger by rising and falling edge
1128 -* **2:** Trigger by falling edge
1129 -* **3: **Trigger by rising edge
1130 -
1131 -**Example:**
1132 -
1133 -* AT+INTMOD1=0  ~/~/Disable the PA8 pin interrupt function
1134 -* AT+INTMOD2=2  ~/~/Set the interrupt of the PA4 pin to be triggered by the falling edge
1135 -* AT+INTMOD3=3  ~/~/Set the interrupt of the PB15 pin to be triggered by the rising edge
1136 -
1137 -(% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb**
1138 -
1139 -Format: Command Code (0x06 00) followed by 2 bytes.
1140 -
1141 -(% style="color:#4472c4" %)**aa:**(%%) Set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
1142 -
1143 -(% style="color:#4472c4" %)**bb: **(%%)Set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
1144 -
1145 -**Example:**
1146 -
1147 -* Downlink Payload: **06 00 00 01     **~/~/ Equal to AT+INTMOD1=1
1148 -* Downlink Payload: **06 00 01 02     **~/~/ Equal to AT+INTMOD2=2
1149 -* Downlink Payload: **06 00 02 03     **~/~/ Equal to AT+INTMOD3=3
1150 -
1151 -==== 3.3.3.2 Since V1.3.4 firmware ====
1152 -
1153 -(% style="color:red" %)**Note: Since V1.3.4 firmware, the Interrupt function has added a new parameter to set the delay time, i.e. the state hold time.**
1154 -
1155 -(% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx=a,b**
1156 -
1157 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:420px" %)
1158 -|=(% style="width: 116px; background-color: rgb(79, 129, 189); color: white;" %)**Parameter **|=(% style="width: 392px; background-color: rgb(79, 129, 189); color: white;" %)**Values and functions**
1159 -|(% style="width:116px" %)(((
1160 -
1161 -
1162 -**x**
1163 -)))|(% style="width:392px" %)(((
1164 -1: Set the interrupt mode for (% style="background-color:yellow" %)** PA8**(%%) pin.
1165 -
1166 -2:  Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin.
1167 -
1168 -3: Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin.
922 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
923 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
924 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
925 +0
926 +OK
927 +the mode is 0 =Disable Interrupt
1169 1169  )))
1170 -|(% style="width:116px" %)(((
1171 -
929 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
930 +Set Transmit Interval
931 +0. (Disable Interrupt),
932 +~1. (Trigger by rising and falling edge)
933 +2. (Trigger by falling edge)
934 +3. (Trigger by rising edge)
935 +)))|(% style="width:157px" %)OK
936 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
937 +Set Transmit Interval
938 +trigger by rising edge.
939 +)))|(% style="width:157px" %)OK
940 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1172 1172  
1173 -**a**
1174 -)))|(% style="width:392px" %)(((
1175 -**0:** Disable Interrupt
942 +(% style="color:blue" %)**Downlink Command: 0x06**
1176 1176  
1177 -**1:** Trigger by rising and falling edge
944 +Format: Command Code (0x06) followed by 3 bytes.
1178 1178  
1179 -**2:** Trigger by falling edge
946 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1180 1180  
1181 -**3: **Trigger by rising edge
1182 -)))
1183 -|(% style="width:116px" %)**b**|(% style="width:392px" %)(((
1184 -Set the delay time. (Default: 0)
948 +* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
949 +* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
950 +* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
951 +* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1185 1185  
1186 -**Value range: 0~~65535 ms**
1187 -)))
1188 1188  
1189 -**Example:**
1190 -
1191 -* AT+INTMOD1=0,0  ~/~/Disable the PA8 pin interrupt function
1192 -* AT+INTMOD2=2,1000  ~/~/Set the interrupt of the PA4 pin to be triggered by the falling edge, however, the interrupt will only be triggered if the low level state remains 1000ms
1193 -* AT+INTMOD3=3,2500  ~/~/Set the interrupt of the PB15 pin to be triggered by the rising edge, however, the interrupt will only be triggered if the high level state remains 2500ms
1194 -
1195 -(% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb cc**
1196 -
1197 -Format: Command Code (0x06 00) followed by 4 bytes.
1198 -
1199 -(% style="color:#4472c4" %)**aa:**(%%) **1 byte**, set the corresponding pin. ((% style="background-color:yellow" %)**00**(%%): PA8 Pin;  (% style="background-color:yellow" %)**01**(%%)**: **PA4 Pin;  (% style="background-color:yellow" %)**02**(%%): PB15 Pin.)
