From version 1.1 >
edited by Edwin Chen
on 2023/05/11 20:14
To version < 39.2 >
edited by Saxer Lin
on 2023/05/13 13:42
>
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -XWiki.Edwin
1 +XWiki.Saxer
Content
... ... @@ -1,0 +1,1150 @@
1 +[[image:image-20230511201248-1.png||height="403" width="489"]]
2 +
3 +
4 +
5 +**Table of Contents:**
6 +
7 +{{toc/}}
8 +
9 +
10 +
11 +
12 +
13 +
14 += 1. Introduction =
15 +
16 +== 1.1 What is SN50v3-LB LoRaWAN Generic Node ==
17 +
18 +(% style="color:blue" %)**SN50V3-LB **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mA Li/SOCl2 battery**(%%) for long term use.SN50V3-LB is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
19 +
20 +
21 +(% style="color:blue" %)**SN50V3-LB wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, smartphone detection, building automation, and so on.
22 +
23 +
24 +(% style="color:blue" %)**SN50V3-LB **(%%)has a powerful 48Mhz ARM microcontroller with 256KB flash and 64KB RAM. It has multiplex I/O pins to connect to different sensors.
25 +
26 +
27 +(% style="color:blue" %)**SN50V3-LB**(%%) has a built-in BLE module, user can configure the sensor remotely via Mobile Phone. It also support OTA upgrade via private LoRa protocol for easy maintaining.
28 +
29 +
30 +SN50V3-LB is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
31 +
32 +
33 +== 1.2 ​Features ==
34 +
35 +* LoRaWAN 1.0.3 Class A
36 +* Ultra-low power consumption
37 +* Open-Source hardware/software
38 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
39 +* Support Bluetooth v5.1 and LoRaWAN remote configure
40 +* Support wireless OTA update firmware
41 +* Uplink on periodically
42 +* Downlink to change configure
43 +* 8500mAh Battery for long term use
44 +
45 +== 1.3 Specification ==
46 +
47 +(% style="color:#037691" %)**Common DC Characteristics:**
48 +
49 +* Supply Voltage: built in 8500mAh Li-SOCI2 battery , 2.5v ~~ 3.6v
50 +* Operating Temperature: -40 ~~ 85°C
51 +
52 +(% style="color:#037691" %)**I/O Interface:**
53 +
54 +* Battery output (2.6v ~~ 3.6v depends on battery)
55 +* +5v controllable output
56 +* 3 x Interrupt or Digital IN/OUT pins
57 +* 3 x one-wire interfaces
58 +* 1 x UART Interface
59 +* 1 x I2C Interface
60 +
61 +(% style="color:#037691" %)**LoRa Spec:**
62 +
63 +* Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
64 +* Max +22 dBm constant RF output vs.
65 +* RX sensitivity: down to -139 dBm.
66 +* Excellent blocking immunity
67 +
68 +(% style="color:#037691" %)**Battery:**
69 +
70 +* Li/SOCI2 un-chargeable battery
71 +* Capacity: 8500mAh
72 +* Self-Discharge: <1% / Year @ 25°C
73 +* Max continuously current: 130mA
74 +* Max boost current: 2A, 1 second
75 +
76 +(% style="color:#037691" %)**Power Consumption**
77 +
78 +* Sleep Mode: 5uA @ 3.3v
79 +* LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
80 +
81 +== 1.4 Sleep mode and working mode ==
82 +
83 +(% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
84 +
85 +(% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
86 +
87 +
88 +== 1.5 Button & LEDs ==
89 +
90 +
91 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]]
92 +
93 +
94 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
95 +|=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
96 +|(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
97 +If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
98 +Meanwhile, BLE module will be active and user can connect via BLE to configure device.
99 +)))
100 +|(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
101 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
102 +(% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
103 +Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
104 +)))
105 +|(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
106 +
107 +== 1.6 BLE connection ==
108 +
109 +
110 +SN50v3-LB supports BLE remote configure.
111 +
112 +
113 +BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
114 +
115 +* Press button to send an uplink
116 +* Press button to active device.
117 +* Device Power on or reset.
