<
From version < 11.1 >
edited by Edwin Chen
on 2023/05/11 20:42
To version < 86.1 >
edited by Xiaoling
on 2024/01/03 09:55
>
Change comment: Uploaded new attachment "image-20240103095513-1.jpeg", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB User Manual
1 +SN50v3-LB LoRaWAN Sensor Node User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Xiaoling
Content
... ... @@ -1,8 +1,9 @@
1 -[[image:image-20230511201248-1.png||height="403" width="489"]]
1 +(% style="text-align:center" %)
2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]]
2 2  
3 3  
4 4  
5 -**Table of Contents**
6 +**Table of Contents:**
6 6  
7 7  {{toc/}}
8 8  
... ... @@ -15,23 +15,20 @@
15 15  
16 16  == 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
19 +
18 18  (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
19 19  
22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
20 20  
21 -(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 -
23 -
24 24  (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 25  
26 -
27 27  (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -
30 30  SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
31 31  
32 -
33 33  == 1.2 ​Features ==
34 34  
32 +
35 35  * LoRaWAN 1.0.3 Class A
36 36  * Ultra-low power consumption
37 37  * Open-Source hardware/software
... ... @@ -44,6 +44,7 @@
44 44  
45 45  == 1.3 Specification ==
46 46  
45 +
47 47  (% style="color:#037691" %)**Common DC Characteristics:**
48 48  
49 49  * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
... ... @@ -80,6 +80,7 @@
80 80  
81 81  == 1.4 Sleep mode and working mode ==
82 82  
82 +
83 83  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 84  
85 85  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -88,7 +88,7 @@
88 88  == 1.5 Button & LEDs ==
89 89  
90 90  
91 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
92 92  
93 93  
94 94  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
... ... @@ -122,21 +122,27 @@
122 122  == 1.7 Pin Definitions ==
123 123  
124 124  
125 -[[image:image-20230511203450-2.png||height="443" width="785"]]
125 +[[image:image-20230610163213-1.png||height="404" width="699"]]
126 126  
127 127  
128 128  == 1.8 Mechanical ==
129 129  
130 +=== 1.8.1 for LB version ===
130 130  
131 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132 132  
133 -[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134 134  
135 +
135 135  [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 136  
138 +=== 1.8.2 for LS version ===
137 137  
138 -== Hole Option ==
140 +[[image:image-20231231203439-3.png||height="385" width="886"]]
139 139  
142 +
143 +== 1.9 Hole Option ==
144 +
145 +
140 140  SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
141 141  
142 142  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
... ... @@ -149,7 +149,7 @@
149 149  == 2.1 How it works ==
150 150  
151 151  
152 -The S31x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
158 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
153 153  
154 154  
155 155  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -157,14 +157,14 @@
157 157  
158 158  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
159 159  
160 -The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
166 +The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
161 161  
162 162  
163 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S31x-LB.
169 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
164 164  
165 -Each S31x-LB is shipped with a sticker with the default device EUI as below:
171 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
166 166  
167 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]]
173 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
168 168  
169 169  
170 170  You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
... ... @@ -191,10 +191,10 @@
191 191  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
192 192  
193 193  
194 -(% style="color:blue" %)**Step 2:**(%%) Activate on S31x-LB
200 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
195 195  
196 196  
197 -Press the button for 5 seconds to activate the S31x-LB.
203 +Press the button for 5 seconds to activate the SN50v3-LB.
198 198  
199 199  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 200  
... ... @@ -206,7 +206,7 @@
206 206  === 2.3.1 Device Status, FPORT~=5 ===
207 207  
208 208  
209 -Users can use the downlink command(**0x26 01**) to ask S31x-LB to send device configure detail, include device configure status. S31x-LB will uplink a payload via FPort=5 to server.
215 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server.
210 210  
211 211  The Payload format is as below.
212 212  
... ... @@ -214,46 +214,44 @@
214 214  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
215 215  |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
216 216  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
217 -|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
223 +|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
218 218  
219 219  Example parse in TTNv3
220 220  
221 -[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]]
222 222  
228 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C
223 223  
224 -(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A
225 -
226 226  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
227 227  
228 228  (% style="color:#037691" %)**Frequency Band**:
229 229  
230 -*0x01: EU868
234 +0x01: EU868
231 231  
232 -*0x02: US915
236 +0x02: US915
233 233  
234 -*0x03: IN865
238 +0x03: IN865
235 235  
236 -*0x04: AU915
240 +0x04: AU915
237 237  
238 -*0x05: KZ865
242 +0x05: KZ865
239 239  
240 -*0x06: RU864
244 +0x06: RU864
241 241  
242 -*0x07: AS923
246 +0x07: AS923
243 243  
244 -*0x08: AS923-1
248 +0x08: AS923-1
245 245  
246 -*0x09: AS923-2
250 +0x09: AS923-2
247 247  
248 -*0x0a: AS923-3
252 +0x0a: AS923-3
249 249  
250 -*0x0b: CN470
254 +0x0b: CN470
251 251  
252 -*0x0c: EU433
256 +0x0c: EU433
253 253  
254 -*0x0d: KR920
258 +0x0d: KR920
255 255  
256 -*0x0e: MA869
260 +0x0e: MA869
257 257  
258 258  
259 259  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -274,41 +274,446 @@
274 274  Ex2: 0x0B49 = 2889mV
275 275  
276 276  
277 -=== 2.3.2  Sensor Data. FPORT~=2 ===
281 +=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
278 278  
279 279  
280 -Sensor Data is uplink via FPORT=2
284 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes.