1200 -
1201 -(% style="color:#4472c4" %)**bb: **(%%)**1 byte**, set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising)
1202 -
1203 -(% style="color:#4472c4" %)**cc: **(%%)**2 bytes**, Set the delay time. (0x00~~0xFFFF)
1204 -
1205 -**Example:**
1206 -
1207 -* Downlink Payload: **06 00 00 01 00 00     **~/~/ Equal to AT+INTMOD1=1,0
1208 -* Downlink Payload: **06 00 01 02 0B B8     **~/~/ Equal to AT+INTMOD2=2,3000
1209 -* Downlink Payload: **06 00 02 03 03 E8   **~/~/ Equal to AT+INTMOD3=3,1000
1210 -
1211 1211  === 3.3.4 Set Power Output Duration ===
1212 1212  
1213 1213  
... ... @@ -1222,7 +1222,7 @@
1222 1222  (% style="color:blue" %)**AT Command: AT+5VT**
1223 1223  
1224 1224  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
968 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1226 1226  |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1227 1227  500(default)
1228 1228  OK
... ... @@ -1240,6 +1240,7 @@
1240 1240  * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1241 1241  * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1242 1242  
986 +
1243 1243  === 3.3.5 Set Weighing parameters ===
1244 1244  
1245 1245  
... ... @@ -1248,9 +1248,9 @@
1248 1248  (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1249 1249  
1250 1250  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1251 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
995 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1252 1252  |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1253 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
997 +|(% style="width:154px" %)AT+WEIGAP=|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1254 1254  |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1255 1255  
1256 1256  (% style="color:blue" %)**Downlink Command: 0x08**
... ... @@ -1265,6 +1265,7 @@
1265 1265  * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1266 1266  * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1267 1267  
1012 +
1268 1268  === 3.3.6 Set Digital pulse count value ===
1269 1269  
1270 1270  
... ... @@ -1274,8 +1274,8 @@
1274 1274  
1275 1275  (% style="color:blue" %)**AT Command: AT+SETCNT**
1276 1276  
1277 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1278 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1022 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1023 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1279 1279  |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1280 1280  |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1281 1281  
... ... @@ -1288,6 +1288,7 @@
1288 1288  * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1289 1289  * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1290 1290  
1036 +
1291 1291  === 3.3.7 Set Workmode ===
1292 1292  
1293 1293  
... ... @@ -1295,8 +1295,8 @@
1295 1295  
1296 1296  (% style="color:blue" %)**AT Command: AT+MOD**
1297 1297  
1298 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1299 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1044 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1045 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1300 1300  |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1301 1301  OK
1302 1302  )))
... ... @@ -1312,101 +1312,12 @@
1312 1312  * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1313 1313  * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1314 1314  
1315 -=== 3.3.8 PWM setting ===
1316 1316  
1062 += 4. Battery & Power Consumption =
1317 1317  
1318 -Feature: Set the time acquisition unit for PWM input capture.
1319 1319  
1320 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1065 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1321 1321  
1322 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1323 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1324 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1325 -0(default)
1326 -OK
1327 -)))
1328 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1329 -OK
1330 -
1331 -)))
1332 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1333 -
1334 -(% style="color:blue" %)**Downlink Command: 0x0C**
1335 -
1336 -Format: Command Code (0x0C) followed by 1 bytes.
1337 -
1338 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1339 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1340 -
1341 -**Feature: Set PWM output time, output frequency and output duty cycle.**
1342 -
1343 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1344 -
1345 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1346 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1347 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1348 -0,0,0(default)
1349 -OK
1350 -)))
1351 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1352 -OK
1353 -
1354 -)))
1355 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1356 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1357 -
1358 -
1359 -)))|(% style="width:137px" %)(((
1360 -OK
1361 -)))
1362 -
1363 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1364 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1365 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1366 -AT+PWMOUT=a,b,c
1367 -
1368 -
1369 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1370 -Set PWM output time, output frequency and output duty cycle.
1371 -
1372 -(((
1373 -
1374 -)))
1375 -
1376 -(((
1377 -
1378 -)))
1379 -)))|(% style="width:242px" %)(((
1380 -a: Output time (unit: seconds)
1381 -The value ranges from 0 to 65535.
1382 -When a=65535, PWM will always output.
1383 -)))
1384 -|(% style="width:242px" %)(((
1385 -b: Output frequency (unit: HZ)
1386 -
1387 -range 5~~100000HZ
1388 -)))
1389 -|(% style="width:242px" %)(((
1390 -c: Output duty cycle (unit: %)
1391 -The value ranges from 0 to 100.
