Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 20 added, 0 removed)
- image-20230512163509-1.png
- image-20230512164658-2.png
- image-20230512170701-3.png
- image-20230512172447-4.png
- image-20230512173758-5.png
- image-20230512173903-6.png
- image-20230512180609-7.png
- image-20230512180718-8.png
- image-20230512181814-9.png
- image-20230513084523-1.png
- image-20230513102034-2.png
- image-20230513103633-3.png
- image-20230513105207-4.png
- image-20230513105351-5.png
- image-20230513110214-6.png
- image-20230513111203-7.png
- image-20230513111231-8.png
- image-20230513111255-9.png
- image-20230513134006-1.png
- image-20230515135611-1.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB User Manual 1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Author
-
... ... @@ -1,1 +1,1 @@ 1 -XWiki. Edwin1 +XWiki.Xiaoling - Content
-
... ... @@ -1,4 +1,5 @@ 1 -[[image:image-20230511201248-1.png||height="403" width="489"]] 1 +(% style="text-align:center" %) 2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 2 2 3 3 4 4 ... ... @@ -15,23 +15,21 @@ 15 15 16 16 == 1.1 What is SN50v3-LB LoRaWAN Generic Node == 17 17 19 + 18 18 (% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 19 19 20 - 21 21 (% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on. 22 22 23 - 24 24 (% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 25 25 26 - 27 27 (% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 28 28 29 - 30 30 SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 31 31 32 32 33 33 == 1.2 Features == 34 34 33 + 35 35 * LoRaWAN 1.0.3 Class A 36 36 * Ultra-low power consumption 37 37 * Open-Source hardware/software ... ... @@ -42,8 +42,11 @@ 42 42 * Downlink to change configure 43 43 * 8500mAh Battery for long term use 44 44 44 + 45 + 45 45 == 1.3 Specification == 46 46 48 + 47 47 (% style="color:#037691" %)**Common DC Characteristics:** 48 48 49 49 * Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v ... ... @@ -78,8 +78,11 @@ 78 78 * Sleep Mode: 5uA @ 3.3v 79 79 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm 80 80 83 + 84 + 81 81 == 1.4 Sleep mode and working mode == 82 82 87 + 83 83 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life. 84 84 85 85 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode. ... ... @@ -104,6 +104,8 @@ 104 104 ))) 105 105 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode. 106 106 112 + 113 + 107 107 == 1.6 BLE connection == 108 108 109 109 ... ... @@ -122,7 +122,7 @@ 122 122 == 1.7 Pin Definitions == 123 123 124 124 125 -[[image:image-202305112034 50-2.png||height="443" width="785"]]132 +[[image:image-20230513102034-2.png]] 126 126 127 127 128 128 == 1.8 Mechanical == ... ... @@ -137,6 +137,7 @@ 137 137 138 138 == Hole Option == 139 139 147 + 140 140 SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 141 141 142 142 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] ... ... @@ -149,7 +149,7 @@ 149 149 == 2.1 How it works == 150 150 151 151 152 -The S3 1x-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.160 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 153 153 154 154 155 155 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -160,11 +160,11 @@ 160 160 The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 161 161 162 162 163 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from S3 1x-LB.171 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 164 164 165 -Each S3 1x-LB is shipped with a sticker with the default device EUI as below:173 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 166 166 167 -[[image:image-20230426084152-1.png||alt="图片-20230426084152-1.png" height="233" width="502"]] 175 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 168 168 169 169 170 170 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: ... ... @@ -191,10 +191,10 @@ 191 191 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 192 192 193 193 194 -(% style="color:blue" %)**Step 2:**(%%) Activate onS31x-LB202 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 195 195 196 196 197 -Press the button for 5 seconds to activate the S3 1x-LB.205 +Press the button for 5 seconds to activate the SN50v3-LB. 198 198 199 199 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 200 200 ... ... @@ -206,7 +206,7 @@ 206 206 === 2.3.1 Device Status, FPORT~=5 === 207 207 208 208 209 -Users can use the downlink command(**0x26 01**) to ask S3 1x-LBto send device configure detail, include device configure status. S31x-LBwill uplink a payload via FPort=5 to server.217 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server. 210 210 211 211 The Payload format is as below. 