Version 87.7 by Xiaoling on 2024/01/03 11:17

Show last authors
1
2
3 (% style="text-align:center" %)
4 [[image:image-20240103095714-2.png]]
5
6
7
8
9
10
11 **Table of Contents:**
12
13 {{toc/}}
14
15
16
17
18
19
20 = 1. Introduction =
21
22 == 1.1 What is SN50v3-LB/LS LoRaWAN Generic Node ==
23
24
25 (% style="color:blue" %)**SN50V3-LB/LS **(%%)LoRaWAN Sensor Node is a Long Range LoRa Sensor Node. It is designed for outdoor use and powered by (% style="color:blue" %)** 8500mAh Li/SOCl2 battery**(%%)  or (% style="color:blue" %)**solar powered + li-on battery**(%%) for long term use.SN50V3-LB/LS is designed to facilitate developers to quickly deploy industrial level LoRa and IoT solutions. It help users to turn the idea into a practical application and make the Internet of Things a reality. It is easy to program, create and connect your things everywhere.
26
27 (% style="color:blue" %)**SN50V3-LB/LS wireless part**(%%) is based on SX1262 allows the user to send data and reach extremely long ranges at low data-rates.It provides ultra-long range spread spectrum communication and high interference immunity whilst minimising current consumption.It targets professional wireless sensor network applications such as irrigation systems, smart metering, smart cities, and so on.
28
29 SN50V3-LB/LS has a powerful (% style="color:blue" %)**48Mhz ARM microcontroller with 256KB flash and 64KB RAM**(%%). It has (% style="color:blue" %)**multiplex I/O pins**(%%) to connect to different sensors.
30
31 SN50V3-LB/LS has a (% style="color:blue" %)**built-in BLE module**(%%), user can configure the sensor remotely via Mobile Phone. It also support (% style="color:blue" %)**OTA upgrade**(%%) via private LoRa protocol for easy maintaining.
32
33 SN50V3-LB/LS is the 3^^rd^^ generation of LSN50 series generic sensor node from Dragino. It is an (% style="color:blue" %)**open source project**(%%) and has a mature LoRaWAN stack and application software. User can use the pre-load software for their IoT projects or easily customize the software for different requirements.
34
35 == 1.2 ​Features ==
36
37
38 * LoRaWAN 1.0.3 Class A
39 * Ultra-low power consumption
40 * Open-Source hardware/software
41 * Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
42 * Support Bluetooth v5.1 and LoRaWAN remote configure
43 * Support wireless OTA update firmware
44 * Uplink on periodically
45 * Downlink to change configure
46 * 8500mAh Li/SOCl2 battery (SN50v3-LB)
47 * Solar panel + 3000mAh Li-on battery (SN50v3-LS)
48
49 == 1.3 Specification ==
50
51
52 (% style="color:#037691" %)**Common DC Characteristics:**
53
54 * Supply Voltage: Built- in battery , 2.5v ~~ 3.6v
55 * Operating Temperature: -40 ~~ 85°C
56
57 (% style="color:#037691" %)**I/O Interface:**
58
59 * Battery output (2.6v ~~ 3.6v depends on battery)
60 * +5v controllable output
61 * 3 x Interrupt or Digital IN/OUT pins
62 * 3 x one-wire interfaces
63 * 1 x UART Interface
64 * 1 x I2C Interface
65
66 (% style="color:#037691" %)**LoRa Spec:**
67
68 * Frequency Range,  Band 1 (HF): 862 ~~ 1020 Mhz
69 * Max +22 dBm constant RF output vs.
70 * RX sensitivity: down to -139 dBm.
71 * Excellent blocking immunity
72
73 (% style="color:#037691" %)**Battery:**
74
75 * Li/SOCI2 un-chargeable battery
76 * Capacity: 8500mAh
77 * Self-Discharge: <1% / Year @ 25°C
78 * Max continuously current: 130mA
79 * Max boost current: 2A, 1 second
80
81 (% style="color:#037691" %)**Power Consumption**
82
83 * Sleep Mode: 5uA @ 3.3v
84 * LoRa Transmit Mode: 125mA @ 20dBm, 82mA @ 14dBm
85
86 == 1.4 Sleep mode and working mode ==
87
88
89 (% style="color:blue" %)**Deep Sleep Mode: **(%%)Sensor doesn't have any LoRaWAN activate. This mode is used for storage and shipping to save battery life.
90
91 (% style="color:blue" %)**Working Mode:** (%%)In this mode, Sensor will work as LoRaWAN Sensor to Join LoRaWAN network and send out sensor data to server. Between each sampling/tx/rx periodically, sensor will be in IDLE mode), in IDLE mode, sensor has the same power consumption as Deep Sleep mode.
92
93
94 == 1.5 Button & LEDs ==
95
96
97 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675071855856-879.png]][[image:image-20231231203148-2.png||height="456" width="316"]]
98
99
100 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
101 |=(% style="width: 167px;background-color:#D9E2F3;color:#0070C0" %)**Behavior on ACT**|=(% style="width: 117px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 225px;background-color:#D9E2F3;color:#0070C0" %)**Action**
102 |(% style="width:167px" %)Pressing ACT between 1s < time < 3s|(% style="width:117px" %)Send an uplink|(% style="width:225px" %)(((
103 If sensor is already Joined to LoRaWAN network, sensor will send an uplink packet, (% style="color:blue" %)**blue led** (%%)will blink once.
104 Meanwhile, BLE module will be active and user can connect via BLE to configure device.
105 )))
106 |(% style="width:167px" %)Pressing ACT for more than 3s|(% style="width:117px" %)Active Device|(% style="width:225px" %)(((
107 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:#037691" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network.
108 (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
109 Once sensor is active, BLE module will be active and user can connect via BLE to configure device, no matter if device join or not join LoRaWAN network.
110 )))
111 |(% style="width:167px" %)Fast press ACT 5 times.|(% style="width:117px" %)Deactivate Device|(% style="width:225px" %)(% style="color:red" %)**Red led**(%%) will solid on for 5 seconds. Means device is in Deep Sleep Mode.
112
113 == 1.6 BLE connection ==
114
115
116 SN50v3-LB/LS supports BLE remote configure.
117
118
119 BLE can be used to configure the parameter of sensor or see the console output from sensor. BLE will be only activate on below case:
120
121 * Press button to send an uplink
122 * Press button to active device.
123 * Device Power on or reset.
124
125 If there is no activity connection on BLE in 60 seconds, sensor will shut down BLE module to enter low power mode.
126
127
128 == 1.7 Pin Definitions ==
129
130
131 [[image:image-20230610163213-1.png||height="404" width="699"]]
132
133
134 == 1.8 Mechanical ==
135
136 === 1.8.1 for LB version ===
137
138
139 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143884058-338.png]][[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143899218-599.png]]
140
141
142 [[image:Main.User Manual for LoRaWAN End Nodes.D20-LBD22-LBD23-LB_LoRaWAN_Temperature_Sensor_User_Manual.WebHome@1675143909447-639.png]]
143
144 === 1.8.2 for LS version ===
145
146 [[image:image-20231231203439-3.png||height="385" width="886"]]
147
148
149 == 1.9 Hole Option ==
150
151
152 SN50v3-LB/LS has different hole size options for different size sensor cable. The options provided are M12, M16 and M20. The definition is as below:
153
154 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627104757-1.png?rev=1.1||alt="image-20220627104757-1.png"]]
155
156 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656298089706-973.png?rev=1.1||alt="1656298089706-973.png"]]
157
158
159 = 2. Configure SN50v3-LB/LS to connect to LoRaWAN network =
160
161 == 2.1 How it works ==
162
163
164 The SN50v3-LB/LS is configured as (% style="color:#037691" %)**LoRaWAN OTAA Class A**(%%) mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and press the button to activate the SN50v3-LB/LS. It will automatically join the network via OTAA and start to send the sensor value. The default uplink interval is 20 minutes.