1392 -)))
1393 -
1394 -(% style="color:blue" %)**Downlink Command: 0x0B**
1395 -
1396 -Format: Command Code (0x0B) followed by 6 bytes.
1397 -
1398 -0B + Output frequency (3bytes)+ Output duty cycle (1bytes)+Output time (2bytes)
1399 -
1400 -Downlink payload:0B bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1401 -
1402 -* Example 1: Downlink Payload: 0B 0003E8 32 0005 **~-~-->**  AT+PWMOUT=5,1000,50
1403 -* Example 2: Downlink Payload: 0B 0007D0 3C 000A **~-~-->**  AT+PWMOUT=10,2000,60
1404 -
1405 -= 4. Battery & Power Cons =
1406 -
1407 -
1408 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1409 -
1410 1410  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1411 1411  
1412 1412  
... ... @@ -1414,66 +1414,34 @@
1414 1414  
1415 1415  
1416 1416  (% class="wikigeneratedid" %)
1417 -**User can change firmware SN50v3-LB/LS to:**
1074 +**User can change firmware SN50v3-LB to:**
1418 1418  
1419 1419  * Change Frequency band/ region.
1420 1420  * Update with new features.
1421 1421  * Fix bugs.
1422 1422  
1423 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1080 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1424 1424  
1425 1425  **Methods to Update Firmware:**
1426 1426  
1427 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1428 -* Update through UART TTL interface**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1084 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1085 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1429 1429  
1430 -= 6.  Developer Guide =
1431 1431  
1432 -SN50v3 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from:
1088 += 6. FAQ =
1433 1433  
1434 -* (((
1435 -Software Source Code: [[Releases · dragino/SN50v3 (github.com)>>url:https://github.com/dragino/SN50v3/releases]]
1436 -)))
1437 -* (((
1438 -Hardware Design files:  **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1439 -)))
1440 -* (((
1441 -Compile instruction:[[Compile instruction>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Module/Compile%20and%20Upload%20Code%20to%20ASR6601%20Platform/]]
1442 -)))
1090 +== 6.1 Where can i find source code of SN50v3-LB? ==
1443 1443  
1444 -**~1. If you want to change frequency, modify the Preprocessor Symbols.**
1445 1445  
1446 -For example, change EU868 to US915
1093 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1094 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1447 1447  
1448 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656318662202-530.png?rev=1.1||alt="1656318662202-530.png"]]
1449 1449  
1450 -**2. Compile and build**
1097 += 7. Order Info =
1451 1451  
1452 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627163212-17.png?rev=1.1||alt="image-20220627163212-17.png"]]
1453 1453  
1454 -= 7. FAQ =
1100 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1455 1455  
1456 -== 7.1 How to generate PWM Output in SN50v3-LB/LS? ==
1457 -
1458 -
1459 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1460 -
1461 -
1462 -== 7.2 How to put several sensors to a SN50v3-LB/LS? ==
1463 -
1464 -
1465 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1466 -
1467 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1468 -
1469 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1470 -
1471 -
1472 -= 8. Order Info =
1473 -
1474 -
1475 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1476 -
1477 1477  (% style="color:red" %)**XX**(%%): The default frequency band
1478 1478  
1479 1479  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
... ... @@ -1492,12 +1492,13 @@
1492 1492  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1493 1493  * (% style="color:red" %)**NH**(%%): No Hole
1494 1494  
1495 -= 9. ​Packing Info =
1496 1496  
1121 += 8. ​Packing Info =
1497 1497  
1123 +
1498 1498  (% style="color:#037691" %)**Package Includes**:
1499 1499  
1500 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1126 +* SN50v3-LB LoRaWAN Generic Node
1501 1501  
1502 1502  (% style="color:#037691" %)**Dimension and weight**:
1503 1503  
... ... @@ -1506,9 +1506,10 @@
1506 1506  * Package Size / pcs : cm
1507 1507  * Weight / pcs : g
1508 1508  
1509 -= 10. Support =
1510 1510  
1136 += 9. Support =
1511 1511  
1138 +
1512 1512  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1513 1513  
1514 1514  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
image-20240717113113-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -34.0 KB
Content
image-20240717141512-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -948.8 KB
Content
image-20240717141528-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -234.2 KB
Content
image-20240717145707-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.8 KB
Content
image-20240717150334-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20240717150948-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.3 KB
Content
image-20240717152224-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -238.1 KB
Content
image-20240924112806-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -140.2 KB
Content
image-20250329085729-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -363.5 KB
Content
image-20250329085744-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.1 KB
Content
image-20250329090241-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -67.5 KB
Content
image-20250329090300-4.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content