Changes for page SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
Last modified by Bei Jinggeng on 2025/01/10 15:51
Change comment:
There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 14 removed)
- image-20231213102404-1.jpeg
- image-20231231202945-1.png
- image-20231231203148-2.png
- image-20231231203439-3.png
- image-20240103095513-1.jpeg
- image-20240103095714-2.png
- image-20240717113113-1.png
- image-20240717141512-1.jpeg
- image-20240717141528-2.jpeg
- image-20240717145707-3.png
- image-20240717150334-4.png
- image-20240717150948-5.png
- image-20240717152224-6.jpeg
- image-20240924112806-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -SN50v3-LB /LS--LoRaWAN Sensor Node User Manual1 +SN50v3-LB LoRaWAN Sensor Node User Manual - Content
-
... ... @@ -1,15 +3,10 @@ 1 - 2 - 3 3 (% style="text-align:center" %) 4 -[[image:image-202 40103095714-2.png]]2 +[[image:image-20230515135611-1.jpeg||height="589" width="589"]] 5 5 6 6 7 7 6 +**Table of Contents:** 8 8 9 - 10 - 11 -**Table of Contents:** 12 - 13 13 {{toc/}} 14 14 15 15 ... ... @@ -19,18 +19,18 @@ 19 19 20 20 = 1. Introduction = 21 21 22 -== 1.1 What is SN50v3-LB /LSLoRaWAN Generic Node ==17 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node == 23 23 24 24 25 -(% style="color:blue" %)**SN50V3-LB /LS**(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAhLi/SOCl2 battery**(%%)or (% style="color:blue" %)**solar powered + Li-ion battery**(%%)for long term use.SN50V3-LB/LSis designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.20 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere. 26 26 27 -(% style="color:blue" %)**SN50V3-LB /LSwireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.22 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on. 28 28 29 - SN50V3-LB/LS has a powerful(% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has(% style="color:blue" %)**multiplex I/O pins**(%%)to connect to different sensors.24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors. 30 30 31 - SN50V3-LB/LS has a(% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support(% style="color:blue" %)**OTA upgrade**(%%)via private LoRa protocol for easy maintaining.26 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining. 32 32 33 -SN50V3-LB /LSis the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.28 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements. 34 34 35 35 == 1.2 Features == 36 36 ... ... @@ -43,8 +43,7 @@ 43 43 * Support wireless OTA update firmware 44 44 * Uplink on periodically 45 45 * Downlink to change configure 46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB) 47 -* Solar panel + 3000mAh Li-ion battery (SN50v3-LS) 41 +* 8500mAh Battery for long term use 48 48 49 49 == 1.3 Specification == 50 50 ... ... @@ -51,7 +51,7 @@ 51 51 52 52 (% style="color:#037691" %)**Common DC Characteristics:** 53 53 54 -* Supply Voltage: Built-inBattery , 2.5v ~~ 3.6v48 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v 55 55 * Operating Temperature: -40 ~~ 85°C 56 56 57 57 (% style="color:#037691" %)**I/O Interface:** ... ... @@ -94,10 +94,11 @@ 94 94 == 1.5 Button & LEDs == 95 95 96 96 97 -[[image: http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]] 98 98 99 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 100 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action** 93 + 94 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action** 101 101 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)((( 102 102 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once. 103 103 Meanwhile, BLE module will be active and user can connect via BLE to configure device. ... ... @@ -112,7 +112,7 @@ 112 112 == 1.6 BLE connection == 113 113 114 114 115 -SN50v3-LB /LSsupports BLE remote configure.110 +SN50v3-LB supports BLE remote configure. 116 116 117 117 118 118 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case: ... ... @@ -132,22 +132,18 @@ 132 132 133 133 == 1.8 Mechanical == 134 134 135 -=== 1.8.1 for LB version === 136 136 131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]] 137 137 138 -[[image:i mage-20240924112806-1.png||height="548" width="894"]]133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]] 139 139 135 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]] 140 140 141 141 142 -=== 1.8.2 for LS version === 143 - 144 -[[image:image-20231231203439-3.png||height="385" width="886"]] 145 - 146 - 147 147 == 1.9 Hole Option == 148 148 149 149 150 -SN50v3-LB /LShas different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:141 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below: 151 151 152 152 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]] 153 153 ... ... @@ -154,12 +154,12 @@ 154 154 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]] 155 155 156 156 157 -= 2. Configure SN50v3-LB /LSto connect to LoRaWAN network =148 += 