281 281  
282 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %)
283 -|=(% style="width: 90px;background-color:#D9E2F3" %)(((
286 +For example:
287 +
288 + (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
289 +
290 +
291 +(% style="color:red" %) **Important Notice:**
292 +
293 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload.
294 +
295 +2. All modes share the same Payload Explanation from HERE.
296 +
297 +3. By default, the device will send an uplink message every 20 minutes.
298 +
299 +
300 +==== 2.3.2.1  MOD~=1 (Default Mode) ====
301 +
302 +
303 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
304 +
305 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
306 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
307 +|Value|Bat|(% style="width:191px" %)(((
308 +Temperature(DS18B20)(PC13)
309 +)))|(% style="width:78px" %)(((
310 +ADC(PA4)
311 +)))|(% style="width:216px" %)(((
312 +Digital in(PB15)&Digital Interrupt(PA8)
313 +)))|(% style="width:308px" %)(((
314 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
315 +)))|(% style="width:154px" %)(((
316 +Humidity(SHT20 or SHT31)
317 +)))
318 +
319 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
320 +
321 +
322 +==== 2.3.2.2  MOD~=2 (Distance Mode) ====
323 +
324 +
325 +This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
326 +
327 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
328 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
329 +|Value|BAT|(% style="width:196px" %)(((
330 +Temperature(DS18B20)(PC13)
331 +)))|(% style="width:87px" %)(((
332 +ADC(PA4)
333 +)))|(% style="width:189px" %)(((
334 +Digital in(PB15) & Digital Interrupt(PA8)
335 +)))|(% style="width:208px" %)(((
336 +Distance measure by: 1) LIDAR-Lite V3HP
337 +Or 2) Ultrasonic Sensor
338 +)))|(% style="width:117px" %)Reserved
339 +
340 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
341 +
342 +
343 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
344 +
345 +[[image:image-20230512173758-5.png||height="563" width="712"]]
346 +
347 +
348 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
349 +
350 +(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
351 +
352 +[[image:image-20230512173903-6.png||height="596" width="715"]]
353 +
354 +
355 +For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
356 +
357 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
358 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
359 +|Value|BAT|(% style="width:183px" %)(((
360 +Temperature(DS18B20)(PC13)
361 +)))|(% style="width:173px" %)(((
362 +Digital in(PB15) & Digital Interrupt(PA8)
363 +)))|(% style="width:84px" %)(((
364 +ADC(PA4)
365 +)))|(% style="width:323px" %)(((
366 +Distance measure by:1)TF-Mini plus LiDAR
367 +Or 2) TF-Luna LiDAR
368 +)))|(% style="width:188px" %)Distance signal  strength
369 +
370 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
371 +
372 +
373 +**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
374 +
375 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
376 +
377 +[[image:image-20230512180609-7.png||height="555" width="802"]]
378 +
379 +
380 +**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
381 +
382 +(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
383 +
384 +[[image:image-20230610170047-1.png||height="452" width="799"]]
385 +
386 +
387 +==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
388 +
389 +
390 +This mode has total 12 bytes. Include 3 x ADC + 1x I2C
391 +
392 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
393 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
284 284  **Size(bytes)**
285 -)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2
286 -|(% style="width:99px" %)**Value**|(% style="width:69px" %)(((
287 -[[Battery>>||anchor="HBattery:"]]
288 -)))|(% style="width:130px" %)(((
289 -[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]]
290 -)))|(% style="width:91px" %)(((
291 -[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]]
292 -)))|(% style="width:103px" %)(((
293 -[[Temperature>>||anchor="HTemperature:"]]
294 -)))|(% style="width:80px" %)(((
295 -[[Humidity>>||anchor="HHumidity:"]]
395 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
396 +|Value|(% style="width:68px" %)(((
397 +ADC1(PA4)
398 +)))|(% style="width:75px" %)(((
399 +ADC2(PA5)
400 +)))|(((
401 +ADC3(PA8)
402 +)))|(((
403 +Digital Interrupt(PB15)
404 +)))|(% style="width:304px" %)(((
405 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
406 +)))|(% style="width:163px" %)(((
407 +Humidity(SHT20 or SHT31)
408 +)))|(% style="width:53px" %)Bat
409 +
410 +[[image:image-20230513110214-6.png]]
411 +
412 +
413 +==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
414 +
415 +
416 +This mode has total 11 bytes. As shown below:
417 +
418 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
419 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
420 +|Value|BAT|(% style="width:186px" %)(((
421 +Temperature1(DS18B20)(PC13)
422 +)))|(% style="width:82px" %)(((
423 +ADC(PA4)
424 +)))|(% style="width:210px" %)(((
425 +Digital in(PB15) & Digital Interrupt(PA8) 
426 +)))|(% style="width:191px" %)Temperature2(DS18B20)
427 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
428 +
429 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
430 +
431 +
432 +[[image:image-20230513134006-1.png||height="559" width="736"]]
433 +
434 +
435 +==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
436 +
437 +
438 +[[image:image-20230512164658-2.png||height="532" width="729"]]
439 +
440 +Each HX711 need to be calibrated before used. User need to do below two steps:
441 +
442 +1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
443 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
444 +1. (((
445 +Weight has 4 bytes, the unit is g.