212 212 ... ... @@ -218,11 +218,9 @@ 218 218 219 219 Example parse in TTNv3 220 220 221 -[[image:image-20230421171614-1.png||alt="图片-20230421171614-1.png"]] 222 222 230 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C 223 223 224 -(% style="color:#037691" %)**Sensor Model**(%%): For S31x-LB, this value is 0x0A 225 - 226 226 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 227 227 228 228 (% style="color:#037691" %)**Frequency Band**: ... ... @@ -274,41 +274,351 @@ 274 274 Ex2: 0x0B49 = 2889mV 275 275 276 276 277 -=== 2.3.2 283 +=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 278 278 279 279 280 -Sen sorDataisuplinkviaFPORT=2286 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes. 281 281 282 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:500px" %) 283 -|=(% style="width: 90px;background-color:#D9E2F3" %)((( 288 +For example: 289 + 290 + **AT+MOD=2 ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor. 291 + 292 + 293 +(% style="color:red" %) **Important Notice:** 294 + 295 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload. 296 +1. All modes share the same Payload Explanation from HERE. 297 +1. By default, the device will send an uplink message every 20 minutes. 298 + 299 + 300 + 301 +==== 2.3.2.1 MOD~=1 (Default Mode) ==== 302 + 303 + 304 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 305 + 306 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 307 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 308 +|**Value**|Bat|(% style="width:191px" %)((( 309 +Temperature(DS18B20)(PC13) 310 +)))|(% style="width:78px" %)((( 311 +ADC(PA4) 312 +)))|(% style="width:216px" %)((( 313 +Digital in(PB15)&Digital Interrupt(PA8) 314 +)))|(% style="width:308px" %)((( 315 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 316 +)))|(% style="width:154px" %)((( 317 +Humidity(SHT20 or SHT31) 318 +))) 319 + 320 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]] 321 + 322 + 323 + 324 +==== 2.3.2.2 MOD~=2 (Distance Mode) ==== 325 + 326 + 327 +This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 + 329 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 330 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 +|**Value**|BAT|(% style="width:196px" %)((( 332 +Temperature(DS18B20)(PC13) 333 +)))|(% style="width:87px" %)((( 334 +ADC(PA4) 335 +)))|(% style="width:189px" %)((( 336 +Digital in(PB15) & Digital Interrupt(PA8) 337 +)))|(% style="width:208px" %)((( 338 +Distance measure by:1) LIDAR-Lite V3HP 339 +Or 340 +2) Ultrasonic Sensor 341 +)))|(% style="width:117px" %)Reserved 342 + 343 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]] 344 + 345 + 346 +(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:** 347 + 348 +[[image:image-20230512173758-5.png||height="563" width="712"]] 349 + 350 + 351 +(% style="color:blue" %)**Connection to Ultrasonic Sensor:** 352 + 353 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current. 354 + 355 +[[image:image-20230512173903-6.png||height="596" width="715"]] 356 + 357 + 358 +For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 359 + 360 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 361 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 362 +|**Value**|BAT|(% style="width:183px" %)((( 363 +Temperature(DS18B20)(PC13) 364 +)))|(% style="width:173px" %)((( 365 +Digital in(PB15) & Digital Interrupt(PA8) 366 +)))|(% style="width:84px" %)((( 367 +ADC(PA4) 368 +)))|(% style="width:323px" %)((( 369 +Distance measure by:1)TF-Mini plus LiDAR 370 +Or 371 +2) TF-Luna LiDAR 372 +)))|(% style="width:188px" %)Distance signal strength 373 + 374 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]] 375 + 376 + 377 +**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):** 378 + 379 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 380 + 381 +[[image:image-20230512180609-7.png||height="555" width="802"]] 382 + 383 + 384 +**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):** 385 + 386 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current. 387 + 388 +[[image:image-20230513105207-4.png||height="469" width="802"]] 389 + 390 + 391 +==== 2.3.2.3 MOD~=3 (3 ADC + I2C) ==== 392 + 393 + 394 +This mode has total 12 bytes. Include 3 x ADC + 1x I2C 395 + 396 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 397 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 284 284 **Size(bytes)** 285 -)))|=(% style="width: 80px;background-color:#D9E2F3" %)2|=(% style="width: 90px;background-color:#D9E2F3" %)4|=(% style="width:80px;background-color:#D9E2F3" %)1|=(% style="width: 80px;background-color:#D9E2F3" %)**2**|=(% style="width: 80px;background-color:#D9E2F3" %)2 286 -|(% style="width:99px" %)**Value**|(% style="width:69px" %)((( 287 -[[Battery>>||anchor="HBattery:"]] 288 -)))|(% style="width:130px" %)((( 289 -[[Unix TimeStamp>>||anchor="H2.5.2UnixTimeStamp"]] 290 -)))|(% style="width:91px" %)((( 291 -[[Alarm Flag>>||anchor="HAlarmFlag26MOD:"]] 292 -)))|(% style="width:103px" %)((( 293 -[[Temperature>>||anchor="HTemperature:"]] 294 -)))|(% style="width:80px" %)((( 295 -[[Humidity>>||anchor="HHumidity:"]] 399 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 400 +|**Value**|(% style="width:68px" %)((( 401 +ADC1(PA4) 402 +)))|(% style="width:75px" %)((( 403 +ADC2(PA5) 404 +)))|((( 405 +ADC3(PA8) 406 +)))|((( 407 +Digital Interrupt(PB15) 408 +)))|(% style="width:304px" %)((( 409 +Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor) 410 +)))|(% style="width:163px" %)((( 411 +Humidity(SHT20 or SHT31) 