<
From version < 102.1 >
edited by Mengting Qiu
on 2024/10/31 16:45
To version < 14.1 >
edited by Edwin Chen
on 2023/05/11 23:21
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -SN50v3-LB/LS -- LoRaWAN Sensor Node User Manual
1 +SN50v3-LB User Manual
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.ting
1 +XWiki.Edwin
Content
... ... @@ -1,40 +1,37 @@
1 -
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
2 2  
3 -(% style="text-align:center" %)
4 -[[image:image-20240103095714-2.png]]
5 5  
6 6  
5 +**Table of Contents:**
7 7  
7 +{{toc/}}
8 8  
9 9  
10 10  
11 -**Table of Contents:**
12 12  
13 -{{toc/}}
14 14  
15 15  
14 += 1. Introduction =
16 16  
16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 17  
18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
18 18  
19 19  
20 -= 1. Introduction =
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
21 21  
22 -== 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23 23  
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
24 24  
25 -(% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + Li-ion battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26 26  
27 -(% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 28  
29 -SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
30 30  
31 -SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
32 32  
33 -SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34 34  
35 35  == 1.2 ​Features ==
36 36  
37 -
38 38  * LoRaWAN 1.0.3 Class A
39 39  * Ultra-low power consumption
40 40  * Open-Source hardware/software
... ... @@ -43,15 +43,13 @@
43 43  * Support wireless OTA update firmware
44 44  * Uplink on periodically
45 45  * Downlink to change configure
46 -* 8500mAh Li/SOCl2 Battery (SN50v3-LB)
47 -* Solar panel + 3000mAh Li-ion battery (SN50v3-LS)
43 +* 8500mAh Battery for long term use
48 48  
49 49  == 1.3 Specification ==
50 50  
51 -
52 52  (% style="color:#037691" %)**Common DC Characteristics:**
53 53  
54 -* Supply Voltage: Built-in Battery , 2.5v ~~ 3.6v
49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
55 55  * Operating Temperature: -40 ~~ 85°C
56 56  
57 57  (% style="color:#037691" %)**I/O Interface:**
... ... @@ -85,7 +85,6 @@
85 85  
86 86  == 1.4 Sleep mode and working mode ==
87 87  
88 -
89 89  (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90 90  
91 91  (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
... ... @@ -94,10 +94,11 @@
94 94  == 1.5 Button & LEDs ==
95 95  
96 96  
97 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/RS485-LB_Waterproof_RS485UART_to_LoRaWAN_Converter/WebHome/image-20240103160425-4.png?rev=1.1||alt="image-20240103160425-4.png"]]
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
98 98  
99 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
100 -|=(% style="width: 167px;background-color:#4F81BD;color:white" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 226px;background-color:#4F81BD;color:white" %)**Action**
93 +
94 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
101 101  |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
102 102  If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
103 103  Meanwhile, BLE module will be active and user can connect via BLE to configure device.
... ... @@ -112,7 +112,7 @@
112 112  == 1.6 BLE connection ==
113 113  
114 114  
115 -SN50v3-LB/LS supports BLE remote configure.
110 +SN50v3-LB supports BLE remote configure.
116 116  
117 117  
118 118  BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
... ... @@ -127,39 +127,34 @@
127 127  == 1.7 Pin Definitions ==
128 128  
129 129  
130 -[[image:image-20230610163213-1.png||height="404" width="699"]]
125 +[[image:image-20230511203450-2.png||height="443" width="785"]]
131 131  
132 132  
133 133  == 1.8 Mechanical ==
134 134  
135 -=== 1.8.1 for LB version ===
136 136  
131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
137 137  
138 -[[image:image-20240924112806-1.png||height="548" width="894"]]
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
139 139  
135 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
140 140  
141 141  
142 -=== 1.8.2 for LS version ===
138 +== Hole Option ==
143 143  
144 -[[image:image-20231231203439-3.png||height="385" width="886"]]
140 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
145 145  
146 -
147 -== 1.9 Hole Option ==
148 -
149 -
150 -SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
151 -
152 152  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
153 153  
154 154  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
155 155  
156 156  
157 -= 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
147 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
158 158  
159 159  == 2.1 How it works ==
160 160  
161 161  
162 -The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
163 163  
164 164  
165 165  == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
... ... @@ -167,12 +167,12 @@
167 167  
168 168  Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
169 169  
170 -The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
171 171  
172 172  
173 -(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
174 174  
175 -Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
165 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
176 176  
177 177  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
178 178  
... ... @@ -200,10 +200,12 @@
200 200  
201 201  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
202 202  
203 -(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
204 204  
205 -Press the button for 5 seconds to activate the SN50v3-LB/LS.
194 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
206 206  
196 +
197 +Press the button for 5 seconds to activate the SN50v3-LB.
198 +
207 207  (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
208 208  
209 209  After join success, it will start to upload messages to TTN and you can see the messages in the panel.
... ... @@ -214,52 +214,52 @@
214 214  === 2.3.1 Device Status, FPORT~=5 ===
215 215  
216 216  
217 -Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
218 218  
219 219  The Payload format is as below.
220 220  
221 221  
222 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
223 -|(% colspan="6" style="background-color:#4f81bd; color:white" %)**Device Status (FPORT=5)**
214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
215 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
224 224  |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
225 -|(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
226 226  
227 227  Example parse in TTNv3
228 228  
229 229  
230 -(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
231 231  
232 232  (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
233 233  
234 234  (% style="color:#037691" %)**Frequency Band**:
235 235  
236 -0x01: EU868
228 +*0x01: EU868
237 237  
238 -0x02: US915
230 +*0x02: US915
239 239  
240 -0x03: IN865
232 +*0x03: IN865
241 241  
242 -0x04: AU915
234 +*0x04: AU915
243 243  
244 -0x05: KZ865
236 +*0x05: KZ865
245 245  
246 -0x06: RU864
238 +*0x06: RU864
247 247  
248 -0x07: AS923
240 +*0x07: AS923
249 249  
250 -0x08: AS923-1
242 +*0x08: AS923-1
251 251  
252 -0x09: AS923-2
244 +*0x09: AS923-2
253 253  
254 -0x0a: AS923-3
246 +*0x0a: AS923-3
255 255  
256 -0x0b: CN470
248 +*0x0b: CN470
257 257  
258 -0x0c: EU433
250 +*0x0c: EU433
259 259  
260 -0x0d: KR920
252 +*0x0d: KR920
261 261  
262 -0x0e: MA869
254 +*0x0e: MA869
263 263  
264 264  
265 265  (% style="color:#037691" %)**Sub-Band**:
... ... @@ -283,40 +283,25 @@
283 283  === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
284 284  
285 285  
286 -SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
287 287  
288 288  For example:
289 289  
290 - (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
291 291  
292 292  
293 293  (% style="color:red" %) **Important Notice:**
294 294  
295 -~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
296 296  
297 -2. All modes share the same Payload Explanation from HERE.
298 -
299 -3. By default, the device will send an uplink message every 20 minutes.