165
166
167 == 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
168
169
170 Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LPS8v2>>url:https://www.dragino.com/products/lora-lorawan-gateway/item/228-lps8v2.html]] as a LoRaWAN gateway in this example.
171
172 The LPS8v2 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
173
174
175 (% style="color:blue" %)**Step 1:**(%%) Create a device in TTN with the OTAA keys from SN50v3-LB/LS.
176
177 Each SN50v3-LB/LS is shipped with a sticker with the default device EUI as below:
178
179 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/S31-LB_S31B-LB/WebHome/image-20230426084152-1.png?width=502&height=233&rev=1.1||alt="图片-20230426084152-1.png" height="233" width="502"]]
180
181
182 You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
183
184
185 (% style="color:blue" %)**Register the device**
186
187 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/1654935135620-998.png?rev=1.1||alt="1654935135620-998.png"]]
188
189
190 (% style="color:blue" %)**Add APP EUI and DEV EUI**
191
192 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-4.png?width=753&height=551&rev=1.1||alt="图片-20220611161308-4.png"]]
193
194
195 (% style="color:blue" %)**Add APP EUI in the application**
196
197
198 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-5.png?width=742&height=601&rev=1.1||alt="图片-20220611161308-5.png"]]
199
200
201 (% style="color:blue" %)**Add APP KEY**
202
203 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50v2-S31-S31B%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20User%20Manual/WebHome/image-20220611161308-6.png?width=744&height=485&rev=1.1||alt="图片-20220611161308-6.png"]]
204
205
206 (% style="color:blue" %)**Step 2:**(%%) Activate SN50v3-LB/LS
207
208
209 Press the button for 5 seconds to activate the SN50v3-LB/LS.
210
211 (% style="color:green" %)**Green led**(%%) will fast blink 5 times, device will enter (% style="color:blue" %)**OTA mode**(%%) for 3 seconds. And then start to JOIN LoRaWAN network. (% style="color:green" %)**Green led**(%%) will solidly turn on for 5 seconds after joined in network.
212
213 After join success, it will start to upload messages to TTN and you can see the messages in the panel.
214
215
216 == 2.3 ​Uplink Payload ==
217
218 === 2.3.1 Device Status, FPORT~=5 ===
219
220
221 Users can use the downlink command(**0x26 01**) to ask SN50v3-LB/LS to send device configure detail, include device configure status. SN50v3-LB/LS will uplink a payload via FPort=5 to server.
222
223 The Payload format is as below.
224
225
226 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
227 |(% colspan="6" style="background-color:#d9e2f3; color:#0070c0" %)**Device Status (FPORT=5)**
228 |(% style="width:103px" %)**Size (bytes)**|(% style="width:72px" %)**1**|**2**|(% style="width:91px" %)**1**|(% style="width:86px" %)**1**|(% style="width:44px" %)**2**
229 |(% style="width:103px" %)Value|(% style="width:72px" %)Sensor Model|Firmware Version|(% style="width:91px" %)Frequency Band|(% style="width:86px" %)Sub-band|(% style="width:44px" %)BAT
230
231 Example parse in TTNv3
232
233
234 (% style="color:#037691" %)**Sensor Model**(%%): For SN50v3-LB/LS, this value is 0x1C
235
236 (% style="color:#037691" %)**Firmware Version**(%%): 0x0100, Means: v1.0.0 version
237
238 (% style="color:#037691" %)**Frequency Band**:
239
240 0x01: EU868
241
242 0x02: US915
243
244 0x03: IN865
245
246 0x04: AU915
247
248 0x05: KZ865
249
250 0x06: RU864
251
252 0x07: AS923
253
254 0x08: AS923-1
255
256 0x09: AS923-2
257
258 0x0a: AS923-3
259
260 0x0b: CN470
261
262 0x0c: EU433
263
264 0x0d: KR920
265
266 0x0e: MA869
267
268
269 (% style="color:#037691" %)**Sub-Band**:
270
271 AU915 and US915:value 0x00 ~~ 0x08
272
273 CN470: value 0x0B ~~ 0x0C
274
275 Other Bands: Always 0x00
276
277
278 (% style="color:#037691" %)**Battery Info**:
279
280 Check the battery voltage.
281
282 Ex1: 0x0B45 = 2885mV
283
284 Ex2: 0x0B49 = 2889mV
285
286
287 === 2.3.2 Working Modes & Sensor Data. Uplink via FPORT~=2 ===
288
289
290 SN50v3-LB/LS has different working mode for the connections of different type of sensors. This section describes these modes. Use can use the AT Command (% style="color:blue" %)**AT+MOD**(%%) to set SN50v3-LB/LS to different working modes.
291
292 For example:
293
294 (% style="color:blue" %)**AT+MOD=2  ** (%%) ~/~/ will set the SN50v3 to work in MOD=2 distance mode which target to measure distance via Ultrasonic Sensor.
295
296
297 (% style="color:red" %) **Important Notice:**
298
299 ~1. Some working modes has payload more than 12 bytes, The US915/AU915/AS923 frequency bands' definition has maximum 11 bytes in (% style="color:blue" %)**DR0**(%%). Server sides will see NULL payload while SN50v3-LB/LS transmit in DR0 with 12 bytes payload.
300
301 2. All modes share the same Payload Explanation from HERE.
302
303 3. By default, the device will send an uplink message every 20 minutes.
304
305
306 ==== 2.3.2.1  MOD~=1 (Default Mode) ====
307
308
309 In this mode, uplink payload includes in total 11 bytes. Uplink packets use FPORT=2.
310
311 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
312 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:130px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
313 |Value|Bat|(% style="width:191px" %)(((
314 Temperature(DS18B20)(PC13)
315 )))|(% style="width:78px" %)(((
316 ADC(PA4)
317 )))|(% style="width:216px" %)(((
318 Digital in(PB15)&Digital Interrupt(PA8)
319 )))|(% style="width:308px" %)(((
320 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
321 )))|(% style="width:154px" %)(((
322 Humidity(SHT20 or SHT31)
323 )))
324
325 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220627150949-6.png?rev=1.1||alt="image-20220627150949-6.png"]]
326
327
328 ==== 2.3.2.2  MOD~=2 (Distance Mode) ====
329
330
331 This mode is target to measure the distance. The payload of this mode is totally 11 bytes. The 8^^th^^ and 9^^th^^ bytes is for the distance.