118 +
119 +If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
120 +
121 +
122 +== 1.7 Pin Definitions ==
123 +
124 +
125 +[[image:image-20230513102034-2.png]]
126 +
127 +
128 +== 1.8 Mechanical ==
129 +
130 +
131 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]]
132 +
133 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
134 +
135 +[[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
136 +
137 +
138 +== Hole Option ==
139 +
140 +SN50v3-LB has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
141 +
142 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
143 +
144 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
145 +
146 +
147 += 2. Configure SN50v3-LB to connect to LoRaWAN network =
148 +
149 +== 2.1 How it works ==
150 +
151 +
152 +The SN50v3-LB is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the S31x-LB. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
153 +
154 +
155 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
156 +
157 +
158 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
159 +
160 +The LPS8V2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
161 +
162 +
163 +(% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB.
164 +
165 +Each SN50v3-LB is shipped with a sticker with the default device EUI as below:
166 +
167 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
168 +
169 +
170 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
171 +
172 +
173 +(% style="color:blue" %)**Register the device**
174 +
175 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
176 +
177 +
178 +(% style="color:blue" %)**Add APP EUI and DEV EUI**
179 +
180 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
181 +
182 +
183 +(% style="color:blue" %)**Add APP EUI in the application**
184 +
185 +
186 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
187 +
188 +
189 +(% style="color:blue" %)**Add APP KEY**
190 +
191 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
192 +
193 +
194 +(% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB
195 +
196 +
197 +Press the button for 5 seconds to activate the SN50v3-LB.
198 +
199 +(% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
200 +
201 +After join success, it will start to upload messages to TTN and you can see the messages in the panel.
202 +
203 +
204 +== 2.3 ​Uplink Payload ==
205 +
206 +=== 2.3.1 Device Status, FPORT~=5 ===
207 +
208 +
209 +Users can use the downlink command(**0x26 01**) to ask SN50v3 to send device configure detail, include device configure status. SN50v3 will uplink a payload via FPort=5 to server.
210 +
211 +The Payload format is as below.
212 +
213 +
214 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
215 +|(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
216 +|(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
217 +|(% style="width:103px" %)**Value**|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
218 +
219 +Example parse in TTNv3
220 +
221 +
222 +(% style="color:#037691" %)**Sensor Model**(%%): For SN50v3, this value is 0x1C
223 +
224 +(% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
225 +
226 +(% style="color:#037691" %)**Frequency Band**:
227 +
228 +*0x01: EU868
229 +
230 +*0x02: US915
231 +
232 +*0x03: IN865
233 +
234 +*0x04: AU915
235 +
236 +*0x05: KZ865
237 +
238 +*0x06: RU864
239 +
240 +*0x07: AS923
241 +
242 +*0x08: AS923-1
243 +
244 +*0x09: AS923-2
245 +
246 +*0x0a: AS923-3
247 +
248 +*0x0b: CN470
249 +
250 +*0x0c: EU433
251 +
252 +*0x0d: KR920
253 +
254 +*0x0e: MA869
255 +
256 +
257 +(% style="color:#037691" %)**Sub-Band**:
258 +
259 +AU915 and US915:value 0x00 ~~ 0x08
260 +
261 +CN470: value 0x0B ~~ 0x0C
262 +
263 +Other Bands: Always 0x00
264 +
265 +
266 +(% style="color:#037691" %)**Battery Info**:
267 +
268 +Check the battery voltage.
269 +
270 +Ex1: 0x0B45 = 2885mV
271 +
272 +Ex2: 0x0B49 = 2889mV
273 +
274 +
275 +=== 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
276 +
277 +
278 +SN50v3 has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command AT+MOD to set SN50v3 to different working modes.
279 +
280 +For example:
281 +
282 + **AT+MOD=2  ** ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
283 +
284 +
285 +(% style="color:red" %) **Important Notice:**
286 +
287 +1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in **DR0**. Server sides will see NULL payload while SN50v3 transmit in DR0 with 12 bytes payload.
288 +1. All modes share the same Payload Explanation from HERE.
289 +1. By default, the device will send an uplink message every 20 minutes.