446 +
447 +
448 +
296 296  )))
297 297  
298 -==== (% style="color:#4472c4" %)**Battery**(%%) ====
451 +For example:
299 299  
300 -Sensor Battery Level.
453 +(% style="color:blue" %)**AT+GETSENSORVALUE =0**
301 301  
455 +Response:  Weight is 401 g
456 +
457 +Check the response of this command and adjust the value to match the real value for thing.
458 +
459 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
460 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
461 +**Size(bytes)**
462 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
463 +|Value|BAT|(% style="width:193px" %)(((
464 +Temperature(DS18B20)(PC13)
465 +)))|(% style="width:85px" %)(((
466 +ADC(PA4)
467 +)))|(% style="width:186px" %)(((
468 +Digital in(PB15) & Digital Interrupt(PA8)
469 +)))|(% style="width:100px" %)Weight
470 +
471 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
472 +
473 +
474 +==== 2.3.2.6  MOD~=6 (Counting Mode) ====
475 +
476 +
477 +In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
478 +
479 +Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
480 +
481 +[[image:image-20230512181814-9.png||height="543" width="697"]]
482 +
483 +
484 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
485 +
486 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
487 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
488 +|Value|BAT|(% style="width:256px" %)(((
489 +Temperature(DS18B20)(PC13)
490 +)))|(% style="width:108px" %)(((
491 +ADC(PA4)
492 +)))|(% style="width:126px" %)(((
493 +Digital in(PB15)
494 +)))|(% style="width:145px" %)(((
495 +Count(PA8)
496 +)))
497 +
498 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
499 +
500 +
501 +==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
502 +
503 +
504 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
505 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
506 +**Size(bytes)**
507 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
508 +|Value|BAT|(% style="width:188px" %)(((
509 +Temperature(DS18B20)
510 +(PC13)
511 +)))|(% style="width:83px" %)(((
512 +ADC(PA5)
513 +)))|(% style="width:184px" %)(((
514 +Digital Interrupt1(PA8)
515 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
516 +
517 +[[image:image-20230513111203-7.png||height="324" width="975"]]
518 +
519 +
520 +==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
521 +
522 +
523 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
524 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
525 +**Size(bytes)**
526 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
527 +|Value|BAT|(% style="width:207px" %)(((
528 +Temperature(DS18B20)
529 +(PC13)
530 +)))|(% style="width:94px" %)(((
531 +ADC1(PA4)
532 +)))|(% style="width:198px" %)(((
533 +Digital Interrupt(PB15)
534 +)))|(% style="width:84px" %)(((
535 +ADC2(PA5)
536 +)))|(% style="width:82px" %)(((
537 +ADC3(PA8)
538 +)))
539 +
540 +[[image:image-20230513111231-8.png||height="335" width="900"]]
541 +
542 +
543 +==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
544 +
545 +
546 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
547 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
548 +**Size(bytes)**
549 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
550 +|Value|BAT|(((
551 +Temperature
552 +(DS18B20)(PC13)
553 +)))|(((
554 +Temperature2
555 +(DS18B20)(PB9)
556 +)))|(((
557 +Digital Interrupt
558 +(PB15)
559 +)))|(% style="width:193px" %)(((
560 +Temperature3
561 +(DS18B20)(PB8)
562 +)))|(% style="width:78px" %)(((
563 +Count1(PA8)
564 +)))|(% style="width:78px" %)(((
565 +Count2(PA4)
566 +)))
567 +
568 +[[image:image-20230513111255-9.png||height="341" width="899"]]
569 +
570 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
571 +
572 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
573 +
574 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
575 +
576 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
577 +
578 +
579 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 
580 +
581 +When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
582 +
583 +When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
584 +
585 +
586 +==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
587 +
588 +(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
589 +
590 +In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
591 +
592 +[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
593 +
594 +
595 +===== 2.3.2.10.a  Uplink, PWM input capture =====
596 +
597 +
598 +[[image:image-20230817172209-2.png||height="439" width="683"]]
599 +
600 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
601 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
602 +|Value|Bat|(% style="width:191px" %)(((
603 +Temperature(DS18B20)(PC13)
604 +)))|(% style="width:78px" %)(((
605 +ADC(PA4)
606 +)))|(% style="width:135px" %)(((
607 +PWM_Setting
608 +&Digital Interrupt(PA8)
609 +)))|(% style="width:70px" %)(((
610 +Pulse period
611 +)))|(% style="width:89px" %)(((
612 +Duration of high level
613 +)))
614 +
615 +[[image:image-20230817170702-1.png||height="161" width="1044"]]
616 +
617 +
618 +When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
619 +
620 +**Frequency:**
621 +
622 +(% class="MsoNormal" %)
623 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
624 +
625 +(% class="MsoNormal" %)
626 +(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
627 +
628 +
629 +(% class="MsoNormal" %)
630 +**Duty cycle:**
631 +
632 +Duty cycle= Duration of high level/ Pulse period*100 ~(%).