332
333 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
334 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:30px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:110px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:140px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:40px" %)**2**
335 |Value|BAT|(% style="width:196px" %)(((
336 Temperature(DS18B20)(PC13)
337 )))|(% style="width:87px" %)(((
338 ADC(PA4)
339 )))|(% style="width:189px" %)(((
340 Digital in(PB15) & Digital Interrupt(PA8)
341 )))|(% style="width:208px" %)(((
342 Distance measure by: 1) LIDAR-Lite V3HP
343 Or 2) Ultrasonic Sensor
344 )))|(% style="width:117px" %)Reserved
345
346 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656324539647-568.png?rev=1.1||alt="1656324539647-568.png"]]
347
348
349 (% style="color:blue" %)**Connection of LIDAR-Lite V3HP:**
350
351 [[image:image-20230512173758-5.png||height="563" width="712"]]
352
353
354 (% style="color:blue" %)**Connection to Ultrasonic Sensor:**
355
356 (% style="color:red" %)**Need to remove R1 and R2 resistors to get low power,otherwise there will be 240uA standby current.**
357
358 [[image:image-20230512173903-6.png||height="596" width="715"]]
359
360
361 For the connection to TF-Mini or TF-Luna , MOD2 payload is as below:
362
363 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
364 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:120px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:80px" %)**2**
365 |Value|BAT|(% style="width:183px" %)(((
366 Temperature(DS18B20)(PC13)
367 )))|(% style="width:173px" %)(((
368 Digital in(PB15) & Digital Interrupt(PA8)
369 )))|(% style="width:84px" %)(((
370 ADC(PA4)
371 )))|(% style="width:323px" %)(((
372 Distance measure by:1)TF-Mini plus LiDAR
373 Or 2) TF-Luna LiDAR
374 )))|(% style="width:188px" %)Distance signal  strength
375
376 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656376779088-686.png?rev=1.1||alt="1656376779088-686.png"]]
377
378
379 **Connection to [[TF-Mini plus>>url:http://en.benewake.com/product/detail/5c345cd0e5b3a844c472329b.html]] LiDAR(UART version):**
380
381 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
382
383 [[image:image-20230512180609-7.png||height="555" width="802"]]
384
385
386 **Connection to [[TF-Luna>>url:http://en.benewake.com/product/detail/5e1c1fd04d839408076b6255.html]] LiDAR (UART version):**
387
388 (% style="color:red" %)**Need to remove R3 and R4 resistors to get low power,otherwise there will be 400uA standby current.**
389
390 [[image:image-20230610170047-1.png||height="452" width="799"]]
391
392
393 ==== 2.3.2.3  MOD~=3 (3 ADC + I2C) ====
394
395
396 This mode has total 12 bytes. Include 3 x ADC + 1x I2C
397
398 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
399 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
400 **Size(bytes)**
401 )))|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)2|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)1
402 |Value|(% style="width:68px" %)(((
403 ADC1(PA4)
404 )))|(% style="width:75px" %)(((
405 ADC2(PA5)
406 )))|(((
407 ADC3(PA8)
408 )))|(((
409 Digital Interrupt(PB15)
410 )))|(% style="width:304px" %)(((
411 Temperature(SHT20 or SHT31 or BH1750 Illumination Sensor)
412 )))|(% style="width:163px" %)(((
413 Humidity(SHT20 or SHT31)
414 )))|(% style="width:53px" %)Bat
415
416 [[image:image-20230513110214-6.png]]
417
418
419 ==== 2.3.2.4 MOD~=4 (3 x DS18B20) ====
420
421
422 This mode has total 11 bytes. As shown below:
423
424 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
425 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**
426 |Value|BAT|(% style="width:186px" %)(((
427 Temperature1(DS18B20)(PC13)
428 )))|(% style="width:82px" %)(((
429 ADC(PA4)
430 )))|(% style="width:210px" %)(((
431 Digital in(PB15) & Digital Interrupt(PA8) 
432 )))|(% style="width:191px" %)Temperature2(DS18B20)
433 (PB9)|(% style="width:183px" %)Temperature3(DS18B20)(PB8)
434
435 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656377606181-607.png?rev=1.1||alt="1656377606181-607.png"]]
436
437
438 [[image:image-20230513134006-1.png||height="559" width="736"]]
439
440
441 ==== 2.3.2.5  MOD~=5(Weight Measurement by HX711) ====
442
443
444 [[image:image-20230512164658-2.png||height="532" width="729"]]
445
446 Each HX711 need to be calibrated before used. User need to do below two steps:
447
448 1. Zero calibration. Don't put anything on load cell and run (% style="color:blue" %)**AT+WEIGRE**(%%) to calibrate to Zero gram.
449 1. Adjust calibration factor (default value 400): Put a known weight thing on load cell and run (% style="color:blue" %)**AT+WEIGAP**(%%) to adjust the Calibration Factor.
450 1. (((
451 Weight has 4 bytes, the unit is g.
452
453
454
455 )))
456
457 For example:
458
459 (% style="color:blue" %)**AT+GETSENSORVALUE =0**
460
461 Response:  Weight is 401 g
462
463 Check the response of this command and adjust the value to match the real value for thing.
464
465 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
466 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
467 **Size(bytes)**
468 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 150px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 200px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**4**
469 |Value|BAT|(% style="width:193px" %)(((
470 Temperature(DS18B20)(PC13)
471 )))|(% style="width:85px" %)(((
472 ADC(PA4)
473 )))|(% style="width:186px" %)(((
474 Digital in(PB15) & Digital Interrupt(PA8)
475 )))|(% style="width:100px" %)Weight
476
477 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220820120036-2.png?width=1003&height=469&rev=1.1||alt="image-20220820120036-2.png" height="469" width="1003"]]
478
479
480 ==== 2.3.2.6  MOD~=6 (Counting Mode) ====
481
482
483 In this mode, the device will work in counting mode. It counts the interrupt on the interrupt pins and sends the count on TDC time.
484
485 Connection is as below. The PIR sensor is a count sensor, it will generate interrupt when people come close or go away. User can replace the PIR sensor with other counting sensors.
486
487 [[image:image-20230512181814-9.png||height="543" width="697"]]
488
489
490 (% style="color:red" %)**Note:** **LoRaWAN wireless transmission will infect the PIR sensor. Which cause the counting value increase +1 for every uplink. User can change PIR sensor or put sensor away of the SN50_v3 to avoid this happen.**
491
492 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
493 |=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**Size(bytes)**|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 180px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 100px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 80px;background-color:#D9E2F3;color:#0070C0" %)**4**
494 |Value|BAT|(% style="width:256px" %)(((
495 Temperature(DS18B20)(PC13)
496 )))|(% style="width:108px" %)(((
497 ADC(PA4)
498 )))|(% style="width:126px" %)(((
499 Digital in(PB15)
500 )))|(% style="width:145px" %)(((
501 Count(PA8)
502 )))
503
504 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378441509-171.png?rev=1.1||alt="1656378441509-171.png"]]
505
506
507 ==== 2.3.2.7  MOD~=7 (Three interrupt contact modes) ====
508
509
510 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
511 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
512 **Size(bytes)**
513 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)1|=(% style="width: 40px;background-color:#D9E2F3;color:#0070C0" %)2
514 |Value|BAT|(% style="width:188px" %)(((
515 Temperature(DS18B20)
516 (PC13)
517 )))|(% style="width:83px" %)(((
518 ADC(PA5)
519 )))|(% style="width:184px" %)(((
520 Digital Interrupt1(PA8)
521 )))|(% style="width:186px" %)Digital Interrupt2(PA4)|(% style="width:197px" %)Digital Interrupt3(PB15)|(% style="width:100px" %)Reserved
522
523 [[image:image-20230513111203-7.png||height="324" width="975"]]
524
525