290 +
291 +==== 2.3.2.1  MOD~=1 (Default Mode) ====
292 +
293 +In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
294 +
295 +|**Size(bytes)**|**2**|**2**|**2**|(% style="width:216px" %)**1**|(% style="width:342px" %)**2**|(% style="width:171px" %)**2**
296 +|**Value**|Bat|(((
297 +Temperature(DS18B20)
298 +
299 +(PC13)
300 +)))|(((
301 +ADC
302 +
303 +(PA4)
304 +)))|(% style="width:216px" %)(((
305 +Digital in(PB15) &
306 +
307 +Digital Interrupt(PA8)
308 +
309 +
310 +)))|(% style="width:342px" %)(((
311 +Temperature
312 +
313 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
314 +)))|(% style="width:171px" %)(((
315 +Humidity
316 +
317 +(SHT20 or SHT31)
318 +)))
319 +
320 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
321 +
322 +
323 +==== 2.3.2.2  MOD~=2 (Distance Mode) ====
324 +
325 +This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
326 +
327 +|**Size(bytes)**|**2**|**2**|**2**|**1**|**2**|**2**
328 +|**Value**|BAT|(((
329 +Temperature(DS18B20)
330 +
331 +(PC13)
332 +)))|(((
333 +ADC
334 +
335 +(PA4)
336 +)))|(((
337 +Digital in(PB15) &
338 +
339 +Digital Interrupt(PA8)
340 +)))|(((
341 +Distance measure by:
342 +1) LIDAR-Lite V3HP
343 +Or
344 +2) Ultrasonic Sensor
345 +)))|Reserved
346 +
347 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
348 +
349 +**Connection of LIDAR-Lite V3HP:**
350 +
351 +[[image:image-20230512173758-5.png||height="563" width="712"]]
352 +
353 +**Connection to Ultrasonic Sensor:**
354 +
355 +Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.
356 +
357 +[[image:image-20230512173903-6.png||height="596" width="715"]]
358 +
359 +For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
360 +
361 +|**Size(bytes)**|**2**|**2**|**1**|**2**|**2**|**2**
362 +|**Value**|BAT|(((
363 +Temperature(DS18B20)
364 +
365 +(PC13)
366 +)))|(((
367 +Digital in(PB15) &
368 +
369 +Digital Interrupt(PA8)
370 +)))|(((
371 +ADC
372 +
373 +(PA4)
374 +)))|(((
375 +Distance measure by:1)TF-Mini plus LiDAR
376 +Or 
377 +2) TF-Luna LiDAR
378 +)))|Distance signal  strength
379 +
380 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
381 +
382 +**Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
383 +
384 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
385 +
386 +[[image:image-20230512180609-7.png||height="555" width="802"]]
387 +
388 +**Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
389 +
390 +Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.
391 +
392 +[[image:image-20230513105207-4.png||height="469" width="802"]]
393 +
394 +
395 +==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
396 +
397 +This mode has total 12 bytes. Include 3 x ADC + 1x I2C
398 +
399 +(% style="width:1031px" %)
400 +|=(((
401 +**Size(bytes)**
402 +)))|=(% style="width: 68px;" %)**2**|=(% style="width: 75px;" %)**2**|=**2**|=**1**|=(% style="width: 304px;" %)2|=(% style="width: 163px;" %)2|=(% style="width: 53px;" %)1
403 +|**Value**|(% style="width:68px" %)(((
404 +ADC1
405 +
406 +(PA4)
407 +)))|(% style="width:75px" %)(((
408 +ADC2
409 +
410 +(PA5)
411 +)))|(((
412 +ADC3
413 +
414 +(PA8)
415 +)))|(((
416 +Digital Interrupt(PB15)
417 +)))|(% style="width:304px" %)(((
418 +Temperature
419 +
420 +(SHT20 or SHT31 or BH1750 Illumination Sensor)
421 +)))|(% style="width:163px" %)(((
422 +Humidity
423 +
424 +(SHT20 or SHT31)
425 +)))|(% style="width:53px" %)Bat
426 +
427 +[[image:image-20230513110214-6.png]]
428 +
429 +
430 +==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
431 +
432 +
433 +This mode has total 11 bytes. As shown below:
434 +
435 +(% style="width:1017px" %)
436 +|**Size(bytes)**|**2**|(% style="width:186px" %)**2**|(% style="width:82px" %)**2**|(% style="width:210px" %)**1**|(% style="width:191px" %)**2**|(% style="width:183px" %)**2**
437 +|**Value**|BAT|(% style="width:186px" %)(((
438 +Temperature1(DS18B20)
439 +(PC13)
440 +)))|(% style="width:82px" %)(((
441 +ADC
442 +
443 +(PA4)
444 +)))|(% style="width:210px" %)(((
445 +Digital in(PB15) &
446 +
447 +Digital Interrupt(PA8) 
448 +)))|(% style="width:191px" %)Temperature2(DS18B20)
449 +(PB9)|(% style="width:183px" %)Temperature3(DS18B20)
450 +(PB8)
451 +
452 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
453 +
454 +[[image:image-20230513134006-1.png||height="559" width="736"]]
455 +
456 +
457 +==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
458 +
459 +[[image:image-20230512164658-2.png||height="532" width="729"]]
460 +
461 +Each HX711 need to be calibrated before used. User need to do below two steps:
462 +
463 +1. Zero calibration. Don't put anything on load cell and run **AT+WEIGRE** to calibrate to Zero gram.