633 +
634 +[[image:image-20230818092200-1.png||height="344" width="627"]]
635 +
636 +===== 2.3.2.10.b  Uplink, PWM output =====
637 +
638 +[[image:image-20230817172209-2.png||height="439" width="683"]]
639 +
640 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
641 +
642 +a is the time delay of the output, the unit is ms.
643 +
644 +b is the output frequency, the unit is HZ.
645 +
646 +c is the duty cycle of the output, the unit is %.
647 +
648 +(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
649 +
650 +aa is the time delay of the output, the unit is ms.
651 +
652 +bb is the output frequency, the unit is HZ.
653 +
654 +cc is the duty cycle of the output, the unit is %.
655 +
656 +
657 +For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
658 +
659 +The oscilloscope displays as follows:
660 +
661 +[[image:image-20231213102404-1.jpeg||height="780" width="932"]]
662 +
663 +
664 +===== 2.3.2.10.c  Downlink, PWM output =====
665 +
666 +
667 +[[image:image-20230817173800-3.png||height="412" width="685"]]
668 +
669 +Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
670 +
671 + xx xx xx is the output frequency, the unit is HZ.
672 +
673 + yy is the duty cycle of the output, the unit is %.
674 +
675 + zz zz is the time delay of the output, the unit is ms.
676 +
677 +
678 +For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
679 +
680 +The oscilloscope displays as follows:
681 +
682 +[[image:image-20230817173858-5.png||height="694" width="921"]]
683 +
684 +
685 +=== 2.3.3  ​Decode payload ===
686 +
687 +
688 +While using TTN V3 network, you can add the payload format to decode the payload.
689 +
690 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
691 +
692 +The payload decoder function for TTN V3 are here:
693 +
694 +SN50v3-LB TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
695 +
696 +
697 +==== 2.3.3.1 Battery Info ====
698 +
699 +
700 +Check the battery voltage for SN50v3-LB.
701 +
302 302  Ex1: 0x0B45 = 2885mV
303 303  
304 304  Ex2: 0x0B49 = 2889mV
305 305  
306 306  
707 +==== 2.3.3.2  Temperature (DS18B20) ====
307 307  
308 -==== (% style="color:#4472c4" %)**Temperature**(%%) ====
309 309  
310 -**Example**:
710 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
311 311  
712 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
713 +
714 +(% style="color:blue" %)**Connection:**
715 +
716 +[[image:image-20230512180718-8.png||height="538" width="647"]]
717 +
718 +
719 +(% style="color:blue" %)**Example**:
720 +
312 312  If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
313 313  
314 314  If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
... ... @@ -316,195 +316,261 @@
316 316  (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
317 317  
318 318  
319 -==== (% style="color:#4472c4" %)**Humidity**(%%) ====
728 +==== 2.3.3.3 Digital Input ====
320 320  
321 321  
322 -Read:0x(0197)=412    Value:  412 / 10=41.2, So 41.2%
731 +The digital input for pin PB15,
323 323  
733 +* When PB15 is high, the bit 1 of payload byte 6 is 1.
734 +* When PB15 is low, the bit 1 of payload byte 6 is 0.
324 324  
325 -==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ====
736 +(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
737 +(((
738 +When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
326 326  
740 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
327 327  
328 -**Example:**
742 +
743 +)))
329 329  
330 -If payload & 0x01 = 0x01  **~-~->** This is an Alarm Message
745 +==== 2.3.3.4  Analogue Digital Converter (ADC) ====
331 331  
332 -If payload & 0x01 = 0x00  **~-~->** This is a normal uplink message, no alarm
333 333  
334 -If payload >> 2 = 0x00  **~-~->**  means MOD=1, This is a sampling uplink message
748 +The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
335 335  
336 -If payload >> 2 = 0x31  **~-~->**  means MOD=31, this message is a reply message for polling, this message contains the alarm settingssee [[this link>>path:#HPolltheAlarmsettings:]] for detail. 