300 -
301 -
302 302  ==== 2.3.2.1  MOD~=1 (Default Mode) ====
303 303  
304 -
305 305  In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
306 306  
307 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
308 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
309 -|Value|Bat|(% style="width:191px" %)(((
310 -Temperature(DS18B20)(PC13)
311 -)))|(% style="width:78px" %)(((
312 -ADC(PA4)
313 -)))|(% style="width:216px" %)(((
314 -Digital in(PB15)&Digital Interrupt(PA8)
315 -)))|(% style="width:308px" %)(((
316 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
317 -)))|(% style="width:154px" %)(((
318 -Humidity(SHT20 or SHT31)
319 -)))
295 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
296 +|**Value**|Bat|Temperature(DS18B20)|ADC|Digital in & Digital Interrupt|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor|Humidity(SHT20)
320 320  
321 321  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
322 322  
... ... @@ -323,152 +323,128 @@
323 323  
324 324  ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
325 325  
326 -
327 327  This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
328 328  
329 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
330 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:29px" %)**2**|(% style="background-color:#4f81bd; color:white; width:108px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**|(% style="background-color:#4f81bd; color:white; width:110px" %)**1**|(% style="background-color:#4f81bd; color:white; width:140px" %)**2**|(% style="background-color:#4f81bd; color:white; width:40px" %)**2**
331 -|Value|BAT|(% style="width:196px" %)(((
332 -Temperature(DS18B20)(PC13)
333 -)))|(% style="width:87px" %)(((
334 -ADC(PA4)
335 -)))|(% style="width:189px" %)(((
336 -Digital in(PB15) & Digital Interrupt(PA8)
337 -)))|(% style="width:208px" %)(((
338 -Distance measure by: 1) LIDAR-Lite V3HP
339 -Or 2) Ultrasonic Sensor
340 -)))|(% style="width:117px" %)Reserved
305 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
306 +|**Value**|BAT|(((
307 +Temperature(DS18B20)
308 +)))|ADC|Digital in & Digital Interrupt|(((
309 +Distance measure by:
310 +1) LIDAR-Lite V3HP
311 +Or
312 +2) Ultrasonic Sensor
313 +)))|Reserved
341 341  
342 342  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
343 343  
317 +**Connection of LIDAR-Lite V3HP:**
344 344  
345 -(% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
319 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324581381-162.png?rev=1.1||alt="1656324581381-162.png"]]
346 346  
347 -[[image:image-20230512173758-5.png||height="563" width="712"]]
321 +**Connection to Ultrasonic Sensor:**
348 348  
323 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324598488-204.png?rev=1.1||alt="1656324598488-204.png"]]
349 349  
350 -(% style="color:blue" %)**Connection to Ultrasonic Sensor:**
351 -
352 -(% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
353 -
354 -[[image:image-20230512173903-6.png||height="596" width="715"]]
355 -
356 -
357 357  For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
358 358  
359 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
360 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**1**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:120px" %)**2**|(% style="background-color:#4f81bd; color:white; width:77px" %)**2**
361 -|Value|BAT|(% style="width:183px" %)(((
362 -Temperature(DS18B20)(PC13)
363 -)))|(% style="width:173px" %)(((
364 -Digital in(PB15) & Digital Interrupt(PA8)
365 -)))|(% style="width:84px" %)(((
366 -ADC(PA4)
367 -)))|(% style="width:323px" %)(((
327 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
328 +|**Value**|BAT|(((
329 +Temperature(DS18B20)
330 +)))|Digital in & Digital Interrupt|ADC|(((
368 368  Distance measure by:1)TF-Mini plus LiDAR
369 -Or 2) TF-Luna LiDAR
370 -)))|(% style="width:188px" %)Distance signal  strength
332 +Or 
333 +2) TF-Luna LiDAR
334 +)))|Distance signal  strength
371 371  
372 372  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
373 373  
374 -
375 375  **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
376 376  
377 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
340 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
378 378  
379 -[[image:image-20230512180609-7.png||height="555" width="802"]]
342 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376795715-436.png?rev=1.1||alt="1656376795715-436.png"]]
380 380  
381 -
382 382  **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
383 383  
384 -(% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
346 +Need to remove R3 and R4 resistors to get low power. Since firmware v1.7.0
385 385  
386 -[[image:image-20230610170047-1.png||height="452" width="799"]]
348 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376865561-355.png?rev=1.1||alt="1656376865561-355.png"]]
387 387  
350 +Please use firmware version > 1.6.5 when use MOD=2, in this firmware version, user can use LSn50 v1 to power the ultrasonic sensor directly and with low power consumption.
388 388  
352 +
389 389  ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
390 390  
391 -
392 392  This mode has total 12 bytes. Include 3 x ADC + 1x I2C
393 393  
394 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
395 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
357 +|=(((
396 396  **Size(bytes)**
397 -)))|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)2|=(% style="width: 97px;background-color:#4F81BD;color:white" %)2|=(% style="width: 20px;background-color:#4F81BD;color:white" %)1
398 -|Value|(% style="width:68px" %)(((
399 -ADC1(PA4)
400 -)))|(% style="width:75px" %)(((
401 -ADC2(PA5)
402 -)))|(((
403 -ADC3(PA8)
404 -)))|(((
405 -Digital Interrupt(PB15)
406 -)))|(% style="width:304px" %)(((
407 -Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
408 -)))|(% style="width:163px" %)(((
409 -Humidity(SHT20 or SHT31)
410 -)))|(% style="width:53px" %)Bat
359 +)))|=**2**|=**2**|=**2**|=**1**|=2|=2|=1
360 +|**Value**|ADC(Pin PA0)|ADC2(PA1)|ADC3 (PA4)|(((
361 +Digital in(PA12)&Digital Interrupt1(PB14)
362 +)))|Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)|Humidity(SHT20 or SHT31)|Bat
411 411  
412 -[[image:image-20230513110214-6.png]]
364 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377431497-975.png?rev=1.1||alt="1656377431497-975.png"]]
413 413  
414 414  
415 415  ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
416 416  
369 +This mode is supported in firmware version since v1.6.1. Software set to AT+MOD=4
417 417  
418 -This mode has total 11 bytes. As shown below:
371 +Hardware connection is as below,
419 419  
420 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
421 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**1**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**|(% style="background-color:#4f81bd; color:white; width:99px" %)**2**
422 -|Value|BAT|(% style="width:186px" %)(((
423 -Temperature1(DS18B20)(PC13)
424 -)))|(% style="width:82px" %)(((
425 -ADC(PA4)
426 -)))|(% style="width:210px" %)(((
427 -Digital in(PB15) & Digital Interrupt(PA8) 
428 -)))|(% style="width:191px" %)Temperature2(DS18B20)
429 -(PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
373 +**( Note:**
430 430  
431 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
375 +* In hardware version v1.x and v2.0 , R3 & R4 should change from 10k to 4.7k ohm to support the other 2 x DS18B20 probes.
376 +* In hardware version v2.1 no need to change R3 , R4, by default, they are 4.7k ohm already.
432 432  
378 +See [[here>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H1.6A0HardwareChangelog]] for hardware changelog. **) **
433 433  
434 -[[image:image-20230513134006-1.png||height="559" width="736"]]
380 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377461619-156.png?rev=1.1||alt="1656377461619-156.png"]]
435 435  
382 +This mode has total 11 bytes. As shown below:
436 436  
384 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
385 +|**Value**|BAT|(((
386 +Temperature1
387 +(DS18B20)
388 +(PB3)
389 +)))|ADC|Digital in & Digital Interrupt|Temperature2
390 +(DS18B20)
391 +(PA9)|Temperature3
392 +(DS18B20)
393 +(PA10)
394 +
395 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
396 +
397 +
437 437  ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
438 438  
400 +This mode is supported in firmware version since v1.6.2. Please use v1.6.5 firmware version so user no need to use extra LDO for connection.
439 439  
440 -[[image:image-20230512164658-2.png||height="532" width="729"]]
441 441  
403 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378224664-860.png?rev=1.1||alt="1656378224664-860.png"]]
404 +
442 442  Each HX711 need to be calibrated before used. User need to do below two steps:
443 443  
444 -1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
445 -1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
407 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
408 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
446 446  1. (((
447 -Weight has 4 bytes, the unit is g.
448 -
449 -
450 -
410 +Remove the limit of plus or minus 5Kg in mode 5, and expand from 2 bytes to 4 bytes, the unit is g.(Since v1.8.0)
451 451  )))
452 452  
453 453  For example:
454 454  
455 -(% style="color:blue" %)**AT+GETSENSORVALUE =0**
415 +**AT+WEIGAP =403.0**
456 456  
457 457  Response:  Weight is 401 g
458 458  
459 459  Check the response of this command and adjust the value to match the real value for thing.
460 460  
461 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
462 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
421 +|=(((
463 463  **Size(bytes)**
464 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 150px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 198px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 49px;background-color:#4F81BD;color:white" %)**4**
465 -|Value|BAT|(% style="width:193px" %)(((
466 -Temperature(DS18B20)(PC13)
467 -)))|(% style="width:85px" %)(((
468 -ADC(PA4)
469 -)))|(% style="width:186px" %)(((
470 -Digital in(PB15) & Digital Interrupt(PA8)
471 -)))|(% style="width:100px" %)Weight
423 +)))|=**2**|=**2**|=**2**|=**1**|=**4**|=2
424 +|**Value**|[[Bat>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital Input and Digitak Interrupt>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Weight|Reserved
472 472  
473 473  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
474 474  
... ... @@ -475,570 +475,516 @@
475 475  
476 476  ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
477 477  
478 -
479 479  In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
480 480  
481 481  Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
482 482  
483 -[[image:image-20230512181814-9.png||height="543" width="697"]]
435 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378351863-572.png?rev=1.1||alt="1656378351863-572.png"]]
484 484  
437 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the LSN50 to avoid this happen.