464 +1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run **AT+WEIGAP** to adjust the Calibration Factor.
465 +1. (((
466 +Weight has 4 bytes, the unit is g.
467 +)))
468 +
469 +For example:
470 +
471 +**AT+GETSENSORVALUE =0**
472 +
473 +Response:  Weight is 401 g
474 +
475 +Check the response of this command and adjust the value to match the real value for thing.
476 +
477 +(% style="width:982px" %)
478 +|=(((
479 +**Size(bytes)**
480 +)))|=**2**|=(% style="width: 282px;" %)**2**|=(% style="width: 119px;" %)**2**|=(% style="width: 279px;" %)**1**|=(% style="width: 106px;" %)**4**
481 +|**Value**|BAT|(% style="width:282px" %)(((
482 +Temperature(DS18B20)
483 +
484 +(PC13)
485 +
486 +
487 +)))|(% style="width:119px" %)(((
488 +ADC
489 +
490 +(PA4)
491 +)))|(% style="width:279px" %)(((
492 +Digital in(PB15) &
493 +
494 +Digital Interrupt(PA8)
495 +)))|(% style="width:106px" %)Weight
496 +
497 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
498 +
499 +
500 +==== 2.3.2.6  MOD~=6 (Counting Mode) ====
501 +
502 +In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
503 +
504 +Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
505 +
506 +[[image:image-20230512181814-9.png||height="543" width="697"]]
507 +
508 +**Note:** LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.
509 +
510 +(% style="width:961px" %)
511 +|=**Size(bytes)**|=**2**|=(% style="width: 256px;" %)**2**|=(% style="width: 108px;" %)**2**|=(% style="width: 126px;" %)**1**|=(% style="width: 145px;" %)**4**
512 +|**Value**|BAT|(% style="width:256px" %)(((
513 +Temperature(DS18B20)
514 +
515 +(PC13)
516 +)))|(% style="width:108px" %)(((
517 +ADC
518 +
519 +(PA4)
520 +)))|(% style="width:126px" %)(((
521 +Digital in
522 +
523 +(PB15)
524 +)))|(% style="width:145px" %)(((
525 +Count
526 +
527 +(PA8)
528 +)))
529 +
530 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
531 +
532 +
533 +==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
534 +
535 +|=(((
536 +**Size(bytes)**
537 +)))|=**2**|=**2**|=**2**|=**1**|=**1**|=1|=2
538 +|**Value**|BAT|(((
539 +Temperature(DS18B20)
540 +
541 +(PC13)
542 +)))|(((
543 +ADC
544 +
545 +(PA5)
546 +)))|(((
547 +Digital Interrupt1(PA8)
548 +)))|Digital Interrupt2(PA4)|Digital Interrupt3(PB15)|Reserved
549 +
550 +[[image:image-20230513111203-7.png||height="324" width="975"]]
551 +
552 +==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
553 +
554 +(% style="width:917px" %)
555 +|=(((
556 +**Size(bytes)**
557 +)))|=**2**|=(% style="width: 207px;" %)**2**|=(% style="width: 94px;" %)**2**|=(% style="width: 198px;" %)**1**|=(% style="width: 84px;" %)**2**|=(% style="width: 79px;" %)2
558 +|**Value**|BAT|(% style="width:207px" %)(((
559 +Temperature(DS18B20)
560 +
561 +(PC13)
562 +)))|(% style="width:94px" %)(((
563 +ADC1
564 +
565 +(PA4)
566 +)))|(% style="width:198px" %)(((
567 +Digital Interrupt(PB15)
568 +)))|(% style="width:84px" %)(((
569 +ADC2
570 +
571 +(PA5)
572 +)))|(% style="width:79px" %)(((
573 +ADC3
574 +
575 +(PA8)
576 +)))
577 +
578 +[[image:image-20230513111231-8.png||height="335" width="900"]]
579 +
580 +
581 +==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
582 +
583 +(% style="width:1010px" %)
584 +|=(((
585 +**Size(bytes)**
586 +)))|=**2**|=**2**|=**2**|=**1**|=(% style="width: 193px;" %)**2**|=(% style="width: 78px;" %)4|=(% style="width: 78px;" %)4
587 +|**Value**|BAT|(((
588 +Temperature1(DS18B20)
589 +
590 +(PC13)
591 +)))|(((
592 +Temperature2(DS18B20)
593 +
594 +(PB9)
595 +)))|(((
596 +Digital Interrupt
597 +
598 +(PB15)
599 +)))|(% style="width:193px" %)(((
600 +Temperature3(DS18B20)
601 +
602 +(PB8)
603 +)))|(% style="width:78px" %)(((
604 +Count1
605 +
606 +(PA8)
607 +)))|(% style="width:78px" %)(((
608 +Count2
609 +
610 +(PA4)
611 +)))
612 +
613 +[[image:image-20230513111255-9.png||height="341" width="899"]]