750 +When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
337 337  
752 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
338 338  
339 -== 2.4 Payload Decoder file ==
340 340  
755 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
341 341  
342 -In TTN, use can add a custom payload so it shows friendly reading
343 343  
344 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
758 +The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
345 345  
346 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
760 +[[image:image-20230811113449-1.png||height="370" width="608"]]
347 347  
762 +==== 2.3.3.5 Digital Interrupt ====
348 348  
349 -== 2.5 Datalog Feature ==
350 350  
765 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server.
351 351  
352 -Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
767 +(% style="color:blue" %)** Interrupt connection method:**
353 353  
769 +[[image:image-20230513105351-5.png||height="147" width="485"]]
354 354  
355 -=== 2.5.1 Ways to get datalog via LoRaWAN ===
356 356  
772 +(% style="color:blue" %)**Example to use with door sensor :**
357 357  
358 -Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
774 +The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
359 359  
360 -* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
361 -* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
776 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
362 362  
363 -Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
778 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window.
364 364  
365 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
366 366  
367 -=== 2.5.2 Unix TimeStamp ===
781 +(% style="color:blue" %)**Below is the installation example:**
368 368  
783 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows:
369 369  
370 -S31x-LB uses Unix TimeStamp format based on
785 +* (((
786 +One pin to SN50v3-LB's PA8 pin
787 +)))
788 +* (((
789 +The other pin to SN50v3-LB's VDD pin
790 +)))
371 371  
372 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
792 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
373 373  
374 -User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
794 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
375 375  
376 -Below is the converter example
796 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
377 377  
378 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
798 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
379 379  
380 -So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
800 +The above photos shows the two parts of the magnetic switch fitted to a door.
381 381  
802 +The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
382 382  
383 -=== 2.5.3 Set Device Time ===
804 +The command is:
384 384  
806 +(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
385 385  
386 -User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
808 +Below shows some screen captures in TTN V3:
387 387  
388 -Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
810 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
389 389  
390 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
391 391  
813 +In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
392 392  
393 -=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
815 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
394 394  
395 395  
396 -The Datalog uplinks will use below payload format.
818 +==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
397 397  
398 -**Retrieval data payload:**
399 399  
400 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
401 -|=(% style="width: 80px;background-color:#D9E2F3" %)(((
402 -**Size(bytes)**
403 -)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
404 -|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
405 -[[Temp_Black>>||anchor="HTemperatureBlack:"]]
406 -)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
821 +The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
407 407  
408 -**Poll message flag & Ext:**
823 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
409 409  
410 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
825 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.**
411 411  
412 -**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
413 413  
414 -**Poll Message Flag**: 1: This message is a poll message reply.
828 +Below is the connection to SHT20/ SHT31. The connection is as below:
415 415  
416 -* Poll Message Flag is set to 1.
830 +[[image:image-20230610170152-2.png||height="501" width="846"]]
417 417  
418 -* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
419 419  
420 -For example, in US915 band, the max payload for different DR is:
833 +The device will be able to get the I2C sensor data now and upload to IoT Server.
421 421  
422 -**a) DR0:** max is 11 bytes so one entry of data
835 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
423 423  
424 -**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
837 +Convert the read byte to decimal and divide it by ten.
425 425  
426 -**c) DR2:** total payload includes 11 entries of data
839 +**Example:**
427 427  
428 -**d) DR3: **total payload includes 22 entries of data.
841 +Temperature:  Read:0116(H) = 278(D Value 278 /10=27.8℃;
429 429  
430 -If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
843 +Humidity:    Read:0248(H)=584(D)  Value 584 / 10=58.4, So 58.4%
431 431  
845 +If you want to use other I2C device, please refer the SHT20 part source code as reference.
432 432  
847 +
848 +==== 2.3.3.7  ​Distance Reading ====
849 +
850 +
851 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
852 +
853 +
854 +==== 2.3.3.8 Ultrasonic Sensor ====
855 +
856 +
857 +This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
858 +
859 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
860 +
861 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
862 +
863 +The picture below shows the connection:
864 +
865 +[[image:image-20230512173903-6.png||height="596" width="715"]]
866 +
867 +
868 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
869 +
870 +The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
871 +
433 433  **Example:**
434 434  
435 -If S31x-LB has below data inside Flash:
874 +Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
436 436  
437 -[[image:1682646494051-944.png]]
438 438  
439 -If user sends below downlink command: 3160065F9760066DA705
877 +==== 2.3.3.9  Battery Output - BAT pin ====
440 440  
441 -Where : Start time: 60065F97 = time 21/1/19 04:27:03
442 442  
443 - Stop time: 60066DA7= time 21/1/19 05:27:03
880 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
444 444  
445 445  
446 -**S31x-LB will uplink this payload.**
883 +==== 2.3.3.1 +5V Output ====
447 447  
448 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
449 449  
450 -(((
451 -__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
452 -)))
886 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 
453 453  
454 -(((
455 -Where the first 11 bytes is for the first entry:
456 -)))
888 +The 5V output time can be controlled by AT Command.