485 485  
486 -(% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
439 +|=**Size(bytes)**|=**2**|=**2**|=**2**|=**1**|=**4**
440 +|**Value**|[[BAT>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.1BatteryInfo]]|(((
441 +[[Temperature(DS18B20)>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.2Temperature28DS18B2029]]
442 +)))|[[ADC>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.4AnalogueDigitalConverter28ADC29]]|[[Digital in>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.3DigitalInput]]|Count
487 487  
488 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
489 -|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**Size(bytes)**|=(% style="width: 40px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 180px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 100px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 77px;background-color:#4F81BD;color:white" %)**4**
490 -|Value|BAT|(% style="width:256px" %)(((
491 -Temperature(DS18B20)(PC13)
492 -)))|(% style="width:108px" %)(((
493 -ADC(PA4)
494 -)))|(% style="width:126px" %)(((
495 -Digital in(PB15)
496 -)))|(% style="width:145px" %)(((
497 -Count(PA8)
498 -)))
499 -
500 500  [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
501 501  
502 502  
503 503  ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
504 504  
449 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820140109-3.png?rev=1.1||alt="image-20220820140109-3.png"]]
505 505  
506 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
507 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
451 +|=(((
508 508  **Size(bytes)**
509 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 50px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)1|=(% style="width: 40px;background-color:#4F81BD;color:white" %)2
510 -|Value|BAT|(% style="width:188px" %)(((
511 -Temperature(DS18B20)
512 -(PC13)
513 -)))|(% style="width:83px" %)(((
514 -ADC(PA5)
515 -)))|(% style="width:184px" %)(((
516 -Digital Interrupt1(PA8)
517 -)))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
453 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
454 +|**Value**|BAT|Temperature(DS18B20)|ADC|(((
455 +Digital in(PA12)&Digital Interrupt1(PB14)
456 +)))|Digital Interrupt2(PB15)|Digital Interrupt3(PA4)|Reserved
518 518  
519 -[[image:image-20230513111203-7.png||height="324" width="975"]]
520 -
521 -
522 522  ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
523 523  
524 -
525 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
526 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
460 +|=(((
527 527  **Size(bytes)**
528 -)))|=(% style="width: 30px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 110px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 70px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 119px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 69px;background-color:#4F81BD;color:white" %)2
529 -|Value|BAT|(% style="width:207px" %)(((
530 -Temperature(DS18B20)
531 -(PC13)
532 -)))|(% style="width:94px" %)(((
533 -ADC1(PA4)
534 -)))|(% style="width:198px" %)(((
535 -Digital Interrupt(PB15)
536 -)))|(% style="width:84px" %)(((
537 -ADC2(PA5)
538 -)))|(% style="width:82px" %)(((
539 -ADC3(PA8)
462 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=2
463 +|**Value**|BAT|Temperature(DS18B20)|(((
464 +ADC1(PA0)
465 +)))|(((
466 +Digital in
467 +& Digital Interrupt(PB14)
468 +)))|(((
469 +ADC2(PA1)
470 +)))|(((
471 +ADC3(PA4)
540 540  )))
541 541  
542 -[[image:image-20230513111231-8.png||height="335" width="900"]]
474 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823164903-2.png?rev=1.1||alt="image-20220823164903-2.png"]]
543 543  
544 544  
545 545  ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
546 546  
547 -
548 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
549 -|=(% style="width: 50px;background-color:#4F81BD;color:white" %)(((
479 +|=(((
550 550  **Size(bytes)**
551 -)))|=(% style="width: 20px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 90px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 60px;background-color:#4F81BD;color:white" %)**1**|=(% style="width: 89px;background-color:#4F81BD;color:white" %)**2**|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4|=(% style="width: 59px;background-color:#4F81BD;color:white" %)4
552 -|Value|BAT|(((
553 -Temperature
554 -(DS18B20)(PC13)
481 +)))|=**2**|=**2**|=**2**|=**1**|=**2**|=4|=4
482 +|**Value**|BAT|(((
483 +Temperature1(PB3)
555 555  )))|(((
556 -Temperature2
557 -(DS18B20)(PB9)
485 +Temperature2(PA9)
558 558  )))|(((
559 -Digital Interrupt
560 -(PB15)
561 -)))|(% style="width:193px" %)(((
562 -Temperature3
563 -(DS18B20)(PB8)
564 -)))|(% style="width:78px" %)(((
565 -Count1(PA8)
566 -)))|(% style="width:78px" %)(((
567 -Count2(PA4)
487 +Digital in
488 +& Digital Interrupt(PA4)
489 +)))|(((
490 +Temperature3(PA10)
491 +)))|(((
492 +Count1(PB14)
493 +)))|(((
494 +Count2(PB15)
568 568  )))
569 569  
570 -[[image:image-20230513111255-9.png||height="341" width="899"]]
497 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220823165322-3.png?rev=1.1||alt="image-20220823165322-3.png"]]
571 571  
572 -(% style="color:blue" %)**The newly added AT command is issued correspondingly:**
499 +**The newly added AT command is issued correspondingly:**
573 573  
574 -(% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
501 +**~ AT+INTMOD1** ** PB14**  pin:  Corresponding downlink:  **06 00 00 xx**
575 575  
576 -(% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
503 +**~ AT+INTMOD2**  **PB15** pin:  Corresponding downlink:**  06 00 01 xx**
577 577  
578 -(% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
505 +**~ AT+INTMOD3**  **PA4**  pin:  Corresponding downlink:  ** 06 00 02 xx**
579 579  
507 +**AT+SETCNT=aa,bb** 
580 580  
581 -(% style="color:blue" %)**AT+SETCNT=aa,bb** 
509 +When AA is 1, set the count of PB14 pin to BB Corresponding downlink:09 01 bb bb bb bb
582 582  
583 -When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
511 +When AA is 2, set the count of PB15 pin to BB Corresponding downlink:09 02 bb bb bb bb
584 584  
585 -When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
586 586  
587 587  
588 -==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2)(% style="display:none" %) (%%) ====
515 +=== 2.3.3  Decode payload ===
589 589  
517 +While using TTN V3 network, you can add the payload format to decode the payload.
590 590  
591 -(% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
519 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
592 592  
593 -In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
521 +The payload decoder function for TTN V3 are here:
594 594  
595 -[[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
523 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
596 596  
597 597  
598 -===== 2.3.2.10.a  Uplink, PWM input capture =====
526 +==== 2.3.3.1 Battery Info ====
599 599  
528 +Check the battery voltage for SN50v3.
600 600  
601 -[[image:image-20230817172209-2.png||height="439" width="683"]]
530 +Ex1: 0x0B45 = 2885mV
602 602  
603 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:515px" %)
604 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:135px" %)**1**|(% style="background-color:#4f81bd; color:white; width:70px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**2**
605 -|Value|Bat|(% style="width:191px" %)(((
606 -Temperature(DS18B20)(PC13)
607 -)))|(% style="width:78px" %)(((
608 -ADC(PA4)
609 -)))|(% style="width:135px" %)(((
610 -PWM_Setting
611 -&Digital Interrupt(PA8)
612 -)))|(% style="width:70px" %)(((
613 -Pulse period
614 -)))|(% style="width:89px" %)(((
615 -Duration of high level
616 -)))
532 +Ex2: 0x0B49 = 2889mV
617 617  
618 -[[image:image-20230817170702-1.png||height="161" width="1044"]]
619 619  
535 +==== 2.3.3.2  Temperature (DS18B20) ====
620 620  
621 -When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
537 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
622 622  
623 -**Frequency:**
539 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
624 624  
625 -(% class="MsoNormal" %)
626 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
541 +**Connection:**
627 627  
628 -(% class="MsoNormal" %)
629 -(% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
543 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378573379-646.png?rev=1.1||alt="1656378573379-646.png"]]
630 630  
545 +**Example**:
631 631  
632 -(% class="MsoNormal" %)
633 -**Duty cycle:**
547 +If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
634 634  
635 -Duty cycle= Duration of high level/ Pulse period*100 ~(%).
549 +If payload is: FF3FH (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
636 636  
637 -[[image:image-20230818092200-1.png||height="344" width="627"]]
551 +(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
638 638  
639 639  
640 -===== 2.3.2.10.b  Uplink, PWM output =====
554 +==== 2.3.3.3 Digital Input ====
641 641  
556 +The digital input for pin PA12,
642 642  
643 -[[image:image-20230817172209-2.png||height="439" width="683"]]
558 +* When PA12 is high, the bit 1 of payload byte 6 is 1.