614 +
615 +**The newly added AT command is issued correspondingly:**
616 +
617 +**~ AT+INTMOD1** ** PA8**  pin:  Corresponding downlink:  **06 00 00 xx**
618 +
619 +**~ AT+INTMOD2**  **PA4**  pin:  Corresponding downlink:**  06 00 01 xx**
620 +
621 +**~ AT+INTMOD3**  **PB15**  pin:  Corresponding downlink:  ** 06 00 02 xx**
622 +
623 +**AT+SETCNT=aa,bb** 
624 +
625 +When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
626 +
627 +When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
628 +
629 +
630 +
631 +=== 2.3.3  ​Decode payload ===
632 +
633 +While using TTN V3 network, you can add the payload format to decode the payload.
634 +
635 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
636 +
637 +The payload decoder function for TTN V3 are here:
638 +
639 +SN50v3 TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
640 +
641 +
642 +==== 2.3.3.1 Battery Info ====
643 +
644 +Check the battery voltage for SN50v3.
645 +
646 +Ex1: 0x0B45 = 2885mV
647 +
648 +Ex2: 0x0B49 = 2889mV
649 +
650 +
651 +==== 2.3.3.2  Temperature (DS18B20) ====
652 +
653 +If there is a DS18B20 connected to PB3 pin. The temperature will be uploaded in the payload.
654 +
655 +More DS18B20 can check the [[3 DS18B20 mode>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#2.3.4MOD3D4283xDS18B2029]]
656 +
657 +**Connection:**
658 +
659 +[[image:image-20230512180718-8.png||height="538" width="647"]]
660 +
661 +**Example**:
662 +
663 +If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
664 +
665 +If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
666 +
667 +(FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
668 +
669 +
670 +==== 2.3.3.3 Digital Input ====
671 +
672 +The digital input for pin PB15,
673 +
674 +* When PB15 is high, the bit 1 of payload byte 6 is 1.
675 +* When PB15 is low, the bit 1 of payload byte 6 is 0.
676 +
677 +(% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
678 +(((
679 +When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
680 +
681 +**Note:**The maximum voltage input supports 3.6V.
682 +)))
683 +
684 +==== 2.3.3.4  Analogue Digital Converter (ADC) ====
685 +
686 +The measuring range of the ADC is only about 0V to 1.1V The voltage resolution is about 0.24mv.
687 +
688 +When the measured output voltage of the sensor is not within the range of 0V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
689 +
690 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
691 +
692 +**Note:**If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.
693 +
694 +==== 2.3.3.5 Digital Interrupt ====
695 +
696 +Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3 will send a packet to the server.
697 +
698 +**~ Interrupt connection method:**
699 +
700 +[[image:image-20230513105351-5.png||height="147" width="485"]]
701 +
702 +**Example to use with door sensor :**
703 +
704 +The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
705 +
706 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
707 +
708 +When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50_v3 interrupt interface to detect the status for the door or window.
709 +
710 +**~ Below is the installation example:**
711 +
712 +Fix one piece of the magnetic sensor to the door and connect the two pins to SN50_v3 as follows:
713 +
714 +* (((
715 +One pin to SN50_v3's PA8 pin
716 +)))
717 +* (((
718 +The other pin to SN50_v3's VDD pin
719 +)))
720 +
721 +Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
722 +
723 +Door sensors have two types: ** NC (Normal close)** and **NO (normal open)**. The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
724 +
725 +When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
726 +
727 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
728 +
729 +The above photos shows the two parts of the magnetic switch fitted to a door.