457 457  
458 -(((
459 -7FFF089801464160065F97
460 -)))
890 +(% style="color:blue" %)**AT+5VT=1000**
461 461  
462 -(((
463 -**Ext sensor data**=0x7FFF/100=327.67
464 -)))
892 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
465 465  
466 -(((
467 -**Temp**=0x088E/100=22.00
468 -)))
894 +By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
469 469  
470 -(((
471 -**Hum**=0x014B/10=32.6
896 +
897 +==== 2.3.3.11  BH1750 Illumination Sensor ====
898 +
899 +
900 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
901 +
902 +[[image:image-20230512172447-4.png||height="416" width="712"]]
903 +
904 +
905 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
906 +
907 +
908 +==== 2.3.3.12  PWM MOD ====
909 +
910 +
911 +* (((
912 +The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
472 472  )))
914 +* (((
915 +If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
916 +)))
473 473  
474 -(((
475 -**poll message flag & Ext**=0x41,means reply data,Ext=1
918 + [[image:image-20230817183249-3.png||height="320" width="417"]]
919 +
920 +* (((
921 +The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
476 476  )))
923 +* (((
924 +Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
925 +)))
926 +* (((
927 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
477 477  
478 -(((
479 -**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
929 +For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
930 +
931 +a) If real-time control output is required, the SN50v3-LB is already operating in class C and an external power supply must be used.
932 +
933 +b) If the output duration is more than 30 seconds, better to use external power source. 
934 +
935 +
936 +
480 480  )))
481 481  
939 +==== 2.3.3.13  Working MOD ====
482 482  
483 -(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
484 484  
485 -== 2.6 Temperature Alarm Feature ==
942 +The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
486 486  
944 +User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
487 487  
488 -S31x-LB work flow with Alarm feature.
946 +Case 7^^th^^ Byte >> 2 & 0x1f:
489 489  
948 +* 0: MOD1
949 +* 1: MOD2
950 +* 2: MOD3
951 +* 3: MOD4
952 +* 4: MOD5
953 +* 5: MOD6
954 +* 6: MOD7
955 +* 7: MOD8
956 +* 8: MOD9
957 +* 9: MOD10
490 490  
491 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
959 +== 2.4 Payload Decoder file ==
492 492  
493 493  
494 -== 2.7 Frequency Plans ==
962 +In TTN, use can add a custom payload so it shows friendly reading
495 495  
964 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
496 496  
497 -The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
966 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
498 498  
968 +
969 +== 2.5 Frequency Plans ==
970 +
971 +
972 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
973 +
499 499  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
500 500  
501 501  
502 -= 3. Configure S31x-LB =
977 += 3. Configure SN50v3-LB =
503 503  
504 504  == 3.1 Configure Methods ==
505 505  
506 506  
507 -S31x-LB supports below configure method:
982 +SN50v3-LB supports below configure method:
508 508  
509 509  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
510 510  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -523,10 +523,10 @@
523 523  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
524 524  
525 525  
526 -== 3.3 Commands special design for S31x-LB ==
1001 +== 3.3 Commands special design for SN50v3-LB ==
527 527  
528 528  
529 -These commands only valid for S31x-LB, as below:
1004 +These commands only valid for SN50v3-LB, as below:
530 530  
531 531  
532 532  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -537,7 +537,7 @@
537 537  (% style="color:blue" %)**AT Command: AT+TDC**
538 538  
539 539  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
540 -|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1015 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
541 541  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
542 542  30000
543 543  OK
... ... @@ -560,118 +560,250 @@
560 560  === 3.3.2 Get Device Status ===
561 561  
562 562  
563 -Send a LoRaWAN downlink to ask device send Alarm settings.
1038 +Send a LoRaWAN downlink to ask the device to send its status.
564 564  
565 -(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1040 +(% style="color:blue" %)**Downlink Payload: 0x26 01**
566 566  
567 -Sensor will upload Device Status via FPORT=5. See payload section for detail.
1042 +Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
568 568  
569 569  
570 -=== 3.3.3 Set Temperature Alarm Threshold ===
1045 +=== 3.3.3 Set Interrupt Mode ===
571 571  
572 -* (% style="color:blue" %)**AT Command:**
573 573  
574 -(% style="color:#037691" %)**AT+SHTEMP=min,max**
1048 +Feature, Set Interrupt mode for GPIO_EXIT.