412 +)))|(% style="width:53px" %)Bat 413 + 414 +[[image:image-20230513110214-6.png]] 415 + 416 + 417 +==== 2.3.2.4 MOD~=4 (3 x DS18B20) ==== 418 + 419 + 420 +This mode has total 11 bytes. As shown below: 421 + 422 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 423 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 424 +|**Value**|BAT|(% style="width:186px" %)((( 425 +Temperature1(DS18B20)(PC13) 426 +)))|(% style="width:82px" %)((( 427 +ADC(PA4) 428 +)))|(% style="width:210px" %)((( 429 +Digital in(PB15) & Digital Interrupt(PA8) 430 +)))|(% style="width:191px" %)Temperature2(DS18B20) 431 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8) 432 + 433 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]] 434 + 435 +[[image:image-20230513134006-1.png||height="559" width="736"]] 436 + 437 + 438 + 439 +==== 2.3.2.5 MOD~=5(Weight Measurement by HX711) ==== 440 + 441 + 442 +[[image:image-20230512164658-2.png||height="532" width="729"]] 443 + 444 +Each HX711 need to be calibrated before used. User need to do below two steps: 445 + 446 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram. 447 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor. 448 +1. ((( 449 +Weight has 4 bytes, the unit is g. 450 + 451 + 452 + 296 296 ))) 297 297 298 - ==== (% style="color:#4472c4"%)**Battery**(%%) ====455 +For example: 299 299 300 -S ensor BatteryLevel.457 +**AT+GETSENSORVALUE =0** 301 301 459 +Response: Weight is 401 g 460 + 461 +Check the response of this command and adjust the value to match the real value for thing. 462 + 463 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 464 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 465 +**Size(bytes)** 466 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 467 +|**Value**|BAT|(% style="width:193px" %)((( 468 +Temperature(DS18B20)(PC13) 469 +)))|(% style="width:85px" %)((( 470 +ADC(PA4) 471 +)))|(% style="width:186px" %)((( 472 +Digital in(PB15) & Digital Interrupt(PA8) 473 +)))|(% style="width:100px" %)Weight 474 + 475 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]] 476 + 477 + 478 + 479 +==== 2.3.2.6 MOD~=6 (Counting Mode) ==== 480 + 481 + 482 +In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time. 483 + 484 +Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors. 485 + 486 +[[image:image-20230512181814-9.png||height="543" width="697"]] 487 + 488 + 489 +(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 490 + 491 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 492 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 220px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 493 +|**Value**|BAT|(% style="width:256px" %)((( 494 +Temperature(DS18B20)(PC13) 495 +)))|(% style="width:108px" %)((( 496 +ADC(PA4) 497 +)))|(% style="width:126px" %)((( 498 +Digital in(PB15) 499 +)))|(% style="width:145px" %)((( 500 +Count(PA8) 501 +))) 502 + 503 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]] 504 + 505 + 506 + 507 +==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 508 + 509 + 510 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 511 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 512 +**Size(bytes)** 513 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 514 +|**Value**|BAT|(% style="width:188px" %)((( 515 +Temperature(DS18B20) 516 +(PC13) 517 +)))|(% style="width:83px" %)((( 518 +ADC(PA5) 519 +)))|(% style="width:184px" %)((( 520 +Digital Interrupt1(PA8) 521 +)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved 522 + 523 +[[image:image-20230513111203-7.png||height="324" width="975"]] 524 + 525 + 526 +==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 527 + 528 + 529 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 530 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 531 +**Size(bytes)** 532 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 533 +|**Value**|BAT|(% style="width:207px" %)((( 534 +Temperature(DS18B20) 535 +(PC13) 536 +)))|(% style="width:94px" %)((( 537 +ADC1(PA4) 538 +)))|(% style="width:198px" %)((( 539 +Digital Interrupt(PB15) 540 +)))|(% style="width:84px" %)((( 541 +ADC2(PA5) 542 +)))|(% style="width:82px" %)((( 543 +ADC3(PA8) 544 +))) 545 + 546 +[[image:image-20230513111231-8.png||height="335" width="900"]] 547 + 548 + 549 +==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 550 + 551 + 552 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 553 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 554 +**Size(bytes)** 555 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 556 +|**Value**|BAT|((( 557 +Temperature1(DS18B20) 558 +(PC13) 559 +)))|((( 560 +Temperature2(DS18B20) 561 +(PB9) 562 +)))|((( 563 +Digital Interrupt 564 +(PB15) 565 +)))|(% style="width:193px" %)((( 566 +Temperature3(DS18B20) 567 +(PB8) 568 +)))|(% style="width:78px" %)((( 569 +Count1(PA8) 570 +)))|(% style="width:78px" %)((( 571 +Count2(PA4) 572 +))) 573 + 574 +[[image:image-20230513111255-9.png||height="341" width="899"]] 575 + 576 +(% style="color:blue" %)**The newly added AT command is issued correspondingly:** 577 + 578 +(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 00 xx** 579 + 580 +(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%) pin: Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx** 581 + 582 +(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%) pin: Corresponding downlink: (% style="color:#037691" %)** 06 00 02 xx** 583 + 584 + 585 +(% style="color:blue" %)**AT+SETCNT=aa,bb** 586 + 587 +When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb 588 + 589 +When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 590 + 591 + 592 +=== 2.3.3 Decode payload === 593 + 594 + 595 +While using TTN V3 network, you can add the payload format to decode the payload. 