730 +
731 +The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
732 +
733 +The command is:
734 +
735 +**AT+INTMOD1=1       **~/~/(more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
736 +
737 +Below shows some screen captures in TTN V3:
738 +
739 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
740 +
741 +In MOD=1, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
742 +
743 +door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
744 +
745 +
746 +==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
747 +
748 +The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
749 +
750 +We have made an example to show how to use the I2C interface to connect to the SHT20 Temperature and Humidity Sensor.
751 +
752 +Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20 code in SN50_v3 will be a good reference.
753 +
754 +Below is the connection to SHT20/ SHT31. The connection is as below:
755 +
756 +
757 +[[image:image-20230513103633-3.png||height="636" width="1017"]]
758 +
759 +The device will be able to get the I2C sensor data now and upload to IoT Server.
760 +
761 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
762 +
763 +Convert the read byte to decimal and divide it by ten.
764 +
765 +**Example:**
766 +
767 +Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
768 +
769 +Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
770 +
771 +If you want to use other I2C device, please refer the SHT20 part source code as reference.
772 +
773 +
774 +==== 2.3.3.7  ​Distance Reading ====
775 +
776 +Refer [[Ultrasonic Sensor section>>url:http://wiki.dragino.com/xwiki/bin/view/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/#H2.4.8UltrasonicSensor]].
777 +
778 +
779 +==== 2.3.3.8 Ultrasonic Sensor ====
780 +
781 +This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
782 +
783 +The SN50_v3 detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
784 +
785 +The working principle of this sensor is similar to the **HC-SR04** ultrasonic sensor.
786 +
787 +The picture below shows the connection:
788 +
789 +[[image:image-20230512173903-6.png||height="596" width="715"]]
790 +
791 +Connect to the SN50_v3 and run **AT+MOD=2** to switch to ultrasonic mode (ULT).
792 +
793 +The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
794 +
795 +**Example:**
796 +
797 +Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
798 +
799 +
800 +
801 +==== 2.3.3.9  Battery Output - BAT pin ====
802 +
803 +The BAT pin of SN50v3 is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB will run out very soon.
804 +
805 +
806 +==== 2.3.3.10  +5V Output ====
807 +
808 +SN50v3 will enable +5V output before all sampling and disable the +5v after all sampling. 
809 +
810 +The 5V output time can be controlled by AT Command.
811 +
812 +**AT+5VT=1000**
813 +
814 +Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
815 +
816 +By default the AT+5VT=500. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
817 +
818 +
819 +
820 +==== 2.3.3.11  BH1750 Illumination Sensor ====
821 +
822 +MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
823 +
824 +[[image:image-20230512172447-4.png||height="593" width="1015"]]
825 +
826 +[[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png"]]
827 +
828 +
829 +==== 2.3.3.12  Working MOD ====
830 +
831 +The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
832 +
833 +User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
834 +
835 +Case 7^^th^^ Byte >> 2 & 0x1f:
836 +
837 +* 0: MOD1
838 +* 1: MOD2
839 +* 2: MOD3
840 +* 3: MOD4
841 +* 4: MOD5
842 +* 5: MOD6
843 +* 6: MOD7
844 +* 7: MOD8
845 +* 8: MOD9
846 +
847 +== 2.4 Payload Decoder file ==
848 +
849 +
850 +In TTN, use can add a custom payload so it shows friendly reading
851 +
852 +In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
853 +
854 +[[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B >>https://github.com/dragino/dragino-end-node-decoder/tree/main/LSN50v2-S31%26S31B]]
855 +
856 +
857 +
858 +== 2.5 Frequency Plans ==
859 +
860 +
861 +The SN50v3-LB uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
862 +
863 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
864 +
865 +
866 += 3. Configure SN50v3-LB =
867 +
868 +== 3.1 Configure Methods ==
869 +
870 +
871 +SN50v3-LB supports below configure method:
872 +
873 +* AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
874 +* AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
875 +* LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
876 +
877 +== 3.2 General Commands ==
878 +
879 +
880 +These commands are to configure:
881 +
882 +* General system settings like: uplink interval.
883 +* LoRaWAN protocol & radio related command.