526 ==== 2.3.2.8  MOD~=8 (3ADC+1DS18B20) ====
527
528
529 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
530 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
531 **Size(bytes)**
532 )))|=(% style="width: 30px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 110px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 120px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 70px;background-color:#D9E2F3;color:#0070C0" %)2
533 |Value|BAT|(% style="width:207px" %)(((
534 Temperature(DS18B20)
535 (PC13)
536 )))|(% style="width:94px" %)(((
537 ADC1(PA4)
538 )))|(% style="width:198px" %)(((
539 Digital Interrupt(PB15)
540 )))|(% style="width:84px" %)(((
541 ADC2(PA5)
542 )))|(% style="width:82px" %)(((
543 ADC3(PA8)
544 )))
545
546 [[image:image-20230513111231-8.png||height="335" width="900"]]
547
548
549 ==== 2.3.2.9  MOD~=9 (3DS18B20+ two Interrupt count mode) ====
550
551
552 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:520px" %)
553 |=(% style="width: 50px;background-color:#D9E2F3;color:#0070C0" %)(((
554 **Size(bytes)**
555 )))|=(% style="width: 20px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)**1**|=(% style="width: 90px;background-color:#D9E2F3;color:#0070C0" %)**2**|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4|=(% style="width: 60px;background-color:#D9E2F3;color:#0070C0" %)4
556 |Value|BAT|(((
557 Temperature
558 (DS18B20)(PC13)
559 )))|(((
560 Temperature2
561 (DS18B20)(PB9)
562 )))|(((
563 Digital Interrupt
564 (PB15)
565 )))|(% style="width:193px" %)(((
566 Temperature3
567 (DS18B20)(PB8)
568 )))|(% style="width:78px" %)(((
569 Count1(PA8)
570 )))|(% style="width:78px" %)(((
571 Count2(PA4)
572 )))
573
574 [[image:image-20230513111255-9.png||height="341" width="899"]]
575
576 (% style="color:blue" %)**The newly added AT command is issued correspondingly:**
577
578 (% style="color:#037691" %)** AT+INTMOD1 PA8**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)**06 00 00 xx**
579
580 (% style="color:#037691" %)** AT+INTMOD2 PA4**(%%)  pin:  Corresponding downlink: (% style="color:#037691" %)**06 00 01 xx**
581
582 (% style="color:#037691" %)** AT+INTMOD3 PB15**(%%)  pin:  Corresponding downlink:  (% style="color:#037691" %)** 06 00 02 xx**
583
584
585 (% style="color:blue" %)**AT+SETCNT=aa,bb** 
586
587 When AA is 1, set the count of PA8 pin to BB Corresponding downlink:09 01 bb bb bb bb
588
589 When AA is 2, set the count of PA4 pin to BB Corresponding downlink:09 02 bb bb bb bb
590
591
592 ==== 2.3.2.10  MOD~=10 (PWM input capture and output mode,Since firmware v1.2) ====
593
594 (% style="color:red" %)**Note: Firmware not release, contact Dragino for testing.**
595
596 In this mode, the uplink can perform PWM input capture, and the downlink can perform PWM output.
597
598 [[It should be noted when using PWM mode.>>||anchor="H2.3.3.12A0PWMMOD"]]
599
600
601 ===== 2.3.2.10.a  Uplink, PWM input capture =====
602
603
604 [[image:image-20230817172209-2.png||height="439" width="683"]]
605
606 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:515px" %)
607 |(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**Size(bytes)**|(% style="background-color:#d9e2f3; color:#0070c0; width:20px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:100px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:50px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:135px" %)**1**|(% style="background-color:#d9e2f3; color:#0070c0; width:70px" %)**2**|(% style="background-color:#d9e2f3; color:#0070c0; width:90px" %)**2**
608 |Value|Bat|(% style="width:191px" %)(((
609 Temperature(DS18B20)(PC13)
610 )))|(% style="width:78px" %)(((
611 ADC(PA4)
612 )))|(% style="width:135px" %)(((
613 PWM_Setting
614 &Digital Interrupt(PA8)
615 )))|(% style="width:70px" %)(((
616 Pulse period
617 )))|(% style="width:89px" %)(((
618 Duration of high level
619 )))
620
621 [[image:image-20230817170702-1.png||height="161" width="1044"]]
622
623
624 When the device detects the following PWM signal ,decoder will converts the pulse period and high-level duration to frequency and duty cycle.
625
626 **Frequency:**
627
628 (% class="MsoNormal" %)
629 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=0, **(% lang="EN-US" %)Frequency= 1000000/(%%)Pulse period(HZ);
630
631 (% class="MsoNormal" %)
632 (% lang="EN-US" %)If (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMSET**(%%)**=1, **(% lang="EN-US" %)Frequency= 1000/(%%)Pulse period(HZ);
633
634
635 (% class="MsoNormal" %)
636 **Duty cycle:**
637
638 Duty cycle= Duration of high level/ Pulse period*100 ~(%).
639
640 [[image:image-20230818092200-1.png||height="344" width="627"]]
641
642 ===== 2.3.2.10.b  Uplink, PWM output =====
643
644 [[image:image-20230817172209-2.png||height="439" width="683"]]
645
646 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**AT+PWMOUT=a,b,c**
647
648 a is the time delay of the output, the unit is ms.
649
650 b is the output frequency, the unit is HZ.
651
652 c is the duty cycle of the output, the unit is %.
653
654 (% style="background-attachment:initial; background-clip:initial; background-image:initial; background-origin:initial; background-position:initial; background-repeat:initial; background-size:initial; color:blue; font-family:Arial,sans-serif" %)**Downlink**(%%):  (% style="color:#037691" %)**0B 01 bb cc aa **
655
656 aa is the time delay of the output, the unit is ms.
657
658 bb is the output frequency, the unit is HZ.
659
660 cc is the duty cycle of the output, the unit is %.
661
662
663 For example, send a AT command: AT+PWMOUT=65535,1000,50  The PWM is always out, the frequency is 1000HZ, and the duty cycle is 50.
664
665 The oscilloscope displays as follows:
666
667 [[image:image-20231213102404-1.jpeg||height="780" width="932"]]
668
669
670 ===== 2.3.2.10.c  Downlink, PWM output =====
671
672
673 [[image:image-20230817173800-3.png||height="412" width="685"]]
674
675 Downlink:  (% style="color:#037691" %)**0B xx xx xx yy zz zz**
676
677 xx xx xx is the output frequency, the unit is HZ.
678
679 yy is the duty cycle of the output, the unit is %.
680
681 zz zz is the time delay of the output, the unit is ms.
682
683
684 For example, send a downlink command: 0B 00 61 A8 32 13 88, the frequency is 25KHZ, the duty cycle is 50, and the output time is 5 seconds.
685
686 The oscilloscope displays as follows:
687
688 [[image:image-20230817173858-5.png||height="694" width="921"]]
689
690
691 === 2.3.3  ​Decode payload ===
692
693
694 While using TTN V3 network, you can add the payload format to decode the payload.
695
696 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656378466788-734.png?rev=1.1||alt="1656378466788-734.png"]]
697
698 The payload decoder function for TTN V3 are here:
699
700 SN50v3-LB/LS TTN V3 Payload Decoder:  [[https:~~/~~/github.com/dragino/dragino-end-node-decoder>>url:https://github.com/dragino/dragino-end-node-decoder]]
701
702
703 ==== 2.3.3.1 Battery Info ====
704
705
706 Check the battery voltage for SN50v3-LB/LS.
707
708 Ex1: 0x0B45 = 2885mV
709
710 Ex2: 0x0B49 = 2889mV
711
712
713 ==== 2.3.3.2  Temperature (DS18B20) ====
714
715
716 If there is a DS18B20 connected to PC13 pin. The temperature will be uploaded in the payload.
717
718 More DS18B20 can check the [[3 DS18B20 mode>>||anchor="H2.3.2.4MOD3D4283xDS18B2029"]]
719
720 (% style="color:blue" %)**Connection:**
721
722 [[image:image-20230512180718-8.png||height="538" width="647"]]
723
724
725 (% style="color:blue" %)**Example**:
726
727 If payload is: 0105H:  (0105 & 8000 == 0), temp = 0105H /10 = 26.1 degree
728
729 If payload is: FF3FH :  (FF3F & 8000 == 1) , temp = (FF3FH - 65536)/10 = -19.3 degrees.
730
731 (FF3F & 8000:Judge whether the highest bit is 1, when the highest bit is 1, it is negative)
732
733
734 ==== 2.3.3.3 Digital Input ====
735
736
737 The digital input for pin PB15,
738
739 * When PB15 is high, the bit 1 of payload byte 6 is 1.