596 + 597 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]] 598 + 599 +The payload decoder function for TTN V3 are here: 600 + 601 +SN50v3 TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 602 + 603 + 604 +==== 2.3.3.1 Battery Info ==== 605 + 606 + 607 +Check the battery voltage for SN50v3. 608 + 302 302 Ex1: 0x0B45 = 2885mV 303 303 304 304 Ex2: 0x0B49 = 2889mV 305 305 306 306 614 +==== 2.3.3.2 Temperature (DS18B20) ==== 307 307 308 -==== (% style="color:#4472c4" %)**Temperature**(%%) ==== 309 309 310 - **Example**:617 +If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload. 311 311 619 +More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]] 620 + 621 +(% style="color:blue" %)**Connection:** 622 + 623 +[[image:image-20230512180718-8.png||height="538" width="647"]] 624 + 625 + 626 +(% style="color:blue" %)**Example**: 627 + 312 312 If payload is: 0105H: (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree 313 313 314 314 If payload is: FF3FH : (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees. ... ... @@ -316,200 +316,232 @@ 316 316 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative) 317 317 318 318 319 -==== (%style="color:#4472c4"%)**Humidity**(%%)====635 +==== 2.3.3.3 Digital Input ==== 320 320 321 321 322 - Read:0x(0197)=412Value:412/10=41.2,So 41.2%638 +The digital input for pin PB15, 323 323 640 +* When PB15 is high, the bit 1 of payload byte 6 is 1. 641 +* When PB15 is low, the bit 1 of payload byte 6 is 0. 324 324 325 -==== (% style="color:#4472c4" %)**Alarm Flag& MOD**(%%) ==== 643 +(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %) 644 +((( 645 +When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin. 326 326 647 +(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.** 327 327 328 -**Example:** 649 + 650 +))) 329 329 330 - Ifpayload& 0x01 = 0x01 **~-~->** Thisisan AlarmMessage652 +==== 2.3.3.4 Analogue Digital Converter (ADC) ==== 331 331 332 -If payload & 0x01 = 0x00 **~-~->** This is a normal uplink message, no alarm 333 333 334 - Ifpayload>>2=0x00**~-~->**means MOD=1,Thisisa samplinguplinkmessage655 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv. 335 335 336 - Ifpayload>>2=0x31**~-~->**meansMOD=31, thismessage isareplymessagefor polling,thismessagecontains thealarmsettings.see[[this link>>path:#HPolltheAlarmsettings:]]fordetail.657 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series. 337 337 659 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]] 338 338 339 - ==2.4 Payload Decoderfile==661 +(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.** 340 340 341 341 342 - InTTN,usecan add a custom payloadso itshows friendlyreading664 +==== 2.3.3.5 Digital Interrupt ==== 343 343 344 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 345 345 346 - [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B>>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]667 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server. 347 347 669 +(% style="color:blue" %)** Interrupt connection method:** 348 348 349 - == 2.5 DatalogFeature ==671 +[[image:image-20230513105351-5.png||height="147" width="485"]] 350 350 351 351 352 - DatalogFeature isoensure IoT Servercan get all samplingdata fromSensoreveniftheLoRaWAN network isdown. Foreachsampling, S31x-LB willstorethe reading for future retrieving purposes.674 +(% style="color:blue" %)**Example to use with door sensor :** 353 353 676 +The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows. 354 354 355 - === 2.5.1 Ways togettalog via=678 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 356 356 680 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window. 357 357 358 -Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery. 359 359 360 -* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server. 361 -* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages. 683 +(% style="color:blue" %)**Below is the installation example:** 362 362 363 - Belowisthe typicalcasefor theauto-updatedatalogfeature(SetPNACKMD=1)685 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows: 364 364 365 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]] 687 +* ((( 688 +One pin to SN50_v3's PA8 pin 689 +))) 690 +* ((( 691 +The other pin to SN50_v3's VDD pin 692 +))) 366 366 367 - ===2.5.2UnixTimeStamp===694 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. 