559 +* When PA12 is low, the bit 1 of payload byte 6 is 0.
644 644  
645 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
646 646  
647 -a is the time delay of the output, the unit is ms.
562 +==== 2.3.3.4  Analogue Digital Converter (ADC) ====
648 648  
649 -b is the output frequency, the unit is HZ.
564 +The ADC pins in LSN50 can measure range from 0~~Vbat, it use reference voltage from . If user need to measure a voltage > VBat, please use resistors to divide this voltage to lower than VBat, otherwise, it may destroy the ADC pin.
650 650  
651 -c is the duty cycle of the output, the unit is %.
566 +Note: minimum VBat is 2.5v, when batrrey lower than this value. Device won't be able to send LoRa Uplink.
652 652  
653 -(% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
568 +The ADC monitors the voltage on the PA0 line, in mV.
654 654  
655 -aa is the time delay of the output, the unit is ms.
570 +Ex: 0x021F = 543mv,
656 656  
657 -bb is the output frequency, the unit is HZ.
572 +**~ Example1:**  Reading an Oil Sensor (Read a resistance value):
658 658  
659 -cc is the duty cycle of the output, the unit is %.
660 660  
575 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172409-28.png?rev=1.1||alt="image-20220627172409-28.png"]]
661 661  
662 -For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
577 +In the LSN50, we can use PB4 and PA0 pin to calculate the resistance for the oil sensor.
578 +
663 663  
664 -The oscilloscope displays as follows:
580 +**Steps:**
665 665  
666 -[[image:image-20231213102404-1.jpeg||height="688" width="821"]]
582 +1. Solder a 10K resistor between PA0 and VCC.
583 +1. Screw oil sensor's two pins to PA0 and PB4.
667 667  
585 +The equipment circuit is as below:
668 668  
669 -===== 2.3.2.10.c  Downlink, PWM output =====
587 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627172500-29.png?rev=1.1||alt="image-20220627172500-29.png"]]
670 670  
589 +According to above diagram:
671 671  
672 -[[image:image-20230817173800-3.png||height="412" width="685"]]
591 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091043-4.png?rev=1.1||alt="image-20220628091043-4.png"]]
673 673  
674 -Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
593 +So
675 675  
676 - xx xx xx is the output frequency, the unit is HZ.
595 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091344-6.png?rev=1.1||alt="image-20220628091344-6.png"]]
677 677  
678 - yy is the duty cycle of the output, the unit is %.
597 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091621-8.png?rev=1.1||alt="image-20220628091621-8.png"]] is the reading of ADC. So if ADC=0x05DC=0.9 v and VCC (BAT) is 2.9v
679 679  
680 - zz zz is the time delay of the output, the unit is ms.
599 +The [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091702-9.png?rev=1.1||alt="image-20220628091702-9.png"]] 4.5K ohm
681 681  
601 +Since the Bouy is linear resistance from 10 ~~ 70cm.
682 682  
683 -For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
603 +The position of Bouy is [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628091824-10.png?rev=1.1||alt="image-20220628091824-10.png"]] , from the bottom of Bouy.
684 684  
685 -The oscilloscope displays as follows:
686 686  
687 -[[image:image-20230817173858-5.png||height="634" width="843"]]
606 +==== 2.3.3.5 Digital Interrupt ====
688 688  
608 +Digital Interrupt refers to pin PB14, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
689 689  
610 +**~ Interrupt connection method:**
690 690  
691 -==== 2.3.2.11  MOD~=11 (TEMP117)(Since firmware V1.3.0) ====
612 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379178634-321.png?rev=1.1||alt="1656379178634-321.png"]]
692 692  
614 +**Example to use with door sensor :**
693 693  
694 -In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
616 +The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
695 695  
696 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
697 -|(% style="background-color:#4f81bd; color:white; width:50px" %)**Size(bytes)**|(% style="background-color:#4f81bd; color:white; width:20px" %)**2**|(% style="background-color:#4f81bd; color:white; width:100px" %)**2**|(% style="background-color:#4f81bd; color:white; width:50px" %)**2**|(% style="background-color:#4f81bd; color:white; width:90px" %)**1**|(% style="background-color:#4f81bd; color:white; width:128px" %)**2**|(% style="background-color:#4f81bd; color:white; width:79px" %)**2**
698 -|Value|Bat|(% style="width:191px" %)(((
699 -Temperature(DS18B20)(PC13)
700 -)))|(% style="width:78px" %)(((
701 -ADC(PA4)
702 -)))|(% style="width:216px" %)(((
703 -Digital in(PB15)&Digital Interrupt(PA8)
704 -)))|(% style="width:308px" %)(((
705 -Temperature
618 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
706 706  
707 -(TEMP117)
708 -)))|(% style="width:154px" %)(((
709 -Reserved position, meaningless
620 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use LSN50 interrupt interface to detect the status for the door or window.
710 710  
711 -(0x0000)
712 -)))
622 +**~ Below is the installation example:**
713 713  
714 -[[image:image-20240717113113-1.png||height="352" width="793"]]
624 +Fix one piece of the magnetic sensor to the door and connect the two pins to LSN50 as follows:
715 715  
716 -Connection:
717 -
718 -[[image:image-20240717141528-2.jpeg||height="430" width="654"]]
719 -
720 -
721 -==== 2.3.2.12  MOD~=12 (Count+SHT31)(Since firmware V1.3.1) ====
722 -
723 -
724 -This mode has total 11 bytes. As shown below:
725 -
726 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:517px" %)
727 -|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**Size(bytes)**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**2**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**1**|=(% style="width: 86px; background-color: rgb(79, 129, 189); color: white;" %)**4**
728 -|Value|BAT|(% style="width:86px" %)(((
729 - Temperature_SHT31
730 -)))|(% style="width:86px" %)(((
731 -Humidity_SHT31
732 -)))|(% style="width:86px" %)(((
733 - Digital in(PB15)
734 -)))|(% style="width:86px" %)(((
735 -Count(PA8)
626 +* (((
627 +One pin to LSN50's PB14 pin
736 736  )))
629 +* (((
630 +The other pin to LSN50's VCC pin
631 +)))
737 737  
738 -[[image:image-20240717150948-5.png||height="389" width="979"]]
633 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PB14 will be at the VCC voltage.
739 739  
740 -Wiring example:
635 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
741 741  
742 -[[image:image-20240717152224-6.jpeg||height="359" width="680"]]
637 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v2/1Mohm = 0.3uA which can be ignored.
743 743  
639 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
744 744  
745 -=== 2.3.3  ​Decode payload ===
641 +The above photos shows the two parts of the magnetic switch fitted to a door.
746 746  
643 +The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
747 747  
748 -While using TTN V3 network, you can add the payload format to decode the payload.
645 +The command is:
749 749  
750 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
647 +**AT+INTMOD=1 **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
751 751  
752 -The payload decoder function for TTN V3 are here:
649 +Below shows some screen captures in TTN V3:
753 753  
754 -SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
651 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
755 755  
653 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
756 756  
757 -==== 2.3.3.1 Battery Info ====
655 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
758 758  
657 +**Notice for hardware version LSN50 v1 < v1.3** (produced before 2018-Nov).
759 759  
760 -Check the battery voltage for SN50v3-LB/LS.
659 +In this hardware version, there is no R14 resistance solder. When use the latest firmware, it should set AT+INTMOD=0 to close the interrupt. If user need to use Interrupt in this hardware version, user need to solder R14 with 10M resistor and C1 (0.1uF) on board.
761 761  
762 -Ex1: 0x0B45 = 2885mV
661 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379563303-771.png?rev=1.1||alt="1656379563303-771.png"]]
763 763  
764 -Ex2: 0x0B49 = 2889mV
765 765  
664 +==== 2.3.3.6 I2C Interface (SHT20) ====
766 766  
767 -==== 2.3.3.2  Temperature (DS18B20) ====
666 +The PB6(SDA) and PB7(SCK) are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
768 768  
668 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor. This is supported in the stock firmware since v1.5 with **AT+MOD=1 (default value).**
769 769  
770 -If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
670 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in LSN50 will be a good reference.
771 771  
772 -More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
672 +Below is the connection to SHT20/ SHT31. The connection is as below:
773 773  
774 -(% style="color:blue" %)**Connection:**
674 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220902163605-2.png?rev=1.1||alt="image-20220902163605-2.png"]]
775 775  
776 -[[image:image-20230512180718-8.png||height="538" width="647"]]
676 +The device will be able to get the I2C sensor data now and upload to IoT Server.