740 * When PB15 is low, the bit 1 of payload byte 6 is 0.
741
742 (% class="wikigeneratedid" id="H2.3.3.4A0AnalogueDigitalConverter28ADC29" %)
743 (((
744 When the digital interrupt pin is set to AT+INTMODx=0, this pin is used as a digital input pin.
745
746 (% style="color:red" %)**Note: The maximum voltage input supports 3.6V.**
747
748
749 )))
750
751 ==== 2.3.3.4  Analogue Digital Converter (ADC) ====
752
753
754 The measuring range of the ADC is only about 0.1V to 1.1V The voltage resolution is about 0.24mv.
755
756 When the measured output voltage of the sensor is not within the range of 0.1V and 1.1V, the output voltage terminal of the sensor shall be divided The example in the following figure is to reduce the output voltage of the sensor by three times If it is necessary to reduce more times, calculate according to the formula in the figure and connect the corresponding resistance in series.
757
758 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LHT65N%20LoRaWAN%20Temperature%20%26%20Humidity%20Sensor%20Manual/WebHome/image-20220628150112-1.png?width=285&height=241&rev=1.1||alt="image-20220628150112-1.png" height="241" width="285"]]
759
760
761 (% style="color:red" %)**Note: If the ADC type sensor needs to be powered by SN50_v3, it is recommended to use +5V to control its switch.Only sensors with low power consumption can be powered with VDD.**
762
763
764 The position of PA5 on the hardware after **LSN50 v3.3** is changed to the position shown in the figure below, and the collected voltage becomes one-sixth of the original.
765
766 [[image:image-20230811113449-1.png||height="370" width="608"]]
767
768 ==== 2.3.3.5 Digital Interrupt ====
769
770
771 Digital Interrupt refers to pin PA8, and there are different trigger methods. When there is a trigger, the SN50v3-LB/LS will send a packet to the server.
772
773 (% style="color:blue" %)** Interrupt connection method:**
774
775 [[image:image-20230513105351-5.png||height="147" width="485"]]
776
777
778 (% style="color:blue" %)**Example to use with door sensor :**
779
780 The door sensor is shown at right. It is a two wire magnetic contact switch used for detecting the open/close status of doors or windows.
781
782 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379210849-860.png?rev=1.1||alt="1656379210849-860.png"]]
783
784 When the two pieces are close to each other, the 2 wire output will be short or open (depending on the type), while if the two pieces are away from each other, the 2 wire output will be the opposite status. So we can use SN50v3-LB/LS interrupt interface to detect the status for the door or window.
785
786
787 (% style="color:blue" %)**Below is the installation example:**
788
789 Fix one piece of the magnetic sensor to the door and connect the two pins to SN50v3-LB/LS as follows:
790
791 * (((
792 One pin to SN50v3-LB/LS's PA8 pin
793 )))
794 * (((
795 The other pin to SN50v3-LB/LS's VDD pin
796 )))
797
798 Install the other piece to the door. Find a place where the two pieces will be close to each other when the door is closed. For this particular magnetic sensor, when the door is closed, the output will be short, and PA8 will be at the VCC voltage.
799
800 Door sensors have two types: (% style="color:blue" %)** NC (Normal close)**(%%) and (% style="color:blue" %)**NO (normal open)**(%%). The connection for both type sensors are the same. But the decoding for payload are reverse, user need to modify this in the IoT Server decoder.
801
802 When door sensor is shorted, there will extra power consumption in the circuit, the extra current is 3v3/R14 = 3v3/1Mohm = 3uA which can be ignored.
803
804 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379283019-229.png?rev=1.1||alt="1656379283019-229.png"]]
805
806 The above photos shows the two parts of the magnetic switch fitted to a door.
807
808 The software by default uses the falling edge on the signal line as an interrupt. We need to modify it to accept both the rising edge (0v ~-~-> VCC , door close) and the falling edge (VCC ~-~-> 0v , door open) as the interrupt.
809
810 The command is:
811
812 (% style="color:blue" %)**AT+INTMOD1=1   ** (%%) ~/~/  (more info about INMOD please refer** **[[**AT Command Manual**>>url:http://www.dragino.com/downloads/index.php?dir=LSN50-LoRaST/&file=DRAGINO_LSN50_AT_Commands_v1.5.1.pdf]]**. **)
813
814 Below shows some screen captures in TTN V3:
815
816 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379339508-835.png?rev=1.1||alt="1656379339508-835.png"]]
817
818
819 In **MOD=1**, user can use byte 6 to see the status for door open or close. TTN V3 decoder is as below:
820
821 door= (bytes[6] & 0x80)? "CLOSE":"OPEN";
822
823
824 ==== 2.3.3.6 I2C Interface (SHT20 & SHT31) ====
825
826
827 The SDA and SCK are I2C interface lines. You can use these to connect to an I2C device and get the sensor data.
828
829 We have made an example to show how to use the I2C interface to connect to the SHT20/ SHT31 Temperature and Humidity Sensor.
830
831 (% style="color:red" %)**Notice: Different I2C sensors have different I2C commands set and initiate process, if user want to use other I2C sensors, User need to re-write the source code to support those sensors. SHT20/ SHT31 code in SN50v3-LB/LS will be a good reference.**
832
833
834 Below is the connection to SHT20/ SHT31. The connection is as below:
835
836 [[image:image-20230610170152-2.png||height="501" width="846"]]
837
838
839 The device will be able to get the I2C sensor data now and upload to IoT Server.
840
841 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/1656379664142-345.png?rev=1.1||alt="1656379664142-345.png"]]
842
843 Convert the read byte to decimal and divide it by ten.
844
845 **Example:**
846
847 Temperature:  Read:0116(H) = 278(D)  Value:  278 /10=27.8℃;
848
849 Humidity:    Read:0248(H)=584(D)  Value:  584 / 10=58.4, So 58.4%
850
851 If you want to use other I2C device, please refer the SHT20 part source code as reference.
852
853
854 ==== 2.3.3.7  ​Distance Reading ====
855
856
857 Refer [[Ultrasonic Sensor section>>||anchor="H2.3.3.8UltrasonicSensor"]].
858
859
860 ==== 2.3.3.8 Ultrasonic Sensor ====
861
862
863 This Fundamental Principles of this sensor can be found at this link: [[https:~~/~~/wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU~~_~~__SEN0208>>url:https://wiki.dfrobot.com/Weather_-_proof_Ultrasonic_Sensor_with_Separate_Probe_SKU___SEN0208]]
864
865 The SN50v3-LB/LS detects the pulse width of the sensor and converts it to mm output. The accuracy will be within 1 centimeter. The usable range (the distance between the ultrasonic probe and the measured object) is between 24cm and 600cm.