884 +
885 +They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
886 +
887 +[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
888 +
889 +
890 +== 3.3 Commands special design for SN50v3-LB ==
891 +
892 +
893 +These commands only valid for S31x-LB, as below:
894 +
895 +
896 +=== 3.3.1 Set Transmit Interval Time ===
897 +
898 +
899 +Feature: Change LoRaWAN End Node Transmit Interval.
900 +
901 +(% style="color:blue" %)**AT Command: AT+TDC**
902 +
903 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
904 +|=(% style="width: 156px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3" %)**Function**|=(% style="background-color:#D9E2F3" %)**Response**
905 +|(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
906 +30000
907 +OK
908 +the interval is 30000ms = 30s
909 +)))
910 +|(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
911 +OK
912 +Set transmit interval to 60000ms = 60 seconds
913 +)))
914 +
915 +(% style="color:blue" %)**Downlink Command: 0x01**
916 +
917 +Format: Command Code (0x01) followed by 3 bytes time value.
918 +
919 +If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
920 +
921 +* Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
922 +* Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
923 +
924 +=== 3.3.2 Get Device Status ===
925 +
926 +Send a LoRaWAN downlink to ask device send Alarm settings.
927 +
928 +(% style="color:blue" %)**Downlink Payload:  **(%%)0x26 01
929 +
930 +Sensor will upload Device Status via FPORT=5. See payload section for detail.
931 +
932 +
933 +=== 3.3.3 Set Interrupt Mode ===
934 +
935 +
936 +Feature, Set Interrupt mode for GPIO_EXIT.
937 +
938 +(% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
939 +
940 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
941 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
942 +|(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
943 +0
944 +OK
945 +the mode is 0 =Disable Interrupt
946 +)))
947 +|(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
948 +Set Transmit Interval
949 +0. (Disable Interrupt),
950 +~1. (Trigger by rising and falling edge)
951 +2. (Trigger by falling edge)
952 +3. (Trigger by rising edge)
953 +)))|(% style="width:157px" %)OK
954 +|(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
955 +Set Transmit Interval
956 +
957 +trigger by rising edge.
958 +)))|(% style="width:157px" %)OK
959 +|(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
960 +
961 +(% style="color:blue" %)**Downlink Command: 0x06**
962 +
963 +Format: Command Code (0x06) followed by 3 bytes.
964 +
965 +This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
966 +
967 +* Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
968 +* Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
969 +* Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
970 +* Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
971 +
972 +=== 3.3.4 Set Power Output Duration ===
973 +
974 +Control the output duration 5V . Before each sampling, device will
975 +
976 +~1. first enable the power output to external sensor,
977 +
978 +2. keep it on as per duration, read sensor value and construct uplink payload
979 +
980 +3. final, close the power output.
981 +
982 +(% style="color:blue" %)**AT Command: AT+5VT**
983 +
984 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
985 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
986 +|(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
987 +500(default)
988 +
989 +OK
990 +)))
991 +|(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
992 +Close after a delay of 1000 milliseconds.
993 +)))|(% style="width:157px" %)OK
994 +
995 +(% style="color:blue" %)**Downlink Command: 0x07**
996 +
997 +Format: Command Code (0x07) followed by 2 bytes.
998 +
999 +The first and second bytes are the time to turn on.
1000 +
1001 +* Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1002 +* Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1003 +
1004 +=== 3.3.5 Set Weighing parameters ===
1005 +
1006 +Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1007 +
1008 +(% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1009 +
1010 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1011 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1012 +|(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1013 +|(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1014 +|(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1015 +
1016 +(% style="color:blue" %)**Downlink Command: 0x08**
1017 +
1018 +
1019 +Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1020 +
1021 +Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1022 +
1023 +The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1024 +
1025 +* Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1026 +* Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1027 +* Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1028 +
1029 +=== 3.3.6 Set Digital pulse count value ===
1030 +
1031 +Feature: Set the pulse count value.
1032 +
1033 +Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1034 +
1035 +(% style="color:blue" %)**AT Command: AT+SETCNT**
1036 +
1037 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1038 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1039 +|(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1040 +|(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1041 +
1042 +(% style="color:blue" %)**Downlink Command: 0x09**
1043 +
1044 +
1045 +Format: Command Code (0x09) followed by 5 bytes.
1046 +
1047 +The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1048 +
1049 +* Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1050 +* Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1051 +
1052 +=== 3.3.7 Set Workmode ===
1053 +
1054 +Feature: Switch working mode.