777 777  
678 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
778 778  
779 -(% style="color:blue" %)**Example**:
680 +Convert the read byte to decimal and divide it by ten.
780 780  
781 -If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
682 +**Example:**
782 782  
783 -If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
684 +TemperatureRead:0116(H) = 278(D)  Value:  278 /10=27.8℃;
784 784  
785 -(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
686 +Humidity:    Read:0248(H)=584(D)  Value 584 / 10=58.4, So 58.4%
786 786  
688 +If you want to use other I2C device, please refer the SHT20 part source code as reference.
787 787  
788 -==== 2.3.3.3 Digital Input ====
789 789  
691 +==== 2.3.3.7  ​Distance Reading ====
790 790  
791 -The digital input for pin PB15,
693 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
792 792  
793 -* When PB15 is high, the bit 1 of payload byte 6 is 1.
794 -* When PB15 is low, the bit 1 of payload byte 6 is 0.
795 795  
796 -(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
797 -(((
798 -When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
696 +==== 2.3.3.8 Ultrasonic Sensor ====
799 799  
800 -(% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
698 +The LSN50 v1.5 firmware supports ultrasonic sensor (with AT+MOD=2) such as SEN0208 from DF-Robot. This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
801 801  
802 -
803 -)))
700 +The LSN50 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
804 804  
805 -==== 2.3.3.4  Analogue Digital Converter (ADC) ====
702 +The picture below shows the connection:
806 806  
704 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656380061365-178.png?rev=1.1||alt="1656380061365-178.png"]]
807 807  
808 -The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
706 +Connect to the LSN50 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
809 809  
810 -When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
708 +The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
811 811  
812 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
710 +**Example:**
813 813  
712 +Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
814 814  
815 -(% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
714 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384895430-327.png?rev=1.1||alt="1656384895430-327.png"]]
816 816  
716 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384913616-455.png?rev=1.1||alt="1656384913616-455.png"]]
817 817  
818 -The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
718 +You can see the serial output in ULT mode as below:
819 819  
820 -[[image:image-20230811113449-1.png||height="370" width="608"]]
720 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384939855-223.png?rev=1.1||alt="1656384939855-223.png"]]
821 821  
722 +**In TTN V3 server:**
822 822  
724 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384961830-307.png?rev=1.1||alt="1656384961830-307.png"]]
823 823  
824 -==== 2.3.3.5 Digital Interrupt ====
726 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656384973646-598.png?rev=1.1||alt="1656384973646-598.png"]]
825 825  
728 +==== 2.3.3.9  Battery Output - BAT pin ====
826 826  
827 -Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
730 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
828 828  
829 -(% style="color:blue" %)** Interrupt connection method:**
830 830  
831 -[[image:image-20230513105351-5.png||height="147" width="485"]]
733 +==== 2.3.3.10  +5V Output ====
832 832  
735 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
833 833  
834 -(% style="color:blue" %)**Example to use with door sensor :**
737 +The 5V output time can be controlled by AT Command.
835 835  
836 -The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
739 +**AT+5VT=1000**
837 837  
838 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
741 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
839 839  
840 -When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
743 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
841 841  
842 842  
843 -(% style="color:blue" %)**Below is the installation example:**
844 844  
845 -Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
747 +==== 2.3.3.11  BH1750 Illumination Sensor ====
846 846  
847 -* (((
848 -One pin to SN50v3-LB/LS's PA8 pin
849 -)))
850 -* (((
851 -The other pin to SN50v3-LB/LS's VDD pin
852 -)))
749 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
853 853  
854 -Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
751 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-11.jpeg?rev=1.1||alt="image-20220628110012-11.jpeg"]]
855 855  
856 -Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
753 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
857 857  
858 -When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
859 859  
860 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
756 +==== 2.3.3.12  Working MOD ====
861 861  
862 -The above photos shows the two parts of the magnetic switch fitted to a door.
758 +The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
863 863  
864 -The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
760 +User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
865 865  
866 -The command is:
762 +Case 7^^th^^ Byte >> 2 & 0x1f:
867 867  
868 -(% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
764 +* 0: MOD1
765 +* 1: MOD2
766 +* 2: MOD3
767 +* 3: MOD4
768 +* 4: MOD5
769 +* 5: MOD6
869 869  
870 -Below shows some screen captures in TTN V3:
871 871  
872 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
772 +== 2.4 Payload Decoder file ==
873 873  
874 874  
875 -In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
775 +In TTN, use can add a custom payload so it shows friendly reading
876 876  
877 -door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
777 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
878 878  
779 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
879 879  
880 -==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
881 881  
782 +== 2.5 Datalog Feature ==
882 882  
883 -The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
884 884  
885 -We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
785 +Datalog Feature is to ensure IoT Server can get all sampling data from Sensor even if the LoRaWAN network is down. For each sampling, S31x-LB will store the reading for future retrieving purposes.
886 886  
887 -(% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
888 888  
788 +=== 2.5.1 Ways to get datalog via LoRaWAN ===
889 889  
890 -Below is the connection to SHT20/ SHT31. The connection is as below:
891 891  
892 -[[image:image-20230610170152-2.png||height="501" width="846"]]
791 +Set [[PNACKMD=1>>||anchor="H2.5.4DatalogUplinkpayloadA028FPORT3D329"]], S31x-LB will wait for ACK for every uplink, when there is no LoRaWAN network,S31x-LB will mark these records with non-ack messages and store the sensor data, and it will send all messages (10s interval) after the network recovery.
893 893  
793 +* a) S31x-LB will do an ACK check for data records sending to make sure every data arrive server.
794 +* b) S31x-LB will send data in **CONFIRMED Mode** when PNACKMD=1, but S31x-LB won't re-transmit the packet if it doesn't get ACK, it will just mark it as a NONE-ACK message. In a future uplink if S31x-LB gets a ACK, S31x-LB will consider there is a network connection and resend all NONE-ACK messages.
894 894  
895 -The device will be able to get the I2C sensor data now and upload to IoT Server.
796 +Below is the typical case for the auto-update datalog feature (Set PNACKMD=1)
896 896  
897 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
798 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220703111700-2.png?width=1119&height=381&rev=1.1||alt="图片-20220703111700-2.png" height="381" width="1119"]]
898 898  
899 -Convert the read byte to decimal and divide it by ten.
800 +=== 2.5.2 Unix TimeStamp ===
900 900  
901 -**Example:**
902 902  
903 -Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
803 +S31x-LB uses Unix TimeStamp format based on
904 904  
905 -Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
805 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-11.png?width=627&height=97&rev=1.1||alt="图片-20220523001219-11.png" height="97" width="627"]]
906 906  
907 -If you want to use other I2C device, please refer the SHT20 part source code as reference.
807 +User can get this time from link:  [[https:~~/~~/www.epochconverter.com/>>url:https://www.epochconverter.com/]] :
908 908  
809 +Below is the converter example
909 909  
910 -==== 2.3.3.7  ​Distance Reading ====
811 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-12.png?width=720&height=298&rev=1.1||alt="图片-20220523001219-12.png" height="298" width="720"]]
911 911  
813 +So, we can use AT+TIMESTAMP=1611889405 or downlink 3060137afd00 to set the current time 2021 – Jan ~-~- 29 Friday 03:03:25
912 912  
913 -Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
914 914  
816 +=== 2.5.3 Set Device Time ===
915 915  
916 -==== 2.3.3.8 Ultrasonic Sensor ====
917 917  
819 +User need to set (% style="color:blue" %)**SYNCMOD=1**(%%) to enable sync time via MAC command.
918 918  
919 -This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
821 +Once S31x-LB Joined LoRaWAN network, it will send the MAC command (DeviceTimeReq) and the server will reply with (DeviceTimeAns) to send the current time to S31x-LB. If S31x-LB fails to get the time from the server, S31x-LB will use the internal time and wait for next time request (AT+SYNCTDC to set the time request period, default is 10 days).