866
867 The working principle of this sensor is similar to the (% style="color:blue" %)**HC-SR04**(%%) ultrasonic sensor.
868
869 The picture below shows the connection:
870
871 [[image:image-20230512173903-6.png||height="596" width="715"]]
872
873
874 Connect to the SN50v3-LB/LS and run (% style="color:blue" %)**AT+MOD=2**(%%) to switch to ultrasonic mode (ULT).
875
876 The ultrasonic sensor uses the 8^^th^^ and 9^^th^^ byte for the measurement value.
877
878 **Example:**
879
880 Distance:  Read: 0C2D(Hex) = 3117(D)  Value:  3117 mm=311.7 cm
881
882
883 ==== 2.3.3.9  Battery Output - BAT pin ====
884
885
886 The BAT pin of SN50v3-LB/LS is connected to the Battery directly. If users want to use BAT pin to power an external sensor. User need to make sure the external sensor is of low power consumption. Because the BAT pin is always open. If the external sensor is of high power consumption. the battery of SN50v3-LB/LS will run out very soon.
887
888
889 ==== 2.3.3.10  +5V Output ====
890
891
892 SN50v3-LB/LS will enable +5V output before all sampling and disable the +5v after all sampling. 
893
894 The 5V output time can be controlled by AT Command.
895
896 (% style="color:blue" %)**AT+5VT=1000**
897
898 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
899
900 By default the **AT+5VT=500**. If the external sensor which require 5v and require more time to get stable state, user can use this command to increase the power ON duration for this sensor.
901
902
903 ==== 2.3.3.11  BH1750 Illumination Sensor ====
904
905
906 MOD=1 support this sensor. The sensor value is in the 8^^th^^ and 9^^th^^ bytes.
907
908 [[image:image-20230512172447-4.png||height="416" width="712"]]
909
910
911 [[image:http://wiki.dragino.com/xwiki/bin/download/Main/User%20Manual%20for%20LoRaWAN%20End%20Nodes/LSN50%20%26%20LSN50-V2%20-%20LoRaWAN%20Sensor%20Node%20User%20Manual/WebHome/image-20220628110012-12.png?rev=1.1||alt="image-20220628110012-12.png" height="361" width="953"]]
912
913
914 ==== 2.3.3.12  PWM MOD ====
915
916
917 * (((
918 The maximum voltage that the SDA pin of SN50v3 can withstand is 3.6V, and it cannot exceed this voltage value, otherwise the chip may be burned.
919 )))
920 * (((
921 If the PWM pin connected to the SDA pin cannot maintain a high level when it is not working, you need to remove the resistor R2 or replace it with a resistor with a larger resistance, otherwise a sleep current of about 360uA will be generated. The position of the resistor is shown in the figure below:
922 )))
923
924 [[image:image-20230817183249-3.png||height="320" width="417"]]
925
926 * (((
927 The signal captured by the input should preferably be processed by hardware filtering and then connected in. The software processing method is to capture four values, discard the first captured value, and then take the middle value of the second, third, and fourth captured values.
928 )))
929 * (((
930 Since the device can only detect a pulse period of 50ms when [[AT+PWMSET=0>>||anchor="H3.3.8PWMsetting"]] (counting in microseconds), it is necessary to change the value of PWMSET according to the frequency of input capture.
931 )))
932 * (((
933 PWM Input allows low power consumption. PWM Output to achieve real-time control, you need to go to class C. Power consumption will not be low.
934
935 For PWM Output Feature, there are two consideration to see if the device can be powered by battery or have to be powered by external DC.
936
937 a) If real-time control output is required, the SN50v3-LB/LS is already operating in class C and an external power supply must be used.
938
939 b) If the output duration is more than 30 seconds, better to use external power source. 
940 )))
941
942
943
944 ==== 2.3.3.13  Working MOD ====
945
946
947 The working MOD info is contained in the Digital in & Digital Interrupt byte (7^^th^^ Byte).
948
949 User can use the 3^^rd^^ ~~ 7^^th^^  bit of this byte to see the working mod:
950
951 Case 7^^th^^ Byte >> 2 & 0x1f:
952
953 * 0: MOD1
954 * 1: MOD2
955 * 2: MOD3
956 * 3: MOD4
957 * 4: MOD5
958 * 5: MOD6
959 * 6: MOD7
960 * 7: MOD8
961 * 8: MOD9
962 * 9: MOD10
963
964 == 2.4 Payload Decoder file ==
965
966
967 In TTN, use can add a custom payload so it shows friendly reading
968
969 In the page (% style="color:#037691" %)**Applications ~-~-> Payload Formats ~-~-> Custom ~-~-> decoder**(%%) to add the decoder from:
970
971 [[https:~~/~~/github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB>>https://github.com/dragino/dragino-end-node-decoder/tree/main/SN50_v3-LB]]
972
973
974 == 2.5 Frequency Plans ==
975
976
977 The SN50v3-LB/LS uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
978
979 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20Frequency%20Band/]]
980
981
982 = 3. Configure SN50v3-LB/LS =
983
984 == 3.1 Configure Methods ==
985
986
987 SN50v3-LB/LS supports below configure method:
988
989 * AT Command via Bluetooth Connection (**Recommended**): [[BLE Configure Instruction>>http://wiki.dragino.com/xwiki/bin/view/Main/BLE%20Bluetooth%20Remote%20Configure/]].
990 * AT Command via UART Connection : See [[UART Connection>>http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H2.3UARTConnectionforSN50v3basemotherboard]].
991 * LoRaWAN Downlink.  Instruction for different platforms: See [[IoT LoRaWAN Server>>http://wiki.dragino.com/xwiki/bin/view/Main/]] section.
992
993 == 3.2 General Commands ==
994
995
996 These commands are to configure:
997
998 * General system settings like: uplink interval.
999 * LoRaWAN protocol & radio related command.
1000
1001 They are same for all Dragino Devices which support DLWS-005 LoRaWAN Stack. These commands can be found on the wiki:
1002
1003 [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/>>http://wiki.dragino.com/xwiki/bin/view/Main/End%20Device%20AT%20Commands%20and%20Downlink%20Command/]]
1004
1005
1006 == 3.3 Commands special design for SN50v3-LB/LS ==
1007
1008
1009 These commands only valid for SN50v3-LB/LS, as below:
1010
1011
1012 === 3.3.1 Set Transmit Interval Time ===
1013
1014
1015 Feature: Change LoRaWAN End Node Transmit Interval.
1016
1017 (% style="color:blue" %)**AT Command: AT+TDC**
1018
1019 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1020 |=(% style="width: 156px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 137px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="background-color:#D9E2F3;color:#0070C0" %)**Response**
1021 |(% style="width:156px" %)AT+TDC=?|(% style="width:137px" %)Show current transmit Interval|(((
1022 30000
1023 OK
1024 the interval is 30000ms = 30s
1025 )))
1026 |(% style="width:156px" %)AT+TDC=60000|(% style="width:137px" %)Set Transmit Interval|(((
1027 OK
1028 Set transmit interval to 60000ms = 60 seconds
1029 )))
1030
1031 (% style="color:blue" %)**Downlink Command: 0x01**
1032
1033 Format: Command Code (0x01) followed by 3 bytes time value.
1034
1035 If the downlink payload=0100003C, it means set the END Node's Transmit Interval to 0x00003C=60(S), while type code is 01.