2. Configure SN50v3-LB to connect to LoRaWAN network = 158 158 159 159 == 2.1 How it works == 160 160 161 161 162 -The SN50v3-LB /LSis configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.153 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes. 163 163 164 164 165 165 == 2.2 Quick guide to connect to LoRaWAN server (OTAA) == ... ... @@ -170,9 +170,9 @@ 170 170 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 171 171 172 172 173 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB /LS.164 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB. 174 174 175 -Each SN50v3-LB /LSis shipped with a sticker with the default device EUI as below:166 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below: 176 176 177 177 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]] 178 178 ... ... @@ -200,10 +200,12 @@ 200 200 201 201 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]] 202 202 203 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS 204 204 205 - Pressthebutton for5 secondstoactivatetheSN50v3-LB/LS.195 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB 206 206 197 + 198 +Press the button for 5 seconds to activate the SN50v3-LB. 199 + 207 207 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network. 208 208 209 209 After join success, it will start to upload messages to TTN and you can see the messages in the panel. ... ... @@ -214,13 +214,13 @@ 214 214 === 2.3.1 Device Status, FPORT~=5 === 215 215 216 216 217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB /LSto send device configure detail, include device configure status. SN50v3-LB/LSwill uplink a payload via FPort=5 to server.210 +Users can use the downlink command(**0x26 01**) to ask SN50v3-LB to send device configure detail, include device configure status. SN50v3-LB will uplink a payload via FPort=5 to server. 218 218 219 219 The Payload format is as below. 220 220 221 221 222 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)223 -|(% colspan="6" style="background-color:# 4f81bd; color:white" %)**Device Status (FPORT=5)**215 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 216 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)** 224 224 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2** 225 225 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT 226 226 ... ... @@ -227,7 +227,7 @@ 227 227 Example parse in TTNv3 228 228 229 229 230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB /LS, this value is 0x1C223 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB, this value is 0x1C 231 231 232 232 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version 233 233 ... ... @@ -283,7 +283,7 @@ 283 283 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 === 284 284 285 285 286 -SN50v3-LB /LShas different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LSto different working modes.279 +SN50v3-LB has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB to different working modes. 287 287 288 288 For example: 289 289 ... ... @@ -292,7 +292,7 @@ 292 292 293 293 (% style="color:red" %) **Important Notice:** 294 294 295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB /LStransmit in DR0 with 12 bytes payload.288 +~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB transmit in DR0 with 12 bytes payload. 296 296 297 297 2. All modes share the same Payload Explanation from HERE. 298 298 ... ... @@ -304,8 +304,8 @@ 304 304 305 305 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 306 306 307 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)308 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**300 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 301 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 309 309 |Value|Bat|(% style="width:191px" %)((( 310 310 Temperature(DS18B20)(PC13) 311 311 )))|(% style="width:78px" %)((( ... ... @@ -326,8 +326,8 @@ 326 326 327 327 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance. 328 328 329 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)330 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**322 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 323 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2** 331 331 |Value|BAT|(% style="width:196px" %)((( 332 332 Temperature(DS18B20)(PC13) 333 333 )))|(% style="width:87px" %)((( ... ... @@ -356,8 +356,8 @@ 356 356 357 357 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below: 358 358 359 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)360 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**352 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 353 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2** 361 361 |Value|BAT|(% style="width:183px" %)((( 362 362 Temperature(DS18B20)(PC13) 363 363 )))|(% style="width:173px" %)((( ... ... @@ -391,10 +391,10 @@ 391 391 392 392 This mode has total 12 bytes. Include 3 x ADC + 1x