368 368 696 +Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder. 369 369 370 - S31x-LBusesUnixTimeStampformatbasedon698 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored. 371 371 372 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/L HT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png"height="97" width="627"]]700 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]] 373 373 374 - Usercan getthis timefromlink: [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]]:702 +The above photos shows the two parts of the magnetic switch fitted to a door. 375 375 376 - Belowis theconverter example704 +The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt. 377 377 378 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png"height="298" width="720"]]706 +The command is: 379 379 380 - So,weanuse AT+TIMESTAMP=1611889405ordownlink 3060137afd00to setthe current time2021– Jan~-~- 29 Friday03:03:25708 +(% style="color:blue" %)**AT+INTMOD1=1 ** (%%) ~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **) 381 381 710 +Below shows some screen captures in TTN V3: 382 382 383 - === 2.5.3Set DeviceTime=712 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]] 384 384 385 385 386 - User needto set(%style="color:blue"%)**SYNCMOD=1**(%%) to enablesynctimeviaMAC command.715 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below: 387 387 388 - Once S31x-LB JoinedLoRaWAN network,it will send the MAC command(DeviceTimeReq) and the server will replywith (DeviceTimeAns)tosend the current time to S31x-LB.If S31x-LB fails to get the time from the server,S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).717 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN"; 389 389 390 -(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.** 391 391 720 +==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ==== 392 392 393 -=== 2.5.4 Datalog Uplink payload (FPORT~=3) === 394 394 723 +The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data. 395 395 396 - TheDataloguplinks willusebelowpayloadformat.725 +We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 397 397 398 - **Retrievaldata payload:**727 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50_v3 will be a good reference. 399 399 400 -(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %) 401 -|=(% style="width: 80px;background-color:#D9E2F3" %)((( 402 -**Size(bytes)** 403 -)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4** 404 -|(% style="width:103px" %)**Value**|(% style="width:54px" %)((( 405 -[[Temp_Black>>||anchor="HTemperatureBlack:"]] 406 -)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]] 729 +Below is the connection to SHT20/ SHT31. The connection is as below: 407 407 408 -**Poll message flag & Ext:** 409 409 410 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png"height="112" width="754"]]732 +[[image:image-20230513103633-3.png||height="448" width="716"]] 411 411 412 - **No ACK Message**: 1:This messagemeans thispayloadis fromn UplinkMessagewhich doesn't getACK fromthe server before(for**PNACKMD=1**feature)734 +The device will be able to get the I2C sensor data now and upload to IoT Server. 413 413 414 - **Poll MessageFlag**:1: This messageispoll messagey.736 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]] 415 415 416 - * PollMessageFlagis setto1.738 +Convert the read byte to decimal and divide it by ten. 417 417 418 -* ch data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.740 +**Example:** 419 419 420 - Forexample, in US915 band,themax payloadfordifferentDRis:742 +Temperature: Read:0116(H) = 278(D) Value: 278 /10=27.8℃; 421 421 422 - **a)DR0:**maxis11bytessooneentryofdata744 +Humidity: Read:0248(H)=584(D) Value: 584 / 10=58.4, So 58.4% 423 423 424 - **b)DR1:**maxis53 bytessodeviceswill upload4entriesofdata(total44 bytes)746 +If you want to use other I2C device, please refer the SHT20 part source code as reference. 425 425 426 -**c) DR2:** total payload includes 11 entries of data 427 427 428 - **d)DR3:**total payload includes22entriesof data.749 +==== 2.3.3.7 Distance Reading ==== 429 429 430 -If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0 431 431 752 +Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]]. 432 432 754 + 755 +==== 2.3.3.8 Ultrasonic Sensor ==== 756 + 757 + 758 +This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 759 + 760 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 761 + 762 +The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 763 + 764 +The picture below shows the connection: 765 + 766 +[[image:image-20230512173903-6.png||height="596" width="715"]] 767 + 768 + 769 +Connect to the SN50_v3 and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 770 + 771 +The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 772 + 433 433 **Example:** 434 434 435 - If S31x-LB hasbelow datainsideFlash:775 +Distance: Read: 0C2D(Hex) = 3117(D) Value: 3117 mm=311.7 cm 436 436 437 -[[image:1682646494051-944.png]] 438 438 439 - Ifusersendsbelowdownlinkcommand: 3160065F9760066DA705778 +==== 2.3.3.9 Battery Output - BAT pin ==== 440 440 441 -Where : Start time: 60065F97 = time 21/1/19 04:27:03 442 442 443 - Stop time:60066DA7=time21/1/1905:27:03781 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 444 444 445 445 446 - **S31x-LBwilluplinkthispayload.