920 920  
921 -The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
823 +(% style="color:red" %)**Note: LoRaWAN Server need to support LoRaWAN v1.0.3(MAC v1.0.3) or higher to support this MAC command feature, Chirpstack,TTN V3 v3 and loriot support but TTN V3 v2 doesn't support. If server doesn't support this command, it will through away uplink packet with this command, so user will lose the packet with time request for TTN V3 v2 if SYNCMOD=1.**
922 922  
923 -The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
924 924  
925 -The picture below shows the connection:
826 +=== 2.5.4 Datalog Uplink payload (FPORT~=3) ===
926 926  
927 -[[image:image-20230512173903-6.png||height="596" width="715"]]
928 928  
829 +The Datalog uplinks will use below payload format.
929 929  
930 -Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
831 +**Retrieval data payload:**
931 931  
932 -The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
833 +(% border="1" cellspacing="5" style="background-color:#f2f2f2; width:510px" %)
834 +|=(% style="width: 80px;background-color:#D9E2F3" %)(((
835 +**Size(bytes)**
836 +)))|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 60px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 120px; background-color: rgb(217, 226, 243);" %)**2**|=(% style="width: 103px; background-color: rgb(217, 226, 243);" %)**1**|=(% style="width: 85px; background-color: rgb(217, 226, 243);" %)**4**
837 +|(% style="width:103px" %)**Value**|(% style="width:54px" %)(((
838 +[[Temp_Black>>||anchor="HTemperatureBlack:"]]
839 +)))|(% style="width:51px" %)[[Temp_White>>||anchor="HTemperatureWhite:"]]|(% style="width:89px" %)[[Temp_ Red or Temp _White>>||anchor="HTemperatureREDorTemperatureWhite:"]]|(% style="width:103px" %)Poll message flag & Ext|(% style="width:54px" %)[[Unix Time Stamp>>||anchor="H2.5.2UnixTimeStamp"]]
933 933  
934 -**Example:**
841 +**Poll message flag & Ext:**
935 935  
936 -DistanceRead: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
843 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20221006192726-1.png?width=754&height=112&rev=1.1||alt="图片-20221006192726-1.png" height="112" width="754"]]
937 937  
845 +**No ACK Message**:  1: This message means this payload is fromn Uplink Message which doesn't get ACK from the server before ( for **PNACKMD=1** feature)
938 938  
939 -==== 2.3.3.9  Battery Output - BAT pin ====
847 +**Poll Message Flag**: 1: This message is a poll message reply.
940 940  
849 +* Poll Message Flag is set to 1.
941 941  
942 -The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
851 +* Each data entry is 11 bytes, to save airtime and battery, devices will send max bytes according to the current DR and Frequency bands.
943 943  
853 +For example, in US915 band, the max payload for different DR is:
944 944  
945 -==== 2.3.3.1+5V Output ====
855 +**a) DR0:** max is 11 bytes so one entry of data
946 946  
857 +**b) DR1:** max is 53 bytes so devices will upload 4 entries of data (total 44 bytes)
947 947  
948 -SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
859 +**c) DR2:** total payload includes 11 entries of data
949 949  
950 -The 5V output time can be controlled by AT Command.
861 +**d) DR3: **total payload includes 22 entries of data.
951 951  
952 -(% style="color:blue" %)**AT+5VT=1000**
863 +If devise doesn't have any data in the polling time. Device will uplink 11 bytes of 0   
953 953  
954 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
955 955  
956 -By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
866 +**Example:**
957 957  
868 +If S31x-LB has below data inside Flash:
958 958  
959 -==== 2.3.3.11  BH1750 Illumination Sensor ====
870 +[[image:1682646494051-944.png]]
960 960  
872 +If user sends below downlink command: 3160065F9760066DA705
961 961  
962 -MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
874 +Where : Start time: 60065F97 = time 21/1/19 04:27:03
963 963  
964 -[[image:image-20230512172447-4.png||height="416" width="712"]]
876 + Stop time: 60066DA7= time 21/1/19 05:27:03
965 965  
966 966  
967 -[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
879 +**S31x-LB will uplink this payload.**
968 968  
881 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220523001219-13.png?width=727&height=421&rev=1.1||alt="图片-20220523001219-13.png" height="421" width="727"]]
969 969  
970 -==== 2.3.3.12  PWM MOD ====
883 +(((
884 +__**7FFF089801464160065F97**__ **__7FFF__ __088E__ __014B__ __41__ __60066009__** 7FFF0885014E41600660667FFF0875015141600662BE7FFF086B015541600665167FFF08660155416006676E7FFF085F015A41600669C67FFF0857015D4160066C1E
885 +)))
971 971  
887 +(((
888 +Where the first 11 bytes is for the first entry:
889 +)))
972 972  
973 -* (((
974 -The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
891 +(((
892 +7FFF089801464160065F97
975 975  )))
976 -* (((
977 -If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
894 +
895 +(((
896 +**Ext sensor data**=0x7FFF/100=327.67
978 978  )))
979 979  
980 - [[image:image-20230817183249-3.png||height="320" width="417"]]
899 +(((
900 +**Temp**=0x088E/100=22.00
901 +)))
981 981  
982 -* (((
983 -The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
903 +(((
904 +**Hum**=0x014B/10=32.6
984 984  )))
985 -* (((
986 -Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
906 +
907 +(((
908 +**poll message flag & Ext**=0x41,means reply data,Ext=1
987 987  )))
988 -* (((
989 -PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
990 990  
991 -For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
992 -
993 -a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
994 -
995 -b) If the output duration is more than 30 seconds, better to use external power source. 
911 +(((
912 +**Unix time** is 0x60066009=1611030423s=21/1/19 04:27:03
996 996  )))
997 997  
998 -==== 2.3.3.13  Working MOD ====
999 999  
916 +(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的(% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" data-widget="image" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220, 220, 220, 0.5); display:none" tabindex="-1" %)[[image:||alt="数据 URI 图片" draggable="true" height="15" role="presentation" title="单击并拖动以移动" width="15"]](% aria-label="数据 URI 图像图像小部件" contenteditable="false" role="region" style="background-image:url(http://wiki1.dragino.com/xwiki/webjars/wiki%3Axwiki/application-ckeditor-webjar/1.61/plugins/widget/images/handle.png); background:rgba(220,220,220,0.5); display:none" tabindex="-1" title="单击并拖动以调整大小" %)的
1000 1000  
1001 -The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
918 +== 2.6 Temperature Alarm Feature ==
1002 1002  
1003 -User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
1004 1004  
1005 -Case 7^^th^^ Byte >> 2 & 0x1f:
921 +S31x-LB work flow with Alarm feature.
1006 1006  
1007 -* 0: MOD1
1008 -* 1: MOD2
1009 -* 2: MOD3
1010 -* 3: MOD4
1011 -* 4: MOD5
1012 -* 5: MOD6
1013 -* 6: MOD7
1014 -* 7: MOD8
1015 -* 8: MOD9
1016 -* 9: MOD10
1017 1017  
1018 -== 2.4 Payload Decoder file ==
924 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/image-20220623090437-1.png?rev=1.1||alt="图片-20220623090437-1.png"]]
1019 1019  
1020 1020  
1021 -In TTN, use can add a custom payload so it shows friendly reading
927 +== 2.7 Frequency Plans ==
1022 1022  
1023 -In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
1024 1024  
1025 -[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
930 +The S31x-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
1026 1026  
1027 -
1028 -== 2.5 Frequency Plans ==
1029 -
1030 -
1031 -The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. Each frequency band use different firmware, user update the firmware to the corresponding band for their country.
1032 -
1033 1033  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
1034 1034  
1035 1035  
1036 -= 3. Configure SN50v3-LB/LS =
935 += 3. Configure S31x-LB =
1037 1037  
1038 1038  == 3.1 Configure Methods ==
1039 1039  
1040 1040  
1041 -SN50v3-LB/LS supports below configure method:
940 +S31x-LB supports below configure method:
1042 1042  
1043 1043  * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
1044 1044  * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
... ... @@ -1057,10 +1057,10 @@
1057 1057  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1058 1058  
1059 1059  
1060 -== 3.3 Commands special design for SN50v3-LB/LS ==
959 +== 3.3 Commands special design for S31x-LB ==
1061 1061  
1062 1062  
1063 -These commands only valid for SN50v3-LB/LS, as below:
962 +These commands only valid for S31x-LB, as below:
1064 1064  
1065 1065  
1066 1066  === 3.3.1 Set Transmit Interval Time ===
... ... @@ -1071,7 +1071,7 @@
1071 1071  (% style="color:blue" %)**AT Command: AT+TDC**
1072 1072  
1073 1073  (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1074 -|=(% style="width: 156px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 137px;background-color:#4F81BD;color:white" %)**Function**|=(% style="background-color:#4F81BD;color:white" %)**Response**
973 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
1075 1075  |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1076 1076  30000
1077 1077  OK
... ... @@ -1094,246 +1094,120 @@
1094 1094  === 3.3.2 Get Device Status ===
1095 1095  
1096 1096  
1097 -Send a LoRaWAN downlink to ask the device to send its status.