I2C 393 393 394 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)395 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((387 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 388 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 396 396 **Size(bytes)** 397 -)))|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width:97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1390 +)))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1 398 398 |Value|(% style="width:68px" %)((( 399 399 ADC1(PA4) 400 400 )))|(% style="width:75px" %)((( ... ... @@ -417,8 +417,8 @@ 417 417 418 418 This mode has total 11 bytes. As shown below: 419 419 420 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)421 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**413 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 414 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2** 422 422 |Value|BAT|(% style="width:186px" %)((( 423 423 Temperature1(DS18B20)(PC13) 424 424 )))|(% style="width:82px" %)((( ... ... @@ -458,10 +458,10 @@ 458 458 459 459 Check the response of this command and adjust the value to match the real value for thing. 460 460 461 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)462 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((454 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 455 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 463 463 **Size(bytes)** 464 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:49px;background-color:#4F81BD;color:white" %)**4**457 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4** 465 465 |Value|BAT|(% style="width:193px" %)((( 466 466 Temperature(DS18B20)(PC13) 467 467 )))|(% style="width:85px" %)((( ... ... @@ -485,8 +485,8 @@ 485 485 486 486 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.** 487 487 488 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)489 -|=(% style="width: 60px;background-color:# 4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:77px;background-color:#4F81BD;color:white" %)**4**481 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 482 +|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4** 490 490 |Value|BAT|(% style="width:256px" %)((( 491 491 Temperature(DS18B20)(PC13) 492 492 )))|(% style="width:108px" %)((( ... ... @@ -503,10 +503,10 @@ 503 503 ==== 2.3.2.7 MOD~=7 (Three interrupt contact modes) ==== 504 504 505 505 506 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)507 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((499 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 500 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 508 508 **Size(bytes)** 509 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2502 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2 510 510 |Value|BAT|(% style="width:188px" %)((( 511 511 Temperature(DS18B20) 512 512 (PC13) ... ... @@ -522,10 +522,10 @@ 522 522 ==== 2.3.2.8 MOD~=8 (3ADC+1DS18B20) ==== 523 523 524 524 525 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)526 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((518 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 519 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 527 527 **Size(bytes)** 528 -)))|=(% style="width: 30px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:69px;background-color:#4F81BD;color:white" %)2521 +)))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2 529 529 |Value|BAT|(% style="width:207px" %)((( 530 530 Temperature(DS18B20) 531 531 (PC13) ... ... @@ -545,10 +545,10 @@ 545 545 ==== 2.3.2.9 MOD~=9 (3DS18B20+ two Interrupt count mode) ==== 546 546 547 547 548 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:517px" %)549 -|=(% style="width: 50px;background-color:# 4F81BD;color:white" %)(((541 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %) 542 +|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)((( 550 550 **Size(bytes)** 551 -)))|=(% style="width: 20px;background-color:# 4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width:89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width:59px;background-color:#4F81BD;color:white" %)4|=(% style="width:59px;background-color:#4F81BD;color:white" %)4544 +)))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4 552 552 |Value|BAT|((( 553 553 Temperature 554 554 (DS18B20)(PC13) ... ... @@ -585,9 +585,8 @@ 585 585 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb 586 586 587 587 588 -==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) (%style="display:none" %) (%%)====581 +==== 2.3.2.10 MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ==== 589 589 590 - 591 591 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.