**784 +==== 2.3.3.10 +5V Output ==== 447 447 448 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]] 449 449 450 -((( 451 -__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E 452 -))) 787 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 453 453 454 -((( 455 -Where the first 11 bytes is for the first entry: 456 -))) 789 +The 5V output time can be controlled by AT Command. 457 457 458 -((( 459 -7FFF089801464160065F97 460 -))) 791 +(% style="color:blue" %)**AT+5VT=1000** 461 461 462 -((( 463 -**Ext sensor data**=0x7FFF/100=327.67 464 -))) 793 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 465 465 466 -((( 467 -**Temp**=0x088E/100=22.00 468 -))) 795 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor. 469 469 470 -((( 471 -**Hum**=0x014B/10=32.6 472 -))) 473 473 474 -((( 475 -**poll message flag & Ext**=0x41,means reply data,Ext=1 476 -))) 798 +==== 2.3.3.11 BH1750 Illumination Sensor ==== 477 477 478 -((( 479 -**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03 480 -))) 481 481 801 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes. 482 482 483 - (% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true"height="15"role="presentation" title="单击并拖动以移动"width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的803 +[[image:image-20230512172447-4.png||height="416" width="712"]] 484 484 485 -== 2.6 Temperature Alarm Feature == 486 486 806 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]] 487 487 488 -S31x-LB work flow with Alarm feature. 489 489 809 +==== 2.3.3.12 Working MOD ==== 490 490 491 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]] 492 492 812 +The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte). 493 493 494 - ==2.7FrequencyPlans==814 +User can use the 3^^rd^^ ~~ 7^^th^^ bit of this byte to see the working mod: 495 495 816 +Case 7^^th^^ Byte >> 2 & 0x1f: 496 496 497 -The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 818 +* 0: MOD1 819 +* 1: MOD2 820 +* 2: MOD3 821 +* 3: MOD4 822 +* 4: MOD5 823 +* 5: MOD6 824 +* 6: MOD7 825 +* 7: MOD8 826 +* 8: MOD9 498 498 828 + 829 + 830 +== 2.4 Payload Decoder file == 831 + 832 + 833 +In TTN, use can add a custom payload so it shows friendly reading 834 + 835 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from: 836 + 837 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]] 838 + 839 + 840 +== 2.5 Frequency Plans == 841 + 842 + 843 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 844 + 499 499 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 500 500 501 501 502 -= 3. Configure S3 1x-LB =848 += 3. Configure SN50v3-LB = 503 503 504 504 == 3.1 Configure Methods == 505 505 506 506 507 -S3 1x-LB supports below configure method:853 +SN50v3-LB supports below configure method: 508 508 509 509 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 510 510 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. 511 511 * LoRaWAN Downlink. Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section. 512 512 859 + 860 + 513 513 == 3.2 General Commands == 514 514 515 515 ... ... @@ -523,7 +523,7 @@ 523 523 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 524 524 525 525 526 -== 3.3 Commands special design for S3 1x-LB ==874 +== 3.3 Commands special design for SN50v3-LB == 527 527 528 528 529 529 These commands only valid for S31x-LB, as below: ... ... @@ -557,10 +557,12 @@ 557 557 * Example 1: Downlink Payload: 0100001E ~/~/ Set Transmit Interval (TDC) = 30 seconds 558 558 * Example 2: Downlink Payload: 0100003C ~/~/ Set Transmit Interval (TDC) = 60 seconds 559 559 908 + 909 + 560 560 === 3.3.2 Get Device Status === 561 561 562 562 563 -Send a LoRaWAN downlink to ask device send Alarmsettings.913 +Send a LoRaWAN downlink to ask the device to send its status. 564 564 565 565 (% style="color:blue" %)**Downlink Payload: **(%%)0x26 01 566 566 ... ... @@ -567,108 +567,159 @@ 567 567 Sensor will upload Device Status via FPORT=5. See payload section for detail. 568 568 569 569 570 -=== 3.3.3 Set TemperatureAlarm Threshold ===920 +=== 3.3.3 Set Interrupt Mode === 571 571 572 -* (% style="color:blue" %)**AT Command:** 573 573 574 - (%style="color:#037691"%)**AT+SHTEMP=min,max**923 +Feature, Set Interrupt mode for GPIO_EXIT. 575 575 576 -* When min=0, and max≠0, Alarm higher than max 577 -* When min≠0, and max=0, Alarm lower than min 578 -* When min≠0 and max≠0, Alarm higher than max or lower than min 925 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 579 579 580 -Example: 927 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 928 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 929 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 930 +0 931 +OK 932 +the mode is 0 =Disable Interrupt 933 +))) 934 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 935 +Set Transmit Interval 936 +0. (Disable Interrupt), 937 +~1. (Trigger by rising and falling edge) 938 +2. (Trigger by falling edge) 939 +3. (Trigger by rising edge) 940 +)))|(% style="width:157px" %)OK 941 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 942 +Set Transmit Interval 581 581 582 - AT+SHTEMP=0,30 ~/~/ Alarm when temperature higher than 30. 