1036
1037 * Example 1: Downlink Payload: 0100001E  ~/~/  Set Transmit Interval (TDC) = 30 seconds
1038 * Example 2: Downlink Payload: 0100003C  ~/~/  Set Transmit Interval (TDC) = 60 seconds
1039
1040 === 3.3.2 Get Device Status ===
1041
1042
1043 Send a LoRaWAN downlink to ask the device to send its status.
1044
1045 (% style="color:blue" %)**Downlink Payload: 0x26 01**
1046
1047 Sensor will upload Device Status via **FPORT=5**. See payload section for detail.
1048
1049
1050 === 3.3.3 Set Interrupt Mode ===
1051
1052
1053 Feature, Set Interrupt mode for GPIO_EXIT.
1054
1055 (% style="color:blue" %)**AT Command: AT+INTMOD1,AT+INTMOD2,AT+INTMOD3**
1056
1057 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1058 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1059 |(% style="width:154px" %)AT+INTMOD1=?|(% style="width:196px" %)Show current interrupt mode|(% style="width:157px" %)(((
1060 0
1061 OK
1062 the mode is 0 =Disable Interrupt
1063 )))
1064 |(% style="width:154px" %)AT+INTMOD1=2|(% style="width:196px" %)(((
1065 Set Transmit Interval
1066 0. (Disable Interrupt),
1067 ~1. (Trigger by rising and falling edge)
1068 2. (Trigger by falling edge)
1069 3. (Trigger by rising edge)
1070 )))|(% style="width:157px" %)OK
1071 |(% style="width:154px" %)AT+INTMOD2=3|(% style="width:196px" %)(((
1072 Set Transmit Interval
1073 trigger by rising edge.
1074 )))|(% style="width:157px" %)OK
1075 |(% style="width:154px" %)AT+INTMOD3=0|(% style="width:196px" %)Disable Interrupt|(% style="width:157px" %)OK
1076
1077 (% style="color:blue" %)**Downlink Command: 0x06**
1078
1079 Format: Command Code (0x06) followed by 3 bytes.
1080
1081 This means that the interrupt mode of the end node is set to 0x000003=3 (rising edge trigger), and the type code is 06.
1082
1083 * Example 1: Downlink Payload: 06000000  **~-~-->**  AT+INTMOD1=0
1084 * Example 2: Downlink Payload: 06000003  **~-~-->**  AT+INTMOD1=3
1085 * Example 3: Downlink Payload: 06000102  **~-~-->**  AT+INTMOD2=2
1086 * Example 4: Downlink Payload: 06000201  **~-~-->**  AT+INTMOD3=1
1087
1088 === 3.3.4 Set Power Output Duration ===
1089
1090
1091 Control the output duration 5V . Before each sampling, device will
1092
1093 ~1. first enable the power output to external sensor,
1094
1095 2. keep it on as per duration, read sensor value and construct uplink payload
1096
1097 3. final, close the power output.
1098
1099 (% style="color:blue" %)**AT Command: AT+5VT**
1100
1101 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1102 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1103 |(% style="width:154px" %)AT+5VT=?|(% style="width:196px" %)Show 5V open time.|(% style="width:157px" %)(((
1104 500(default)
1105 OK
1106 )))
1107 |(% style="width:154px" %)AT+5VT=1000|(% style="width:196px" %)(((
1108 Close after a delay of 1000 milliseconds.
1109 )))|(% style="width:157px" %)OK
1110
1111 (% style="color:blue" %)**Downlink Command: 0x07**
1112
1113 Format: Command Code (0x07) followed by 2 bytes.
1114
1115 The first and second bytes are the time to turn on.
1116
1117 * Example 1: Downlink Payload: 070000  **~-~-->**  AT+5VT=0
1118 * Example 2: Downlink Payload: 0701F4  **~-~-->**  AT+5VT=500
1119
1120 === 3.3.5 Set Weighing parameters ===
1121
1122
1123 Feature: Working mode 5 is effective, weight initialization and weight factor setting of HX711.
1124
1125 (% style="color:blue" %)**AT Command: AT+WEIGRE,AT+WEIGAP**
1126
1127 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1128 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1129 |(% style="width:154px" %)AT+WEIGRE|(% style="width:196px" %)Weight is initialized to 0.|(% style="width:157px" %)OK
1130 |(% style="width:154px" %)AT+WEIGAP=?|(% style="width:196px" %)400.0|(% style="width:157px" %)OK(default)
1131 |(% style="width:154px" %)AT+WEIGAP=400.3|(% style="width:196px" %)Set the factor to 400.3.|(% style="width:157px" %)OK
1132
1133 (% style="color:blue" %)**Downlink Command: 0x08**
1134
1135 Format: Command Code (0x08) followed by 2 bytes or 4 bytes.
1136
1137 Use AT+WEIGRE when the first byte is 1, only 1 byte. When it is 2, use AT+WEIGAP, there are 3 bytes.
1138
1139 The second and third bytes are multiplied by 10 times to be the AT+WEIGAP value.
1140
1141 * Example 1: Downlink Payload: 0801  **~-~-->**  AT+WEIGRE
1142 * Example 2: Downlink Payload: 08020FA3  **~-~-->**  AT+WEIGAP=400.3
1143 * Example 3: Downlink Payload: 08020FA0  **~-~-->**  AT+WEIGAP=400.0
1144
1145 === 3.3.6 Set Digital pulse count value ===
1146
1147
1148 Feature: Set the pulse count value.
1149
1150 Count 1 is PA8 pin of mode 6 and mode 9. Count 2 is PA4 pin of mode 9.
1151
1152 (% style="color:blue" %)**AT Command: AT+SETCNT**
1153
1154 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1155 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1156 |(% style="width:154px" %)AT+SETCNT=1,100|(% style="width:196px" %)Initialize the count value 1 to 100.|(% style="width:157px" %)OK
1157 |(% style="width:154px" %)AT+SETCNT=2,0|(% style="width:196px" %)Initialize the count value 2 to 0.|(% style="width:157px" %)OK
1158
1159 (% style="color:blue" %)**Downlink Command: 0x09**
1160
1161 Format: Command Code (0x09) followed by 5 bytes.
1162
1163 The first byte is to select which count value to initialize, and the next four bytes are the count value to be initialized.
1164
1165 * Example 1: Downlink Payload: 090100000000  **~-~-->**  AT+SETCNT=1,0
1166 * Example 2: Downlink Payload: 0902000003E8  **~-~-->**  AT+SETCNT=2,1000
1167
1168 === 3.3.7 Set Workmode ===
1169
1170
1171 Feature: Switch working mode.
1172
1173 (% style="color:blue" %)**AT Command: AT+MOD**
1174
1175 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1176 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 197px;background-color:#D9E2F3;color:#0070C0" %)**Function**|=(% style="width: 158px;background-color:#D9E2F3;color:#0070C0" %)**Response**
1177 |(% style="width:154px" %)AT+MOD=?|(% style="width:196px" %)Get the current working mode.|(% style="width:157px" %)(((
1178 OK
1179 )))
1180 |(% style="width:154px" %)AT+MOD=4|(% style="width:196px" %)Set the working mode to 3DS18B20s.|(% style="width:157px" %)(((
1181 OK
1182 Attention:Take effect after ATZ
1183 )))
1184
1185 (% style="color:blue" %)**Downlink Command: 0x0A**
1186
1187 Format: Command Code (0x0A) followed by 1 bytes.
1188
1189 * Example 1: Downlink Payload: 0A01  **~-~-->**  AT+MOD=1
1190 * Example 2: Downlink Payload: 0A04  **~-~-->**  AT+MOD=4
1191
1192 (% id="H3.3.8PWMsetting" %)
1193 === 3.3.8 PWM setting ===
1194
1195
1196 (% class="mark" %)Feature: Set the time acquisition unit for PWM input capture.