** 592 592 593 593 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output. ... ... @@ -600,8 +600,8 @@ 600 600 601 601 [[image:image-20230817172209-2.png||height="439" width="683"]] 602 602 603 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:515px" %)604 -|(% style="background-color:# 4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**595 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:690px" %) 596 +|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:89px" %)**2** 605 605 |Value|Bat|(% style="width:191px" %)((( 606 606 Temperature(DS18B20)(PC13) 607 607 )))|(% style="width:78px" %)((( ... ... @@ -608,6 +608,7 @@ 608 608 ADC(PA4) 609 609 )))|(% style="width:135px" %)((( 610 610 PWM_Setting 603 + 611 611 &Digital Interrupt(PA8) 612 612 )))|(% style="width:70px" %)((( 613 613 Pulse period ... ... @@ -637,38 +637,9 @@ 637 637 [[image:image-20230818092200-1.png||height="344" width="627"]] 638 638 639 639 640 -===== 2.3.2.10.b Uplink, PWM output =====633 +===== 2.3.2.10.b Downlink, PWM output ===== 641 641 642 642 643 -[[image:image-20230817172209-2.png||height="439" width="683"]] 644 - 645 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c** 646 - 647 -a is the time delay of the output, the unit is ms. 648 - 649 -b is the output frequency, the unit is HZ. 650 - 651 -c is the duty cycle of the output, the unit is %. 652 - 653 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%): (% style="color:#037691" %)**0B 01 bb cc aa ** 654 - 655 -aa is the time delay of the output, the unit is ms. 656 - 657 -bb is the output frequency, the unit is HZ. 658 - 659 -cc is the duty cycle of the output, the unit is %. 660 - 661 - 662 -For example, send a AT command: AT+PWMOUT=65535,1000,50 The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50. 663 - 664 -The oscilloscope displays as follows: 665 - 666 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]] 667 - 668 - 669 -===== 2.3.2.10.c Downlink, PWM output ===== 670 - 671 - 672 672 [[image:image-20230817173800-3.png||height="412" width="685"]] 673 673 674 674 Downlink: (% style="color:#037691" %)**0B xx xx xx yy zz zz** ... ... @@ -684,64 +684,9 @@ 684 684 685 685 The oscilloscope displays as follows: 686 686 687 -[[image:image-20230817173858-5.png||height="6 34" width="843"]]651 +[[image:image-20230817173858-5.png||height="694" width="921"]] 688 688 689 689 690 - 691 -==== 2.3.2.11 MOD~=11 (TEMP117)(Since firmware V1.3.0) ==== 692 - 693 - 694 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2. 695 - 696 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 697 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2** 698 -|Value|Bat|(% style="width:191px" %)((( 699 -Temperature(DS18B20)(PC13) 700 -)))|(% style="width:78px" %)((( 701 -ADC(PA4) 702 -)))|(% style="width:216px" %)((( 703 -Digital in(PB15)&Digital Interrupt(PA8) 704 -)))|(% style="width:308px" %)((( 705 -Temperature 706 - 707 -(TEMP117) 708 -)))|(% style="width:154px" %)((( 709 -Reserved position, meaningless 710 - 711 -(0x0000) 712 -))) 713 - 714 -[[image:image-20240717113113-1.png||height="352" width="793"]] 715 - 716 -Connection: 717 - 718 -[[image:image-20240717141528-2.jpeg||height="430" width="654"]] 719 - 720 - 721 -==== 2.3.2.12 MOD~=12 (Count+SHT31)(Since firmware V1.3.1) ==== 722 - 723 - 724 -This mode has total 11 bytes. As shown below: 725 - 726 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %) 727 -|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4** 728 -|Value|BAT|(% style="width:86px" %)((( 729 - Temperature_SHT31 730 -)))|(% style="width:86px" %)((( 731 -Humidity_SHT31 732 -)))|(% style="width:86px" %)((( 733 - Digital in(PB15) 734 -)))|(% style="width:86px" %)((( 735 -Count(PA8) 736 -))) 737 - 738 -[[image:image-20240717150948-5.png||height="389" width="979"]] 739 - 740 -Wiring example: 741 - 742 -[[image:image-20240717152224-6.jpeg||height="359" width="680"]] 743 - 744 - 745 745 === 2.3.3 Decode payload === 746 746 747 747 ... ... @@ -751,13 +751,13 @@ 751 751 752 752 The payload decoder function for TTN V3 are here: 753 753 754 -SN50v3-LB /LSTTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]663 +SN50v3-LB TTN V3 Payload Decoder: [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]] 755 755 756 756 757 757 ==== 2.3.3.1 Battery Info ==== 758 758 759 759 760 -Check the battery voltage for SN50v3-LB /LS.669 +Check the battery voltage for SN50v3-LB. 761 761 762 762 Ex1: 0x0B45 = 2885mV 763 763 ... ... @@ -819,12 +819,10 @@ 819 819 820 820 [[image:image-20230811113449-1.png||height="370" width="608"]] 821 821 822 - 823 - 824 824 ==== 2.3.3.5 Digital Interrupt ==== 825 825 826 826 827 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB /LSwill send a packet to the server.734 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB will send a packet to the server. 828 828 829 829 (% style="color:blue" %)** Interrupt connection method:** 830 830 ... ... @@ -837,18 +837,18 @@ 837 837 838 838 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]] 839 839 840 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB /LSinterrupt interface to detect the status for the door or window.747 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB interrupt interface to detect the status for the door or window. 