944 +trigger by rising edge. 945 +)))|(% style="width:157px" %)OK 946 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 583 583 584 - *(% style="color:blue" %)**DownlinkPayload:**948 +(% style="color:blue" %)**Downlink Command: 0x06** 585 585 586 - (% style="color:#037691"%)**0x(0C01001E)**(%%)~/~/ SetAT+SHTEMP=0,30950 +Format: Command Code (0x06) followed by 3 bytes. 587 587 588 - (%style="color:red"%)**(note:3^^rd^^byte=0x00forlow limit(notset),4^^th^^byte= 0x1E forhighlimit: 30)**952 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 589 589 954 +* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 955 +* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 956 +* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 957 +* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 590 590 591 -=== 3.3.4 Set Humidity Alarm Threshold === 592 592 593 -* (% style="color:blue" %)**AT Command:** 594 594 595 - (%style="color:#037691"%)**AT+SHHUM=min,max**961 +=== 3.3.4 Set Power Output Duration === 596 596 597 -* When min=0, and max≠0, Alarm higher than max 598 -* When min≠0, and max=0, Alarm lower than min 599 -* When min≠0 and max≠0, Alarm higher than max or lower than min 600 600 601 - Example:964 +Control the output duration 5V . Before each sampling, device will 602 602 603 - AT+SHHUM=70,0~/~/Alarmwhenhumiditylower than70%.966 +~1. first enable the power output to external sensor, 604 604 605 - *(%style="color:blue"%)**DownlinkPayload:**968 +2. keep it on as per duration, read sensor value and construct uplink payload 606 606 607 - (%style="color:#037691"%)**0x(0C02 46 00)**(%%) ~/~/ SetAT+SHTHUM=70,0970 +3. final, close the power output. 608 608 609 -(% style="color: red" %)**(note:3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (notset))**972 +(% style="color:blue" %)**AT Command: AT+5VT** 610 610 974 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 975 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 976 +|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 977 +500(default) 978 +OK 979 +))) 980 +|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)((( 981 +Close after a delay of 1000 milliseconds. 982 +)))|(% style="width:157px" %)OK 611 611 612 - ===3.3.5 SetAlarmInterval===984 +(% style="color:blue" %)**Downlink Command: 0x07** 613 613 614 - The shortesttimeoftwoAlarm packet.(unit:min)986 +Format: Command Code (0x07) followed by 2 bytes. 615 615 616 - *(%style="color:blue"%)**ATCommand:**988 +The first and second bytes are the time to turn on. 617 617 618 -(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes. 990 +* Example 1: Downlink Payload: 070000 **~-~-->** AT+5VT=0 991 +* Example 2: Downlink Payload: 0701F4 **~-~-->** AT+5VT=500 619 619 620 -* (% style="color:blue" %)**Downlink Payload:** 621 621 622 -(% style="color:#037691" %)**0x(0D 00 1E)**(%%) **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes 623 623 995 +=== 3.3.5 Set Weighing parameters === 624 624 625 -=== 3.3.6 Get Alarm settings === 626 626 998 +Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711. 627 627 628 - Senda LoRaWAN downlinktoask device send Alarm settings.1000 +(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 629 629 630 -* (% style="color:#037691" %)**Downlink Payload: **(%%)0x0E 01 1002 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1003 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1004 +|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1005 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1006 +|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 631 631 632 -** Example:**1008 +(% style="color:blue" %)**Downlink Command: 0x08** 633 633 634 - [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]1010 +Format: Command Code (0x08) followed by 2 bytes or 4 bytes. 635 635 1012 +Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes. 636 636 637 - **Explain:**1014 +The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value. 638 638 639 -* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message. 1016 +* Example 1: Downlink Payload: 0801 **~-~-->** AT+WEIGRE 1017 +* Example 2: Downlink Payload: 08020FA3 **~-~-->** AT+WEIGAP=400.3 1018 +* Example 3: Downlink Payload: 08020FA0 **~-~-->** AT+WEIGAP=400.0 640 640 641 -=== 3.3.7 Set Interrupt Mode === 642 642 643 643 644 - Feature,SetInterruptmodefor GPIO_EXIT.1022 +=== 3.3.6 Set Digital pulse count value === 645 645 646 -(% style="color:blue" %)**AT Command: AT+INTMOD** 647 647 1025 +Feature: Set the pulse count value. 1026 + 1027 +Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9. 