1055 +
1056 +(% style="color:blue" %)**AT Command: AT+MOD**
1057 +
1058 +(% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1059 +|=(% style="width: 154px;background-color:#D9E2F3" %)**Command Example**|=(% style="width: 196px;background-color:#D9E2F3" %)**Function**|=(% style="width: 157px;background-color:#D9E2F3" %)**Response**
1060 +|(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1061 +OK
1062 +)))
1063 +|(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1064 +OK
1065 +
1066 +Attention:Take effect after ATZ
1067 +)))
1068 +
1069 +(% style="color:blue" %)**Downlink Command: 0x0A**
1070 +
1071 +
1072 +Format: Command Code (0x0A) followed by 1 bytes.
1073 +
1074 +* Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1075 +* Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1076 +
1077 += 4. Battery & Power Consumption =
1078 +
1079 +
1080 +SN50v3-LB use ER26500 + SPC1520 battery pack. See below link for detail information about the battery info and how to replace.
1081 +
1082 +[[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1083 +
1084 +
1085 += 5. OTA Firmware update =
1086 +
1087 +
1088 +(% class="wikigeneratedid" %)
1089 +User can change firmware SN50v3-LB to:
1090 +
1091 +* Change Frequency band/ region.
1092 +* Update with new features.
1093 +* Fix bugs.
1094 +
1095 +Firmware and changelog can be downloaded from : **[[Firmware download link>>url:https://www.dropbox.com/sh/kwqv57tp6pejias/AAAopYMATh1GM6fZ-VRCLrpDa?dl=0]]**
1096 +
1097 +
1098 +Methods to Update Firmware:
1099 +
1100 +* (Recommanded way) OTA firmware update via wireless:   [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]
1101 +* Update through UART TTL interface.**[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1102 +
1103 += 6. FAQ =
1104 +
1105 +== 6.1 Where can i find source code of SN50v3-LB? ==
1106 +
1107 +* **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1108 +* **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1109 +
1110 += 7. Order Info =
1111 +
1112 +
1113 +Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY**
1114 +
1115 +(% style="color:red" %)**XX**(%%): The default frequency band
1116 +
1117 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1118 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1119 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1120 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1121 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1122 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1123 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1124 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1125 +
1126 +(% style="color:red" %)**YY: ** (%%)Hole Option
1127 +
1128 +* (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1129 +* (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1130 +* (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1131 +* (% style="color:red" %)**NH**(%%): No Hole
1132 +
1133 += 8. ​Packing Info =
1134 +
1135 +(% style="color:#037691" %)**Package Includes**:
1136 +
1137 +* SN50v3-LB LoRaWAN Generic Node
1138 +
1139 +(% style="color:#037691" %)**Dimension and weight**:
1140 +
1141 +* Device Size: cm
1142 +* Device Weight: g
1143 +* Package Size / pcs : cm
1144 +* Weight / pcs : g
1145 +
1146 += 9. Support =
1147 +
1148 +
1149 +* Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1150 +* Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
image-20230511201248-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +429.5 KB
Content
image-20230511203450-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Edwin
Size
... ... @@ -1,0 +1,1 @@
1 +679.1 KB
Content
image-20230512163509-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.5 MB
Content
image-20230512164658-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.0 MB
Content
image-20230512170701-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.5 MB
Content
image-20230512172447-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.0 MB
Content
image-20230512173758-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.1 MB
Content
image-20230512173903-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512180609-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512180718-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.3 MB
Content
image-20230512181814-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +2.2 MB
Content
image-20230513084523-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +611.3 KB
Content
image-20230513102034-2.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +607.1 KB
Content
image-20230513103633-3.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +595.5 KB
Content
image-20230513105207-4.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +384.7 KB
Content
image-20230513105351-5.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +37.6 KB
Content
image-20230513110214-6.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +172.7 KB
Content
image-20230513111203-7.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +79.9 KB
Content
image-20230513111231-8.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +64.9 KB
Content
image-20230513111255-9.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +70.4 KB
Content
image-20230513134006-1.png
Author
... ... @@ -1,0 +1,1 @@
1 +XWiki.Saxer
Size
... ... @@ -1,0 +1,1 @@
1 +1.9 MB
Content
Copyright ©2010-2024 Dragino Technology Co., LTD. All rights reserved
Dragino Wiki v2.0