575 575  
576 -* When min=0, and max≠0, Alarm higher than max
577 -* When min≠0, and max=0, Alarm lower than min
578 -* When min≠0 and max≠0, Alarm higher than max or lower than min
1050 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
579 579  
580 -Example:
1052 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1053 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1054 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1055 +0
1056 +OK
1057 +the mode is 0 =Disable Interrupt
1058 +)))
1059 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1060 +Set Transmit Interval
1061 +0. (Disable Interrupt),
1062 +~1. (Trigger by rising and falling edge)
1063 +2. (Trigger by falling edge)
1064 +3. (Trigger by rising edge)
1065 +)))|(% style="width:157px" %)OK
1066 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1067 +Set Transmit Interval
1068 +trigger by rising edge.
1069 +)))|(% style="width:157px" %)OK
1070 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
581 581  
582 - AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
1072 +(% style="color:blue" %)**Downlink Command: 0x06**
583 583  
584 -* (% style="color:blue" %)**Downlink Payload:**
1074 +Format: Command Code (0x06) followed by 3 bytes.
585 585  
586 -(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
1076 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
587 587  
588 -(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
1078 +* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1079 +* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1080 +* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1081 +* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
589 589  
1083 +=== 3.3.4 Set Power Output Duration ===
590 590  
591 -=== 3.3.4 Set Humidity Alarm Threshold ===
592 592  
593 -* (% style="color:blue" %)**AT Command:**
1086 +Control the output duration 5V . Before each sampling, device will
594 594  
595 -(% style="color:#037691" %)**AT+SHHUM=min,max**
1088 +~1. first enable the power output to external sensor,
596 596  
597 -* When min=0, and max≠0, Alarm higher than max
598 -* When min≠0, and max=0, Alarm lower than min
599 -* When min≠0 and max≠0, Alarm higher than max or lower than min
1090 +2. keep it on as per duration, read sensor value and construct uplink payload
600 600  
601 -Example:
1092 +3. final, close the power output.
602 602  
603 - AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
1094 +(% style="color:blue" %)**AT Command: AT+5VT**
604 604  
605 -* (% style="color:blue" %)**Downlink Payload:**
1096 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1097 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1098 +|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1099 +500(default)
1100 +OK
1101 +)))
1102 +|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1103 +Close after a delay of 1000 milliseconds.
1104 +)))|(% style="width:157px" %)OK
606 606  
607 -(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
1106 +(% style="color:blue" %)**Downlink Command: 0x07**
608 608  
609 -(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
1108 +Format: Command Code (0x07) followed by 2 bytes.
610 610  
1110 +The first and second bytes are the time to turn on.
611 611  
612 -=== 3.3.5 Set Alarm Interval ===
1112 +* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1113 +* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
613 613  
614 -The shortest time of two Alarm packet. (unit: min)
1115 +=== 3.3.5 Set Weighing parameters ===
615 615  
616 -* (% style="color:blue" %)**AT Command:**
617 617  
618 -(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
1118 +Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
619 619  
620 -* (% style="color:blue" %)**Downlink Payload:**
1120 +(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
621 621  
622 -(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
1122 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1123 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1124 +|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1125 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1126 +|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
623 623  
1128 +(% style="color:blue" %)**Downlink Command: 0x08**
624 624  
625 -=== 3.3.6 Get Alarm settings ===
1130 +Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
626 626  
1132 +Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
627 627  
628 -Send a LoRaWAN downlink to ask device send Alarm settings.
1134 +The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
629 629  
630 -* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1136 +* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1137 +* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1138 +* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
631 631  
632 -**Example:**
1140 +=== 3.3.6 Set Digital pulse count value ===
633 633  
634 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
635 635  
1143 +Feature: Set the pulse count value.
636 636  
637 -**Explain:**
1145 +Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
638 638  
639 -* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1147 +(% style="color:blue" %)**AT Command: AT+SETCNT**
640 640  
641 -=== 3.3.7 Set Interrupt Mode ===
1149 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1150 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1151 +|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1152 +|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
642 642  
1154 +(% style="color:blue" %)**Downlink Command: 0x09**
643 643  
644 -Feature, Set Interrupt mode for GPIO_EXIT.
1156 +Format: Command Code (0x09) followed by 5 bytes.
645 645  
646 -(% style="color:blue" %)**AT Command: AT+INTMOD**
1158 +The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
647 647  
1160 +* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1161 +* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1162 +
1163 +=== 3.3.7 Set Workmode ===
1164 +
1165 +
1166 +Feature: Switch working mode.