1028 + 1029 +(% style="color:blue" %)**AT Command: AT+SETCNT** 1030 + 648 648 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 649 649 |=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 650 -|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 651 -0 1033 +|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1034 +|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1035 + 1036 +(% style="color:blue" %)**Downlink Command: 0x09** 1037 + 1038 +Format: Command Code (0x09) followed by 5 bytes. 1039 + 1040 +The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized. 1041 + 1042 +* Example 1: Downlink Payload: 090100000000 **~-~-->** AT+SETCNT=1,0 1043 +* Example 2: Downlink Payload: 0902000003E8 **~-~-->** AT+SETCNT=2,1000 1044 + 1045 + 1046 + 1047 +=== 3.3.7 Set Workmode === 1048 + 1049 + 1050 +Feature: Switch working mode. 1051 + 1052 +(% style="color:blue" %)**AT Command: AT+MOD** 1053 + 1054 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1055 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response** 1056 +|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 652 652 OK 653 -the mode is 0 =Disable Interrupt 654 654 ))) 655 -|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)((( 656 -Set Transmit Interval 657 -0. (Disable Interrupt), 658 -~1. (Trigger by rising and falling edge) 659 -2. (Trigger by falling edge) 660 -3. (Trigger by rising edge) 661 -)))|(% style="width:157px" %)OK 1059 +|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)((( 1060 +OK 1061 +Attention:Take effect after ATZ 1062 +))) 662 662 663 -(% style="color:blue" %)**Downlink Command: 0x0 6**1064 +(% style="color:blue" %)**Downlink Command: 0x0A** 664 664 665 -Format: Command Code (0x0 6) followed by3bytes.1066 +Format: Command Code (0x0A) followed by 1 bytes. 666 666 667 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1068 +* Example 1: Downlink Payload: 0A01 **~-~-->** AT+MOD=1 1069 +* Example 2: Downlink Payload: 0A04 **~-~-->** AT+MOD=4 668 668 669 -* Example 1: Downlink Payload: 06000000 ~/~/ Turn off interrupt mode 670 -* Example 2: Downlink Payload: 06000003 ~/~/ Set the interrupt mode to rising edge trigger 671 671 1072 + 672 672 = 4. Battery & Power Consumption = 673 673 674 674 ... ... @@ -695,10 +695,18 @@ 695 695 * (Recommanded way) OTA firmware update via wireless: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]] 696 696 * Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 697 697 1099 + 1100 + 698 698 = 6. FAQ = 699 699 1103 +== 6.1 Where can i find source code of SN50v3-LB? == 700 700 701 701 1106 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1107 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1108 + 1109 + 1110 + 702 702 = 7. Order Info = 703 703 704 704 ... ... @@ -722,8 +722,11 @@ 722 722 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 723 723 * (% style="color:red" %)**NH**(%%): No Hole 724 724 1134 + 1135 + 725 725 = 8. Packing Info = 726 726 1138 + 727 727 (% style="color:#037691" %)**Package Includes**: 728 728 729 729 * SN50v3-LB LoRaWAN Generic Node ... ... @@ -735,8 +735,11 @@ 735 735 * Package Size / pcs : cm 736 736 * Weight / pcs : g 737 737 1150 + 1151 + 738 738 = 9. Support = 739 739 740 740 741 741 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 742 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1156 + 1157 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
- image-20230512163509-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.5 MB - Content
- image-20230512164658-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.0 MB - Content
- image-20230512170701-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.5 MB - Content
- image-20230512172447-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.0 MB - Content
- image-20230512173758-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.1 MB - Content
- image-20230512173903-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512180609-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512180718-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.3 MB - Content
- image-20230512181814-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +2.2 MB - Content
- image-20230513084523-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +611.3 KB - Content
- image-20230513102034-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +607.1 KB - Content
- image-20230513103633-3.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +595.5 KB - Content
- image-20230513105207-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +384.7 KB - Content
- image-20230513105351-5.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +37.6 KB - Content
- image-20230513110214-6.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +172.7 KB - Content
- image-20230513111203-7.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +79.9 KB - Content
- image-20230513111231-8.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +64.9 KB - Content
- image-20230513111255-9.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +70.4 KB - Content
- image-20230513134006-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Saxer - Size
-
... ... @@ -1,0 +1,1 @@ 1 +1.9 MB - Content
- image-20230515135611-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +948.0 KB - Content