996 +Send a LoRaWAN downlink to ask device send Alarm settings.
1098 1098  
1099 -(% style="color:blue" %)**Downlink Payload: 0x26 01**
998 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
1100 1100  
1101 -Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1000 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
1102 1102  
1103 1103  
1104 -=== 3.3.3 Set Interrupt Mode ===
1003 +=== 3.3.3 Set Temperature Alarm Threshold ===
1105 1105  
1005 +* (% style="color:blue" %)**AT Command:**
1106 1106  
1107 -Feature, Set Interrupt mode for GPIO_EXIT.
1007 +(% style="color:#037691" %)**AT+SHTEMP=min,max**
1108 1108  
1109 -(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1009 +* When min=0, and max≠0, Alarm higher than max
1010 +* When min≠0, and max=0, Alarm lower than min
1011 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1110 1110  
1111 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1112 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1113 -|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1114 -0
1115 -OK
1116 -the mode is 0 =Disable Interrupt
1117 -)))
1118 -|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1119 -Set Transmit Interval
1120 -0. (Disable Interrupt),
1121 -~1. (Trigger by rising and falling edge)
1122 -2. (Trigger by falling edge)
1123 -3. (Trigger by rising edge)
1124 -)))|(% style="width:157px" %)OK
1125 -|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1126 -Set Transmit Interval
1127 -trigger by rising edge.
1128 -)))|(% style="width:157px" %)OK
1129 -|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1013 +Example:
1130 1130  
1131 -(% style="color:blue" %)**Downlink Command: 0x06**
1015 + AT+SHTEMP=0,30   ~/~/ Alarm when temperature higher than 30.
1132 1132  
1133 -Format: Command Code (0x06) followed by 3 bytes.
1017 +* (% style="color:blue" %)**Downlink Payload:**
1134 1134  
1135 -This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1019 +(% style="color:#037691" %)**0x(0C 01 00 1E)**  (%%) ~/~/ Set AT+SHTEMP=0,30
1136 1136  
1137 -* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1138 -* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1139 -* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1140 -* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1021 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x00 for low limit(not set), 4^^th^^ byte = 0x1E for high limit: 30)**
1141 1141  
1142 -=== 3.3.4 Set Power Output Duration ===
1143 1143  
1024 +=== 3.3.4 Set Humidity Alarm Threshold ===
1144 1144  
1145 -Control the output duration 5V . Before each sampling, device will
1026 +* (% style="color:blue" %)**AT Command:**
1146 1146  
1147 -~1. first enable the power output to external sensor,
1028 +(% style="color:#037691" %)**AT+SHHUM=min,max**
1148 1148  
1149 -2. keep it on as per duration, read sensor value and construct uplink payload
1030 +* When min=0, and max≠0, Alarm higher than max
1031 +* When min≠0, and max=0, Alarm lower than min
1032 +* When min≠0 and max≠0, Alarm higher than max or lower than min
1150 1150  
1151 -3. final, close the power output.
1034 +Example:
1152 1152  
1153 -(% style="color:blue" %)**AT Command: AT+5VT**
1036 + AT+SHHUM=70,0  ~/~/ Alarm when humidity lower than 70%.
1154 1154  
1155 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1156 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1157 -|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1158 -500(default)
1159 -OK
1160 -)))
1161 -|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1162 -Close after a delay of 1000 milliseconds.
1163 -)))|(% style="width:157px" %)OK
1038 +* (% style="color:blue" %)**Downlink Payload:**
1164 1164  
1165 -(% style="color:blue" %)**Downlink Command: 0x07**
1040 +(% style="color:#037691" %)**0x(0C 02 46 00)**(%%)  ~/~/ Set AT+SHTHUM=70,0
1166 1166  
1167 -Format: Command Code (0x07) followed by 2 bytes.
1042 +(% style="color:red" %)**(note: 3^^rd^^ byte= 0x46 for low limit (70%), 4^^th^^ byte = 0x00 for high limit (not set))**
1168 1168  
1169 -The first and second bytes are the time to turn on.
1170 1170  
1171 -* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1172 -* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1045 +=== 3.3.5 Set Alarm Interval ===
1173 1173  
1174 -=== 3.3.5 Set Weighing parameters ===
1047 +The shortest time of two Alarm packet. (unit: min)
1175 1175  
1049 +* (% style="color:blue" %)**AT Command:**
1176 1176  
1177 -Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1051 +(% style="color:#037691" %)**AT+ATDC=30** (%%) ~/~/ The shortest interval of two Alarm packets is 30 minutes, Means is there is an alarm packet uplink, there won't be another one in the next 30 minutes.
1178 1178  
1179 -(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1053 +* (% style="color:blue" %)**Downlink Payload:**
1180 1180  
1181 -(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1182 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1183 -|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1184 -|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1185 -|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1055 +(% style="color:#037691" %)**0x(0D 00 1E)**(%%)     **~-~--> ** Set AT+ATDC=0x 00 1E = 30 minutes
1186 1186  
1187 -(% style="color:blue" %)**Downlink Command: 0x08**
1188 1188  
1189 -Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1058 +=== 3.3.6 Get Alarm settings ===
1190 1190  
1191 -Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1192 1192  
1193 -The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1061 +Send a LoRaWAN downlink to ask device send Alarm settings.
1194 1194  
1195 -* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1196 -* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1197 -* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1063 +* (% style="color:#037691" %)**Downlink Payload:  **(%%)0x0E 01
1198 1198  
1199 -=== 3.3.6 Set Digital pulse count value ===
1065 +**Example:**
1200 1200  
1067 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-D20-D22-D23%20LoRaWAN%20Temperature%20Sensor%20User%20Manual/WebHome/1655948182791-225.png?rev=1.1||alt="1655948182791-225.png"]]
1201 1201  
1202 -Feature: Set the pulse count value.
1203 1203  
1204 -Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1070 +**Explain:**
1205 1205  
1206 -(% style="color:blue" %)**AT Command: AT+SETCNT**
1072 +* Alarm & MOD bit is 0x7C, 0x7C >> 2 = 0x31: Means this message is the Alarm settings message.
1207 1207  
1208 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1209 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1210 -|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1211 -|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1074 +=== 3.3.7 Set Interrupt Mode ===
1212 1212  
1213 -(% style="color:blue" %)**Downlink Command: 0x09**
1214 1214  
1215 -Format: Command Code (0x09) followed by 5 bytes.
1077 +Feature, Set Interrupt mode for GPIO_EXIT.
1216 1216  
1217 -The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1079 +(% style="color:blue" %)**AT Command: AT+INTMOD**
1218 1218  
1219 -* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1220 -* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1221 -
1222 -=== 3.3.7 Set Workmode ===
1223 -
1224 -
1225 -Feature: Switch working mode.
1226 -
1227 -(% style="color:blue" %)**AT Command: AT+MOD**
1228 -
1229 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1230 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 197px;background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 158px;background-color:#4F81BD;color:white" %)**Response**
1231 -|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1081 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1082 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1083 +|(% style="width:154px" %)AT+INTMOD=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1084 +0
1232 1232  OK
1086 +the mode is 0 =Disable Interrupt
1233 1233  )))
1234 -|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1235 -OK
1236 -Attention:Take effect after ATZ
1237 -)))
1088 +|(% style="width:154px" %)AT+INTMOD=2|(% style="width:196px" %)(((
1089 +Set Transmit Interval
1090 +0. (Disable Interrupt),
1091 +~1. (Trigger by rising and falling edge)
1092 +2. (Trigger by falling edge)
1093 +3. (Trigger by rising edge)
1094 +)))|(% style="width:157px" %)OK
1238 1238  
1239 -(% style="color:blue" %)**Downlink Command: 0x0A**
1096 +(% style="color:blue" %)**Downlink Command: 0x06**
1240 1240  
1241 -Format: Command Code (0x0A) followed by 1 bytes.
1098 +Format: Command Code (0x06) followed by 3 bytes.