841 841 842 842 843 843 (% style="color:blue" %)**Below is the installation example:** 844 844 845 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB /LSas follows:752 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB as follows: 846 846 847 847 * ((( 848 -One pin to SN50v3-LB /LS's PA8 pin755 +One pin to SN50v3-LB's PA8 pin 849 849 ))) 850 850 * ((( 851 -The other pin to SN50v3-LB /LS's VDD pin758 +The other pin to SN50v3-LB's VDD pin 852 852 ))) 853 853 854 854 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage. ... ... @@ -884,7 +884,7 @@ 884 884 885 885 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor. 886 886 887 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB /LSwill be a good reference.**794 +(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB will be a good reference.** 888 888 889 889 890 890 Below is the connection to SHT20/ SHT31. The connection is as below: ... ... @@ -918,7 +918,7 @@ 918 918 919 919 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]] 920 920 921 -The SN50v3-LB /LSdetects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.828 +The SN50v3-LB detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm. 922 922 923 923 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor. 924 924 ... ... @@ -927,7 +927,7 @@ 927 927 [[image:image-20230512173903-6.png||height="596" width="715"]] 928 928 929 929 930 -Connect to the SN50v3-LB /LSand run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).837 +Connect to the SN50v3-LB and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT). 931 931 932 932 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value. 933 933 ... ... @@ -939,13 +939,13 @@ 939 939 ==== 2.3.3.9 Battery Output - BAT pin ==== 940 940 941 941 942 -The BAT pin of SN50v3-LB /LSis connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LSwill run out very soon.849 +The BAT pin of SN50v3-LB is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon. 943 943 944 944 945 945 ==== 2.3.3.10 +5V Output ==== 946 946 947 947 948 -SN50v3-LB /LSwill enable +5V output before all sampling and disable the +5v after all sampling.855 +SN50v3-LB will enable +5V output before all sampling and disable the +5v after all sampling. 949 949 950 950 The 5V output time can be controlled by AT Command. 951 951 ... ... @@ -986,13 +986,16 @@ 986 986 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture. 987 987 ))) 988 988 * ((( 989 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.896 +PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to Class C. Power consumption will not be low. 990 990 991 991 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC. 992 992 993 -a) If real -time control outputis required,theSN50v3-LB/LSisalreadyoperatinginclass C and anexternal power supply must beused.900 +a) If needs to realtime control output, SN50v3-LB has be run in CLass C and have to use external power source. 994 994 995 -b) If the output duration is more than 30 seconds, better to use external power source. 902 +b) If the output duration is more than 30 seconds, bettert to use external power source. 903 + 904 + 905 + 996 996 ))) 997 997 998 998 ==== 2.3.3.13 Working MOD ==== ... ... @@ -1028,17 +1028,17 @@ 1028 1028 == 2.5 Frequency Plans == 1029 1029 1030 1030 1031 -The SN50v3-LB /LSuses OTAA mode and below frequency plans by default.Eachfrequencybanduse different firmware,userupdatethefirmwareto the corresponding bandfor theircountry.941 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 1032 1032 1033 1033 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]] 1034 1034 1035 1035 1036 -= 3. Configure SN50v3-LB /LS=946 += 3. Configure SN50v3-LB = 1037 1037 1038 1038 == 3.1 Configure Methods == 1039 1039 1040 1040 1041 -SN50v3-LB /LSsupports below configure method:951 +SN50v3-LB supports below configure method: 1042 1042 1043 1043 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]]. 1044 1044 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]]. ... ... @@ -1057,10 +1057,10 @@ 1057 1057 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]] 1058 1058 1059 1059 1060 -== 3.3 Commands special design for SN50v3-LB /LS==970 +== 3.3 Commands special design for SN50v3-LB == 1061 1061 1062 1062 1063 -These commands only valid for SN50v3-LB /LS, as below:973 +These commands only valid for SN50v3-LB, as below: 1064 1064 1065 1065 1066 1066 === 3.3.1 Set Transmit Interval Time === ... ... @@ -1071,7 +1071,7 @@ 1071 1071 (% style="color:blue" %)**AT Command: AT+TDC** 1072 1072 1073 1073 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1074 -|=(% style="width: 156px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**984 +|=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response** 