1167 +
1168 +(% style="color:blue" %)**AT Command: AT+MOD**
1169 +
648 648  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
649 -|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
650 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
651 -0
1171 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1172 +|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
652 652  OK
653 -the mode is 0 =Disable Interrupt
654 654  )))
655 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
656 -Set Transmit Interval
657 -0. (Disable Interrupt),
658 -~1. (Trigger by rising and falling edge)
659 -2. (Trigger by falling edge)
660 -3. (Trigger by rising edge)
661 -)))|(% style="width:157px" %)OK
1175 +|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1176 +OK
1177 +Attention:Take effect after ATZ
1178 +)))
662 662  
663 -(% style="color:blue" %)**Downlink Command: 0x06**
1180 +(% style="color:blue" %)**Downlink Command: 0x0A**
664 664  
665 -Format: Command Code (0x06) followed by 3 bytes.
1182 +Format: Command Code (0x0A) followed by 1 bytes.
666 666  
667 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1184 +* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1185 +* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
668 668  
669 -* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
670 -* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1187 +(% id="H3.3.8PWMsetting" %)
1188 +=== 3.3.8 PWM setting ===
671 671  
672 -= 4. Battery & Power Consumption =
673 673  
1191 +(% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
674 674  
1193 +(% style="color:blue" %)**AT Command: AT+PWMSET**
1194 +
1195 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1196 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1197 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1198 +0(default)
1199 +
1200 +OK
1201 +)))
1202 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1203 +OK
1204 +
1205 +)))
1206 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1207 +
1208 +(% style="color:blue" %)**Downlink Command: 0x0C**
1209 +
1210 +Format: Command Code (0x0C) followed by 1 bytes.
1211 +
1212 +* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1213 +* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1214 +
1215 +(% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1216 +
1217 +(% style="color:blue" %)**AT Command: AT+PWMOUT**
1218 +
1219 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1220 +|=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1221 +|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1222 +0,0,0(default)
1223 +
1224 +OK
1225 +)))
1226 +|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1227 +OK
1228 +
1229 +)))
1230 +|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1231 +The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1232 +
1233 +
1234 +)))|(% style="width:137px" %)(((
1235 +OK
1236 +)))
1237 +
1238 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1239 +|=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1240 +|(% colspan="1" rowspan="3" style="width:155px" %)(((
1241 +AT+PWMOUT=a,b,c
1242 +
1243 +
1244 +)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1245 +Set PWM output time, output frequency and output duty cycle.
1246 +
1247 +(((
1248 +
1249 +)))
1250 +
1251 +(((
1252 +
1253 +)))
1254 +)))|(% style="width:242px" %)(((
1255 +a: Output time (unit: seconds)
1256 +
1257 +The value ranges from 0 to 65535.
1258 +
1259 +When a=65535, PWM will always output.
1260 +)))
1261 +|(% style="width:242px" %)(((
1262 +b: Output frequency (unit: HZ)
1263 +)))
1264 +|(% style="width:242px" %)(((
1265 +c: Output duty cycle (unit: %)
1266 +
1267 +The value ranges from 0 to 100.
1268 +)))
1269 +
1270 +(% style="color:blue" %)**Downlink Command: 0x0B01**
1271 +
1272 +Format: Command Code (0x0B01) followed by 6 bytes.
1273 +
1274 +Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1275 +
1276 +* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1277 +* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1278 +
1279 += 4. Battery & Power Cons =
1280 +
1281 +
675 675  SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
676 676  
677 677  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
... ... @@ -681,24 +681,43 @@
681 681  
682 682  
683 683  (% class="wikigeneratedid" %)
684 -User can change firmware SN50v3-LB to:
1291 +**User can change firmware SN50v3-LB to:**
685 685  
686 686  * Change Frequency band/ region.
687 687  * Update with new features.
688 688  * Fix bugs.
689 689  
690 -Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1297 +**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
691 691  
1299 +**Methods to Update Firmware:**
692 692  
693 -Methods to Update Firmware:
1301 +* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1302 +* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
694 694  
695 -* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
696 -* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
697 -
698 698  = 6. FAQ =
699 699  
1306 +== 6.1 Where can i find source code of SN50v3-LB? ==
700 700  
701 701  
1309 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1310 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1311 +
1312 +== 6.2 How to generate PWM Output in SN50v3-LB? ==
1313 +
1314 +
1315 +See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1316 +
1317 +
1318 +== 6.3 How to put several sensors to a SN50v3-LB? ==
1319 +
1320 +
1321 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1322 +
1323 +[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1324 +
1325 +[[image:image-20230810121434-1.png||height="242" width="656"]]
1326 +
1327 +
702 702  = 7. Order Info =
703 703  
704 704  
... ... @@ -724,6 +724,7 @@
724 724  
725 725  = 8. ​Packing Info =
726 726  
1353 +
727 727  (% style="color:#037691" %)**Package Includes**:
728 728  
729 729  * SN50v3-LB LoRaWAN Generic Node
... ... @@ -739,4 +739,5 @@
739 739  
740 740  
741 741  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
742 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1369 +
1370 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
image-20230512163509-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.ting
Size
... ... @@ -1,0 +1,1 @@
1 +4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Xiaoling
Size
... ... @@ -1,0 +1,1 @@
1 +577.4 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0