1242 1242  
1243 -* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1244 -* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1100 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1245 1245  
1246 -=== 3.3.8 PWM setting ===
1102 +* Example 1: Downlink Payload: 06000000  ~/~/  Turn off interrupt mode
1103 +* Example 2: Downlink Payload: 06000003  ~/~/  Set the interrupt mode to rising edge trigger
1247 1247  
1105 += 4. Battery & Power Consumption =
1248 1248  
1249 -Feature: Set the time acquisition unit for PWM input capture.
1250 1250  
1251 -(% style="color:blue" %)**AT Command: AT+PWMSET**
1108 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1252 1252  
1253 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1254 -|=(% style="width: 155px;background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 225px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 130px; background-color:#4F81BD;color:white" %)**Response**
1255 -|(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1256 -0(default)
1257 -OK
1258 -)))
1259 -|(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1260 -OK
1261 -
1262 -)))
1263 -|(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1264 -
1265 -(% style="color:blue" %)**Downlink Command: 0x0C**
1266 -
1267 -Format: Command Code (0x0C) followed by 1 bytes.
1268 -
1269 -* Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1270 -* Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1271 -
1272 -**Feature: Set PWM output time, output frequency and output duty cycle.**
1273 -
1274 -(% style="color:blue" %)**AT Command: AT+PWMOUT**
1275 -
1276 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1277 -|=(% style="width: 183px; background-color: #4F81BD;color:white" %)**Command Example**|=(% style="width: 193px; background-color: #4F81BD;color:white" %)**Function**|=(% style="width: 134px; background-color: #4F81BD;color:white" %)**Response**
1278 -|(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1279 -0,0,0(default)
1280 -OK
1281 -)))
1282 -|(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1283 -OK
1284 -
1285 -)))
1286 -|(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1287 -The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1288 -
1289 -
1290 -)))|(% style="width:137px" %)(((
1291 -OK
1292 -)))
1293 -
1294 -(% border="1" cellspacing="3" style="background-color:#f2f2f2; width:510px" %)
1295 -|=(% style="width: 155px; background-color:#4F81BD;color:white" %)**Command Example**|=(% style="width: 112px; background-color:#4F81BD;color:white" %)**Function**|=(% style="width: 242px; background-color:#4F81BD;color:white" %)**parameters**
1296 -|(% colspan="1" rowspan="3" style="width:155px" %)(((
1297 -AT+PWMOUT=a,b,c
1298 -
1299 -
1300 -)))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1301 -Set PWM output time, output frequency and output duty cycle.
1302 -
1303 -(((
1304 -
1305 -)))
1306 -
1307 -(((
1308 -
1309 -)))
1310 -)))|(% style="width:242px" %)(((
1311 -a: Output time (unit: seconds)
1312 -The value ranges from 0 to 65535.
1313 -When a=65535, PWM will always output.
1314 -)))
1315 -|(% style="width:242px" %)(((
1316 -b: Output frequency (unit: HZ)
1317 -)))
1318 -|(% style="width:242px" %)(((
1319 -c: Output duty cycle (unit: %)
1320 -The value ranges from 0 to 100.
1321 -)))
1322 -
1323 -(% style="color:blue" %)**Downlink Command: 0x0B01**
1324 -
1325 -Format: Command Code (0x0B01) followed by 6 bytes.
1326 -
1327 -Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1328 -
1329 -* Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1330 -* Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1331 -
1332 -= 4. Battery & Power Cons =
1333 -
1334 -
1335 -SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1336 -
1337 1337  [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1338 1338  
1339 1339  
... ... @@ -1341,66 +1341,29 @@
1341 1341  
1342 1342  
1343 1343  (% class="wikigeneratedid" %)
1344 -**User can change firmware SN50v3-LB/LS to:**
1117 +User can change firmware SN50v3-LB to:
1345 1345  
1346 1346  * Change Frequency band/ region.
1347 1347  * Update with new features.
1348 1348  * Fix bugs.
1349 1349  
1350 -**Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1123 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1351 1351  
1352 -**Methods to Update Firmware:**
1353 1353  
1354 -* (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1355 -* Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1126 +Methods to Update Firmware:
1356 1356  
1357 -= 6.  Developer Guide =
1128 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1129 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1358 1358  
1359 -SN50v3 is an open source project, developer can use compile their firmware for customized applications. User can get the source code from:
1131 += 6. FAQ =
1360 1360  
1361 -* (((
1362 -Software Source Code: [[Releases · dragino/SN50v3 (github.com)>>url:https://github.com/dragino/SN50v3/releases]]
1363 -)))
1364 -* (((
1365 -Hardware Design files:  **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1366 -)))
1367 -* (((
1368 -Compile instruction:[[Compile instruction>>https://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LA66%20LoRaWAN%20Module/Compile%20and%20Upload%20Code%20to%20ASR6601%20Platform/]]
1369 -)))
1370 1370  
1371 -**~1. If you want to change frequency, modify the Preprocessor Symbols.**
1372 1372  
1373 -For example, change EU868 to US915
1135 += 7. Order Info =
1374 1374  
1375 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656318662202-530.png?rev=1.1||alt="1656318662202-530.png"]]
1376 1376  
1377 -**2. Compile and build**
1138 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1378 1378  
1379 -[[image:https://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627163212-17.png?rev=1.1||alt="image-20220627163212-17.png"]]
1380 -
1381 -= 7. FAQ =
1382 -
1383 -== 7.1 How to generate PWM Output in SN50v3-LB/LS? ==
1384 -
1385 -
1386 -See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1387 -
1388 -
1389 -== 7.2 How to put several sensors to a SN50v3-LB/LS? ==
1390 -
1391 -
1392 -When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1393 -
1394 -[[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1395 -
1396 -[[image:image-20230810121434-1.png||height="242" width="656"]]
1397 -
1398 -
1399 -= 8. Order Info =
1400 -
1401 -
1402 -Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**(%%) or (% style="color:blue" %)**SN50v3-LS-XX-YY**
1403 -
1404 1404  (% style="color:red" %)**XX**(%%): The default frequency band
1405 1405  
1406 1406  * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
... ... @@ -1419,12 +1419,11 @@
1419 1419  * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1420 1420  * (% style="color:red" %)**NH**(%%): No Hole
1421 1421  
1422 -= 9. ​Packing Info =
1158 += 8. ​Packing Info =
1423 1423  
1424 -
1425 1425  (% style="color:#037691" %)**Package Includes**:
1426 1426  
1427 -* SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1162 +* SN50v3-LB LoRaWAN Generic Node
1428 1428  
1429 1429  (% style="color:#037691" %)**Dimension and weight**:
1430 1430  
... ... @@ -1433,9 +1433,8 @@
1433 1433  * Package Size / pcs : cm
1434 1434  * Weight / pcs : g
1435 1435  
1436 -= 10. Support =
1171 += 9. Support =
1437 1437  
1438 1438  
1439 1439  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1440 -
1441 -* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]
1175 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230512163509-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.9 MB
Content
image-20230515135611-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -948.0 KB
Content
image-20230610162852-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.7 KB
Content
image-20230610163213-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -695.4 KB
Content
image-20230610170047-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -444.9 KB
Content
image-20230610170152-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -359.5 KB
Content
image-20230810121434-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -137.3 KB
Content
image-20230811113449-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -973.1 KB
Content
image-20230817170702-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -39.6 KB
Content
image-20230817172209-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.3 MB
Content
image-20230817173800-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.1 MB
Content
image-20230817173830-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -508.5 KB
Content
image-20230817173858-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -1.6 MB
Content
image-20230817183137-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183218-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -137.1 KB
Content
image-20230817183249-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -948.6 KB
Content
image-20230818092200-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Saxer
Size
... ... @@ -1,1 +1,0 @@
1 -98.9 KB
Content
image-20231213102404-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -4.2 MB
Content
image-20231231202945-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -36.3 KB
Content
image-20231231203148-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -35.4 KB
Content
image-20231231203439-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Edwin
Size
... ... @@ -1,1 +1,0 @@
1 -46.6 KB
Content
image-20240103095513-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -577.4 KB
Content
image-20240103095714-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -230.1 KB
Content
image-20240717113113-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -34.0 KB
Content
image-20240717141512-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -948.8 KB
Content
image-20240717141528-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -234.2 KB
Content
image-20240717145707-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -39.8 KB
Content
image-20240717150334-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -37.6 KB
Content
image-20240717150948-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -38.3 KB
Content
image-20240717152224-6.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.ting
Size
... ... @@ -1,1 +1,0 @@
1 -238.1 KB
Content
image-20240924112806-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -140.2 KB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0