1075 1075 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|((( 1076 1076 30000 1077 1077 OK ... ... @@ -1104,47 +1104,41 @@ 1104 1104 === 3.3.3 Set Interrupt Mode === 1105 1105 1106 1106 1107 -Feature, Set Interrupt mode for P B14, PB15, PA4.1017 +Feature, Set Interrupt mode for GPIO_EXIT. 1108 1108 1109 - Beforeusingtheinterrupt functionof the **INT**pin, users canset the interrupt triggering modeas required.1019 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3** 1110 1110 1111 -(% style="color:#037691" %)**AT Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**AT+INTMODx** 1021 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1022 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1023 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)((( 1024 +0 1025 +OK 1026 +the mode is 0 =Disable Interrupt 1027 +))) 1028 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)((( 1029 +Set Transmit Interval 1030 +0. (Disable Interrupt), 1031 +~1. (Trigger by rising and falling edge) 1032 +2. (Trigger by falling edge) 1033 +3. (Trigger by rising edge) 1034 +)))|(% style="width:157px" %)OK 1035 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)((( 1036 +Set Transmit Interval 1037 +trigger by rising edge. 1038 +)))|(% style="width:157px" %)OK 1039 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK 1112 1112 1113 -(% style="color: #4472c4" %)**AT+INTMODx:**1041 +(% style="color:blue" %)**Downlink Command: 0x06** 1114 1114 1115 -* (% style="color:#4472c4" %)**AT+INTMOD1 **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB14**(%%) pin. 1116 -* (% style="color:#4472c4" %)**AT+INTMOD2 **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PB15**(%%) pin. 1117 -* (% style="color:#4472c4" %)**AT+INTMOD3 **(%%)~/~/ Set the interrupt mode for (% style="background-color:yellow" %)** PA4**(%%) pin. 1118 - 1119 -**Parameter setting:** 1120 - 1121 -* **0:** Disable Interrupt 1122 -* **1:** Trigger by rising and falling edge 1123 -* **2:** Trigger by falling edge 1124 -* **3: **Trigger by rising edge 1125 - 1126 -**Example:** 1127 - 1128 -* AT+INTMOD1=0 ~/~/Disable the PB14 pin interrupt function 1129 -* AT+INTMOD2=2 ~/~/Set the interrupt of the PB15 pin to be triggered by the falling edge 1130 -* AT+INTMOD3=3 ~/~/Set the interrupt of the PA4 pin to be triggered by the rising edge 1131 - 1132 -(% style="color:#037691" %)**Downlink Command:**(% style="color:blue" %)** **(% style="color:#4472c4" %)**0x06 00 aa bb** 1133 - 1134 1134 Format: Command Code (0x06) followed by 3 bytes. 1135 1135 1136 - (%style="color:#4472c4"%)**aa:**(%%) Set thecorrespondingpin.((% style="background-color:yellow"%)**00**(%%):PB14 Pin;(% style="background-color:yellow"%)**01**(%%)**:**PB15 Pin;(% style="background-color:yellow"%)**02**(%%): PA4 Pin.)1045 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06. 1137 1137 1138 -(% style="color:#4472c4" %)**bb: **(%%)Set interrupt mode. ((% style="background-color:yellow" %)**00**(%%) Disable, (% style="background-color:yellow" %)**01**(%%) falling or rising, (% style="background-color:yellow" %)**02**(%%) falling, (% style="background-color:yellow" %)**03**(%%) rising) 1047 +* Example 1: Downlink Payload: 06000000 **~-~-->** AT+INTMOD1=0 1048 +* Example 2: Downlink Payload: 06000003 **~-~-->** AT+INTMOD1=3 1049 +* Example 3: Downlink Payload: 06000102 **~-~-->** AT+INTMOD2=2 1050 +* Example 4: Downlink Payload: 06000201 **~-~-->** AT+INTMOD3=1 1139 1139 1140 -**Example:** 1141 - 1142 -* Downlink Payload: **06 00 00 01 **~/~/ Equal to AT+INTMOD1=1 1143 -* Downlink Payload: **06 00 01 02 **~/~/ Equal to AT+INTMOD2=2 1144 -* Downlink Payload: **06 00 02 03 **~/~/ Equal to AT+INTMOD3=3 1145 - 1146 - 1147 - 1148 1148 === 3.3.4 Set Power Output Duration === 1149 1149 1150 1150 ... ... @@ -1159,7 +1159,7 @@ 1159 1159 (% style="color:blue" %)**AT Command: AT+5VT** 1160 1160 1161 1161 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1162 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1066 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1163 1163 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)((( 1164 1164 500(default) 1165 1165 OK ... ... @@ -1185,9 +1185,9 @@ 1185 1185 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP** 1186 1186 1187 1187 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1188 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1092 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1189 1189 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK 1190 -|(% style="width:154px" %)AT+WEIGAP= ?