1197
1198 (% style="color:blue" %)**AT Command: AT+PWMSET**
1199
1200 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1201 |=(% style="width: 155px;background-color:#D9E2F3;color:#0070C0" %)**Command Example**|=(% style="width: 223px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 130px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1202 |(% style="width:154px" %)AT+PWMSET=?|(% style="width:223px" %)0|(% style="width:130px" %)(((
1203 0(default)
1204
1205 OK
1206 )))
1207 |(% style="width:154px" %)AT+PWMSET=0|(% style="width:223px" %)The unit of PWM capture time is microsecond. The capture frequency range is between 20HZ and 100000HZ.   |(% style="width:130px" %)(((
1208 OK
1209
1210 )))
1211 |(% style="width:154px" %)AT+PWMSET=1|(% style="width:223px" %)The unit of PWM capture time is millisecond.  The capture frequency range is between 5HZ and 250HZ. |(% style="width:130px" %)OK
1212
1213 (% style="color:blue" %)**Downlink Command: 0x0C**
1214
1215 Format: Command Code (0x0C) followed by 1 bytes.
1216
1217 * Example 1: Downlink Payload: 0C00  **~-~-->**  AT+PWMSET=0
1218 * Example 2: Downlink Payload: 0C01  **~-~-->**  AT+PWMSET=1
1219
1220 (% class="mark" %)Feature: Set PWM output time, output frequency and output duty cycle.
1221
1222 (% style="color:blue" %)**AT Command: AT+PWMOUT**
1223
1224 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1225 |=(% style="width: 183px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 193px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 137px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Response**
1226 |(% style="width:183px" %)AT+PWMOUT=?|(% style="width:193px" %)0|(% style="width:137px" %)(((
1227 0,0,0(default)
1228
1229 OK
1230 )))
1231 |(% style="width:183px" %)AT+PWMOUT=0,0,0|(% style="width:193px" %)The default is PWM input detection|(% style="width:137px" %)(((
1232 OK
1233
1234 )))
1235 |(% style="width:183px" %)AT+PWMOUT=5,1000,50|(% style="width:193px" %)(((
1236 The PWM output time is 5ms, the output frequency is 1000HZ, and the output duty cycle is 50%.
1237
1238
1239 )))|(% style="width:137px" %)(((
1240 OK
1241 )))
1242
1243 (% border="1" cellspacing="4" style="background-color:#f2f2f2; width:510px" %)
1244 |=(% style="width: 155px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Command Example**|=(% style="width: 112px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**Function**|=(% style="width: 242px; background-color: rgb(217, 226, 243); color: rgb(0, 112, 192);" %)**parameters**
1245 |(% colspan="1" rowspan="3" style="width:155px" %)(((
1246 AT+PWMOUT=a,b,c
1247
1248
1249 )))|(% colspan="1" rowspan="3" style="width:112px" %)(((
1250 Set PWM output time, output frequency and output duty cycle.
1251
1252 (((
1253
1254 )))
1255
1256 (((
1257
1258 )))
1259 )))|(% style="width:242px" %)(((
1260 a: Output time (unit: seconds)
1261
1262 The value ranges from 0 to 65535.
1263
1264 When a=65535, PWM will always output.
1265 )))
1266 |(% style="width:242px" %)(((
1267 b: Output frequency (unit: HZ)
1268 )))
1269 |(% style="width:242px" %)(((
1270 c: Output duty cycle (unit: %)
1271
1272 The value ranges from 0 to 100.
1273 )))
1274
1275 (% style="color:blue" %)**Downlink Command: 0x0B01**
1276
1277 Format: Command Code (0x0B01) followed by 6 bytes.
1278
1279 Downlink payload:0B01 bb cc aa **~-~--> **AT+PWMOUT=a,b,c
1280
1281 * Example 1: Downlink Payload: 0B01 03E8 0032 0005 **~-~-->**  AT+PWMSET=5,1000,50
1282 * Example 2: Downlink Payload: 0B01 07D0 003C 000A **~-~-->**  AT+PWMSET=10,2000,60
1283
1284 = 4. Battery & Power Cons =
1285
1286
1287 SN50v3-LB use ER26500 + SPC1520 battery pack and SN50v3-LS use 3000mAh Recharable Battery with Solar Panel. See below link for detail information about the battery info and how to replace.
1288
1289 [[**Battery Info & Power Consumption Analyze**>>http://wiki.dragino.com/xwiki/bin/view/Main/How%20to%20calculate%20the%20battery%20life%20of%20Dragino%20sensors%3F/]] .
1290
1291
1292 = 5. OTA Firmware update =
1293
1294
1295 (% class="wikigeneratedid" %)
1296 **User can change firmware SN50v3-LB/LS to:**
1297
1298 * Change Frequency band/ region.
1299 * Update with new features.
1300 * Fix bugs.
1301
1302 **Firmware and changelog can be downloaded from :** **[[Firmware download link>>https://www.dropbox.com/sh/4rov7bcp6u28exp/AACt-wAySd4si5AXi8DBmvSca?dl=0]]**
1303
1304 **Methods to Update Firmware:**
1305
1306 * (Recommanded way) OTA firmware update via wireless: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20OTA%20Update%20for%20Sensors/]]**
1307 * Update through UART TTL interface: **[[Instruction>>url:http://wiki.dragino.com/xwiki/bin/view/Main/UART%20Access%20for%20LoRa%20ST%20v4%20base%20model/#H1.LoRaSTv4baseHardware]]**.
1308
1309 = 6. FAQ =
1310
1311 == 6.1 Where can i find source code of SN50v3-LB/LS? ==
1312
1313
1314 * **[[Hardware Source Files>>https://github.com/dragino/Lora/tree/master/LSN50/v3.0]].**
1315 * **[[Software Source Code & Compile instruction>>https://github.com/dragino/SN50v3]].**
1316
1317 == 6.2 How to generate PWM Output in SN50v3-LB/LS? ==
1318
1319
1320 See this document: **[[Generate PWM Output on SN50v3>>https://www.dropbox.com/scl/fi/r3trcet2knujg40w0mgyn/Generate-PWM-Output-on-SN50v3.pdf?rlkey=rxsgmrhhrv62iiiwjq9sv10bn&dl=0]]**.
1321
1322
1323 == 6.3 How to put several sensors to a SN50v3-LB/LS? ==
1324
1325
1326 When we want to put several sensors to A SN50v3-LB/LS, the waterproof at the grand connector will become an issue. User can try to exchange the grand connector to below type.
1327
1328 [[Reference Supplier>>https://www.yscableglands.com/cable-glands/nylon-cable-glands/cable-gland-rubber-seal.html]].
1329
1330 [[image:image-20230810121434-1.png||height="242" width="656"]]
1331
1332
1333 = 7. Order Info =
1334
1335
1336 Part Number: (% style="color:blue" %)**SN50v3-LB-XX-YY** or **SN50v3-LS-XX-YY**
1337
1338 (% style="color:red" %)**XX**(%%): The default frequency band
1339
1340 * (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1341 * (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1342 * (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1343 * (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1344 * (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1345 * (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1346 * (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band
1347 * (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1348
1349 (% style="color:red" %)**YY: ** (%%)Hole Option
1350
1351 * (% style="color:red" %)**12**(%%): With M12 waterproof cable hole
1352 * (% style="color:red" %)**16**(%%): With M16 waterproof cable hole
1353 * (% style="color:red" %)**20**(%%): With M20 waterproof cable hole
1354 * (% style="color:red" %)**NH**(%%): No Hole
1355
1356 = 8. ​Packing Info =
1357
1358
1359 (% style="color:#037691" %)**Package Includes**:
1360
1361 * SN50v3-LB or SN50v3-LS LoRaWAN Generic Node
1362
1363 (% style="color:#037691" %)**Dimension and weight**:
1364
1365 * Device Size: cm
1366 * Device Weight: g
1367 * Package Size / pcs : cm
1368 * Weight / pcs : g
1369
1370 = 9. Support =
1371
1372
1373 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
1374
1375 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.cc>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.cc]]