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)1094 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default) 1191 1191 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK 1192 1192 1193 1193 (% style="color:blue" %)**Downlink Command: 0x08** ... ... @@ -1211,8 +1211,8 @@ 1211 1211 1212 1212 (% style="color:blue" %)**AT Command: AT+SETCNT** 1213 1213 1214 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)1215 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1118 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1119 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1216 1216 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK 1217 1217 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK 1218 1218 ... ... @@ -1232,8 +1232,8 @@ 1232 1232 1233 1233 (% style="color:blue" %)**AT Command: AT+MOD** 1234 1234 1235 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)1236 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**1139 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1140 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1237 1237 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)((( 1238 1238 OK 1239 1239 ))) ... ... @@ -1256,17 +1256,18 @@ 1256 1256 1257 1257 (% style="color:blue" %)**AT Command: AT+PWMSET** 1258 1258 1259 -(% border="1" cellspacing=" 3" style="background-color:#f2f2f2; width:510px" %)1260 -|=(% style="width: 155px;background-color:# 4F81BD;color:white" %)**Command Example**|=(% style="width:225px;4F81BD;color:white" %)**Function**|=(% style="width: 130px;4F81BD;color:white" %)**Response**1261 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width: 223px" %)0|(% style="width:130px" %)(((1163 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %) 1164 +|=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response** 1165 +|(% style="width:154px" %)AT+PWMSET=?|(% style="width:196px" %)0|(% style="width:157px" %)((( 1262 1262 0(default) 1167 + 1263 1263 OK 1264 1264 ))) 1265 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width: 223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:130px" %)(((1170 +|(% style="width:154px" %)AT+PWMSET=0|(% style="width:196px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ. |(% style="width:157px" %)((( 1266 1266 OK 1267 1267 1268 1268 ))) 1269 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width: 223px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK1174 +|(% style="width:154px" %)AT+PWMSET=1|(% style="width:196px" %)The unit of PWM capture time is millisecond. The capture frequency range is between 5HZ and 250HZ. |(% style="width:157px" %)OK 1270 1270 1271 1271 (% style="color:blue" %)**Downlink Command: 0x0C** 1272 1272 ... ... @@ -1275,71 +1275,11 @@ 1275 1275 * Example 1: Downlink Payload: 0C00 **~-~-->** AT+PWMSET=0 1276 1276 * Example 2: Downlink Payload: 0C01 **~-~-->** AT+PWMSET=1 1277 1277 1278 - **Feature:SetPWMoutput time,outputfrequencyand output duty cycle.**1183 += 4. Battery & Power Consumption = 1279 1279 1280 -(% style="color:blue" %)**AT Command: AT+PWMOUT** 1281 1281 1282 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1283 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response** 1284 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)((( 1285 -0,0,0(default) 1286 -OK 1287 -))) 1288 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)((( 1289 -OK 1290 - 1291 -))) 1292 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)((( 1293 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%. 1186 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace. 1294 1294 1295 - 1296 -)))|(% style="width:137px" %)((( 1297 -OK 1298 -))) 1299 - 1300 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %) 1301 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters** 1302 -|(% colspan="1" rowspan="3" style="width:155px" %)((( 1303 -AT+PWMOUT=a,b,c 1304 - 1305 - 1306 -)))|(% colspan="1" rowspan="3" style="width:112px" %)((( 1307 -Set PWM output time, output frequency and output duty cycle. 1308 - 1309 -((( 1310 - 1311 -))) 1312 - 1313 -((( 1314 - 1315 -))) 1316 -)))|(% style="width:242px" %)((( 1317 -a: Output time (unit: seconds) 1318 -The value ranges from 0 to 65535. 1319 -When a=65535, PWM will always output. 1320 -))) 1321 -|(% style="width:242px" %)((( 1322 -b: Output frequency (unit: HZ) 1323 -))) 1324 -|(% style="width:242px" %)((( 1325 -c: Output duty cycle (unit: %) 1326 -The value ranges from 0 to 100. 1327 -))) 1328 - 1329 -(% style="color:blue" %)**Downlink Command: 0x0B01** 1330 - 1331 -Format: Command Code (0x0B01) followed by 6 bytes. 1332 - 1333 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c 1334 - 1335 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->** AT+PWMSET=5,1000,50 1336 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->** AT+PWMSET=10,2000,60 1337 - 1338 -= 4. Battery & Power Cons = 1339 - 1340 - 1341 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace. 1342 - 1343 1343 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] . 1344 1344 1345 1345 ... ... @@ -1347,7 +1347,7 @@ 1347 1347 1348 1348 1349 1349 (% class="wikigeneratedid" %) 1350 -**User can change firmware SN50v3-LB /LSto:**1195 +**User can change firmware SN50v3-LB to:** 1351 1351 1352 1352 * Change Frequency band/ region. 1353 1353 * Update with new features. ... ... @@ -1360,42 +1360,24 @@ 1360 1360 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]** 1361 1361 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**. 1362 1362 1363 -= 6. DeveloperGuide=1208 += 6. FAQ = 1364 1364 1365 - SN50v3isan open sourceproject, developer canuse compiletheirfirmware for customizedapplications. User can get the source codefrom:1210 +== 6.1 Where can i find source code of SN50v3-LB? == 1366 1366 1367 -* ((( 1368 -Software Source Code: [[Releases · dragino/SN50v3 (github.com)>>url:https://github.com/dragino/SN50v3/releases]] 1369 -))) 1370 -* ((( 1371 -Hardware Design files: **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1372 -))) 1373 -* ((( 1374 -Compile instruction:[[Compile instruction>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Module/Compile%20and%20Upload%20Code%20to%20ASR6601%20Platform/]] 1375 -))) 1376 1376 1377 -**~1. If you want to change frequency, modify the Preprocessor Symbols.** 1213 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].** 1214 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].** 1378 1378 1379 - Forexample, changeEU868toUS9151216 +== 6.2 How to generate PWM Output in SN50v3-LB? == 1380 1380 1381 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656318662202-530.png?rev=1.1||alt="1656318662202-530.png"]] 1382 1382 1383 -**2. Compile and build** 1384 - 1385 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627163212-17.png?rev=1.1||alt="image-20220627163212-17.png"]] 1386 - 1387 -= 7. FAQ = 1388 - 1389 -== 7.1 How to generate PWM Output in SN50v3-LB/LS? == 1390 - 1391 - 1392 1392 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**. 1393 1393 1394 1394 1395 -== 7.2How to put several sensors to a SN50v3-LB/LS? ==1222 +== 6.3 How to put several sensors to a SN50v3-LB? == 1396 1396 1397 1397 1398 -When we want to put several sensors to A SN50v3-LB /LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.1225 +When we want to put several sensors to A SN50v3-LB, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type. 1399 1399 1400 1400 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]]. 1401 1401 ... ... @@ -1402,10 +1402,10 @@ 1402 1402 [[image:image-20230810121434-1.png||height="242" width="656"]] 1403 1403 1404 1404 1405 -= 8. Order Info =1232 += 7. Order Info = 1406 1406 1407 1407 1408 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** (%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**1235 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** 1409 1409 1410 1410 (% style="color:red" %)**XX**(%%): The default frequency band 1411 1411 ... ... @@ -1425,12 +1425,12 @@ 1425 1425 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole 1426 1426 * (% style="color:red" %)**NH**(%%): No Hole 1427 1427 1428 -= 9. Packing Info =1255 += 8. Packing Info = 1429 1429 1430 1430 1431 1431 (% style="color:#037691" %)**Package Includes**: 1432 1432 1433 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node1260 +* SN50v3-LB LoRaWAN Generic Node 1434 1434 1435 1435 (% style="color:#037691" %)**Dimension and weight**: 1436 1436 ... ... @@ -1439,7 +1439,7 @@ 1439 1439 * Package Size / pcs : cm 1440 1440 * Weight / pcs : g 1441 1441 1442 -= 10. Support =1269 += 9. Support = 1443 1443 1444 1444 1445 1445 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
- image-20231213102404-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -4.2 MB - Content
- image-20231231202945-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -36.3 KB - Content
- image-20231231203148-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -35.4 KB - Content
- image-20231231203439-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Edwin - Size
-
... ... @@ -1,1 +1,0 @@ 1 -46.6 KB - Content
- image-20240103095513-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -577.4 KB - Content
- image-20240103095714-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -230.1 KB - Content
- image-20240717113113-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -34.0 KB - Content
- image-20240717141512-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -948.8 KB - Content
- image-20240717141528-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -234.2 KB - Content
- image-20240717145707-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -39.8 KB - Content
- image-20240717150334-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -37.6 KB - Content
- image-20240717150948-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.3 KB - Content
- image-20240717152224-6.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.ting - Size
-
... ... @@ -1,1 +1,0 @@ 1 -238.1 KB - Content
- image-20240924112806-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -140.2 KB - Content